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Transfer Learning with Pretrained Audio Networks

This example shows how to use transfer learning to retrain YAMNet, a pretrained convolutional
neural network, to classify a new set of audio signals. To get started with audio deep learning from
scratch, see “Classify Sound Using Deep Learning”.

Transfer learning is commonly used in deep learning applications. You can take a pretrained network
and use it as a starting point to learn a new task. Fine-tuning a network with transfer learning is
usually much faster and easier than training a network with randomly initialized weights from
scratch. You can quickly transfer learned features to a new task using a smaller number of training
signals.

Audio Toolbox™ additionally provides the classifySound function, which implements necessary
preprocessing for YAMNet and convenient postprocessing to interpret the results. Audio Toolbox also
provides the pretrained VGGish network (vggish) as well as the vggishEmbeddings function,
which implements preprocessing and postprocessing for the VGGish network.

Create Data

Generate 100 white noise signals, 100 brown noise signals, and 100 pink noise signals. Each signal
represents a duration of 0.98 seconds assuming a 16 kHz sample rate.

fs = 16e3;
duration = 0.98;
N = duration*fs;
numSignals = 100;

wNoise = 2*rand([N,numSignals]) - 1;
wLabels = repelem(categorical("white"),numSignals,1);

bNoise = filter(1,[1,-0.999],wNoise);
bNoise = bNoise./max(abs(bNoise),[],"all");
bLabels = repelem(categorical("brown"),numSignals,1);

pNoise = pinknoise([N,numSignals]);
pLabels = repelem(categorical("pink"),numSignals,1);

Split the data into training and test sets. Normally, the training set consists of most of the data.
However, to illustrate the power of transfer learning, you will use only a few samples for training and
the majority for validation.

K = ;
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trainAudio = [wNoise(:,1:K),bNoise(:,1:K),pNoise(:,1:K)];
trainLabels = [wLabels(1:K);bLabels(1:K);pLabels(1:K)];

validationAudio = [wNoise(:,K+1:end),bNoise(:,K+1:end),pNoise(:,K+1:end)];
validationLabels = [wLabels(K+1:end);bLabels(K+1:end);pLabels(K+1:end)];

fprintf("Number of samples per noise color in train set = %d\n" + ...
        "Number of samples per noise color in validation set = %d\n",K,numSignals-K);

Number of samples per noise color in train set = 5
Number of samples per noise color in validation set = 95

Extract Features

Use yamnetPreprocess to extract log-mel spectrograms from both the training set and the
validation set using the same parameters as the YAMNet model was trained on.

trainFeatures = yamnetPreprocess(trainAudio,fs);
validationFeatures = yamnetPreprocess(validationAudio,fs);

Transfer Learning

To load the pretrained network, call yamnet. If the Audio Toolbox model for YAMNet is not installed,
then the function provides a link to the location of the network weights. To download the model, click
the link. Unzip the file to a location on the MATLAB path. The YAMNet model can classify audio into
one of 521 sound categories, including white noise and pink noise (but not brown noise).

net = yamnet;
net.Layers(end).Classes

ans = 521×1 categorical
     Speech 
     Child speech, kid speaking 
     Conversation 
     Narration, monologue 
     Babbling 
     Speech synthesizer 
     Shout 
     Bellow 
     Whoop 
     Yell 
     Children shouting 
     Screaming 
     Whispering 
     Laughter 
     Baby laughter 
     Giggle 
     Snicker 
     Belly laugh 
     Chuckle, chortle 
     Crying, sobbing 
     Baby cry, infant cry 
     Whimper 
     Wail, moan 
     Sigh 
     Singing 
     Choir 
     Yodeling 
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     Chant 
     Mantra 
     Child singing 
      ⋮

Prepare the model for transfer learning by first converting the network to a layerGraph (Deep
Learning Toolbox). Use replaceLayer (Deep Learning Toolbox) to replace the fully-connected layer
with an untrained fully-connected layer. Replace the classification layer with a classification layer that
classifies the input as "white", "pink", or "brown". See “List of Deep Learning Layers” (Deep Learning
Toolbox) for deep learning layers supported in MATLAB®.

uniqueLabels = unique(trainLabels);
numLabels = numel(uniqueLabels);

lgraph = layerGraph(net.Layers);

lgraph = replaceLayer(lgraph,"dense",fullyConnectedLayer(numLabels,Name="dense"));
lgraph = replaceLayer(lgraph,"Sound",classificationLayer(Name="Sounds",Classes=uniqueLabels));

To define training options, use trainingOptions (Deep Learning Toolbox).

options = trainingOptions("adam",ValidationData={single(validationFeatures),validationLabels});

To train the network, use trainNetwork (Deep Learning Toolbox). The network achieves a validation
accuracy of 100% using only 5 signals per noise type.

trainNetwork(single(trainFeatures),trainLabels,lgraph,options);

Training on single CPU.
|======================================================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Validation  |  Mini-batch  |  Validation  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |   Accuracy   |     Loss     |     Loss     |      Rate       |
|======================================================================================================================|
|       1 |           1 |       00:00:01 |       20.00% |       88.42% |       1.1922 |       0.6651 |          0.0010 |
|      30 |          30 |       00:00:14 |      100.00% |      100.00% |   5.0068e-06 |       0.0003 |          0.0010 |
|======================================================================================================================|
Training finished: Max epochs completed.
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Effect of Soundproofing on Perceived Noise Levels

In this example, you measure engine noise and use psychoacoustic metrics to model its perceived
loudness, sharpness, fluctuation strength, roughness, and overall annoyance level. You then simulate
the addition of soundproofing material and recompute the overall annoyance level. Finally, you
compare annoyance levels and show the perceptual improvements gained from applying
soundproofing.

Recording Level Calibration

Psychoacoustic measurements produce the most accurate results with a calibrated microphone input
level. To use calibrateMicrophone to match your recording level to the reading of an SPL meter,
you can use a 1 kHz tone source (such as an online tone generator or cell phone app) and a calibrated
SPL meter. The SPL of the 1 kHz calibration tone should be loud enough to dominate any background
noise. For a calibration example using MATLAB as the 1 kHz tone source, see
calibrateMicrophone.

Simulate the tone recording and include some background noise. Assume an SPL meter reading of
83.1 dB (C-weighted).

FS = 48e3;
t = (1:2*FS)/FS;
s = rng('default');
testTone = 0.46*sin(2*pi*t*1000).' + .1*pinknoise(2*FS);
rng(s)

splMeterReading = 83.1;

To compute the calibration level of a recording chain, call calibrateMicrophone and specify the
test tone, the sample rate, the SPL reading, and the frequency weighting of the SPL meter. To
compensate for possible background noise and produce a precise calibration level, match the
frequency weighting setting of the SPL meter.

calib = calibrateMicrophone(testTone,FS,splMeterReading,"FrequencyWeighting","C-weighting");

Sound Pressure Levels (SPL)

Once you have a calibration factor for your recording chain, you can make acoustic measurements.
When using a physical meter, you are limited to the settings selected during measurement time. With
the splMeter object, you can change your settings after the recording has been made. This makes it
easy to experiment with different time and frequency weighting options.

Load an engine recording and create the corresponding time vector.

[x,FS] = audioread('Engine-16-44p1-stereo-20sec.wav');
x = x(1:8*FS,1); % use only channel 1 and keep only 8 seconds.
t = (1:size(x,1))/FS;

Create an splMeter object and select C-weighting, fast time weighting, and a 0.2 second interval for
peak SPL measurement.

spl = splMeter("CalibrationFactor",calib, ...
               "FrequencyWeighting","C-weighting", ...
               "TimeWeighting","Fast", ...
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               "TimeInterval",0.2, ...
               "SampleRate",FS);

Plot SPL and peak SPL.

[LCF,~,LCpeak] = spl(x);
plot(t,LCpeak,t,LCF)
legend('LCpeak','LCF','Location',"southeast")
title('SPL Measurement of Engine Noise')
xlabel('Time (seconds)')
ylabel('SPL (dB)')
ylim([70 95])
grid on

Psychoacoustic Metrics

Loudness level

Monitoring SPL is important for occupational safety compliance. However, SPL measurements do not
reflect loudness as perceived by an actual listener. acousticLoudness measures loudness levels as
perceived by a human listener with normal hearing (no hearing impairments). The
acousticLoudness function also shows which frequency bands contribute the most to the
perceptual sensation of loudness.

Using the same calibration level as before, and assuming a free-field recording (the default), plot
stationary loudness.

acousticLoudness(x,FS,calib)
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The loudness is 23.8 sones, and much of the noise is below 3.3 (Bark scale). Convert 3.3 Bark to Hz
using bark2hz

fprintf("Loudness frequency of 3.3 Bark: %d Hz\n",round(bark2hz(3.3),-1));

Loudness frequency of 3.3 Bark: 330 Hz

The acousticLoudness function returns perceived loudness in sones. To understand the sone
measurement, compare it to an SPL (dB) reading. A signal with a loudness of 60 phons is perceived to
be as loud as a 1 kHz tone measured at 60 dB SPL. Converting 23.8 sones to phons using sone2phon
demonstrates the loudness perception of the engine noise is as loud as a 1 kHz tone measured at 86
dB SPL.

fprintf("Equivalent 1 kHz SPL: %d phons\n", round(sone2phon(23.8)));

Equivalent 1 kHz SPL: 86 phons

Make your own plot with units in phons and frequency in Hz on a log scale.

[sone,spec] = acousticLoudness(x,FS,calib);
barks = 0.1:0.1:24; % Bark scale for ISO 532-1 loudness
hz = bark2hz(barks);
specPhon = sone2phon(spec);
semilogx(hz,specPhon)
title('Specific Loudness')
subtitle(sprintf('Loudness = %.1f phons',sone2phon(sone)))
xlabel('Frequency (Hz)')
ylabel('Loudness (phons/Bark)')
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xlim(hz([1,end]))
grid on

You can also plot time-varying loudness and specific loudness to analyze the sound of the engine if it
changes with time. This can be displayed with other relevant time-varying data, such as engine
revolutions per minute (RPMs). In this case, the noise is stationary, but you can observe the impulsive
nature of the noise.

acousticLoudness(x,FS,calib,'TimeVarying',true,'TimeResolution','high')
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Plot specific loudness with the frequency in Hz (log scale).

[tvsoneHD,tvspecHD,perc] = acousticLoudness(x,FS,calib,'TimeVarying',true,'TimeResolution','high');
tvspec = tvspecHD(1:4:end,:,:); % for standard resolution measurements
spectimeHD = 0:5e-4:5e-4*(size(tvspecHD,1)-1); % time axis for loudness output
clf; % do not reuse the previous subplot
surf(spectimeHD,hz,sone2phon(tvspecHD).','EdgeColor','interp');
set(gca,'View',[0 90],'YScale','log','YLim',hz([1,end]));
title('Specific Loudness (HD)')
zlabel('Specific Loudness (phons/Bark)')
ylabel('Frequency (Hz)')
xlabel('Time (seconds)')
colorbar
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Sharpness Level

The perceived sharpness of a sound can significantly contribute to its overall annoyance level.
Estimate the perceived sharpness level of an acoustic signal using the acousticSharpness
function.

sharp = acousticSharpness(spec)

sharp = 1.1512

Pink noise has a sharpness of 2 acums. This means the engine noise is biased towards low
frequencies.

Plot time-varying sharpness.

acousticSharpness(x,FS,calib,'TimeVarying',true);
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Fluctuation Strength

In the case of engine noise, low-frequency modulations contribute to the perceived annoyance level.

First, look at what modulation frequencies are present in the signal.

N = 2^nextpow2(size(x,1));
xa = abs(x); % Use the rectified signal
pspectrum(xa-mean(xa),FS,'FrequencyLimits',[0 80],'FrequencyResolution',1)
title('Modulation Frequencies')
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The modulation frequency peaks at 24.9 Hz. Below 30 Hz, modulation is perceived dominantly as
fluctuation. There is a second peak at 49.7 Hz, which is in the range of roughness.

Use acousticFluctuation to compute the perceived fluctuation strength. The engine noise is
relatively constant in this recording, so we have the algorithm automatically detect the most audible
fluctuation frequency (fMod).

acousticFluctuation(x,FS,calib)
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Interpret the results in Hertz instead of Bark. To reduce computations, reuse the previously computed
time-varying specific loudness. Alternatively, you can also specify the modulation frequency that you
are interested in.

[vacil,spec,fMod] = acousticFluctuation(tvspec,'ModulationFrequency',24.9);
clf; % do not reuse previous subplot
flucHz = bark2hz(0.5:0.5:23.5);
spectime = 0:2e-3:2e-3*(size(spec,1)-1);
surf(spectime,flucHz,spec.','EdgeColor','interp');
set(gca,'View',[0 90],'YScale','log','YLim',flucHz([1,end]));
title('Specific Fluctuation Strength')
zlabel('Specific Fluctuation Strength (vacils/Bark)')
ylabel('Frequency (Hz)')
xlabel('Time (seconds)')
colorbar
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Roughness

Use the acousticRoughness function to compute the perceived roughness of the signal. Let the
algorithm automatically detect the most audible modulation frequency (fMod).

acousticRoughness(x,FS,calib)
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Interpret the results in Hertz instead of Bark. To reduce computations, reuse the previously computed
time-varying specific loudness. Specify the modulation frequency.

[asper,specR,fModR] = acousticRoughness(tvspecHD,'ModulationFrequency',49.7);
clf; % do not reuse previous subplot
rougHz = bark2hz(0.5:0.5:23.5);
surf(spectimeHD,rougHz,specR.','EdgeColor','interp');
set(gca,'View',[0 90],'YScale','log','YLim',rougHz([1,end]));
title('Specific Roughness')
zlabel('Specific Roughness (aspers/Bark)')
ylabel('Frequency (Hz)')
xlabel('Time (seconds)')
colorbar
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Sound Quality

For overall sound quality evaluation, combine the previous metrics to produce the psychoacoustic
annoyance metric (defined by Zwicker and Fastl). The relation is as follows:

PA ∼ N 1 + g1 S 2 + g2 F, R 2

A quantitative description was developed using the results of psychoacoustic experiments:

PA = N5 1 + wS
2 + wFR

2

with:

• N5 percentile loudness in sone (level that is exceeded only 5% of the time)
• wS = S− 1 . 75 ⋅ 0 . 25 ⋅ log10 N5 + 10  for S > 1 . 75, where S is the sharpness in acum
• wFR = 2 . 18

N5
0 . 4 0 . 4 ⋅ F + 0 . 6 ⋅ R , where F is the fluctuation strength in vacil and R is the

roughness in asper

In this example, sharpness was less than 1.75, so it is not a contributing factor. Therefore, you can set
ws to zero.

Percentile loudness, N5, is the second value returned by the third output of acousticLoudness
when "TimeVarying" is set to true.
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N5 = perc(2);

Compute the average fluctuation strength ignoring the first second of the signal.

f = mean(vacil(501:end,1));

Compute the average roughness ignoring the first second of the signal.

r = mean(asper(2001:end,1));

Compute the psychoacoustic annoyance metric.

pa = N5 * (1 + abs(2.18/(N5^.4)*(.4*f+.6*r)))

pa = 26.3402

Effect of Improved Soundproofing

Measure the impact of improved soundproofing on the measured SPL and the perceived noise.

Simulation Using Graphic EQ Filter Bank

Design a graphicEQ object to simulate the attenuation of the proposed soundproofing. Low
frequencies are harder to attenuate, so we create a model that is best above 200 Hz.

geq = graphicEQ("Bandwidth","1 octave","SampleRate",FS,"Gains",[-0.5 -1.25 -3.4 -7 -8.25 -8.4 -8 -7 -6.4 -5.6]);
cf = getCenterFrequencies(splMeter("Bandwidth","1 octave"));

Display the frequency response of the graphicEQ object.

[B,A] = coeffs(geq);
sos = [B;A].';
[H,w] = freqz(sos,2^16,FS);
semilogx(w,db(abs(H)))
title('Frequency Response of Soundproofing Simulation Filter')
ylabel('Relative SPL (dB)')
xlabel('Frequency (Hz)')
xlim(cf([1,end]))
grid on
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Filter the engine recording using the graphic EQ to simulate the soundproofing.

x2 = geq(x);

Compare the SPL with and without soundproofing. Reuse the same SPL meter settings, but use the
filtered recording.

reset(spl)
[LCFnew,~,LCpeaknew] = spl(x2);
plot(t,LCpeak,t,LCF,t,LCpeaknew,t,LCFnew)
legend('LCpeak (original)', 'LCF (original)', ...
       'LCpeak (with soundproofing)', ...
       'LCF (with soundproofing)', ...
       'Location','southeast')
title('SPL Measurement of Engine Noise')
xlabel('Time (seconds)')
ylabel('SPL (dB)')
ylim([70 95])
grid on
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Compare the perceived loudness measurements before and after soundproofing.

acousticLoudness(x2,FS,calib)
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Loudness decreased from 23.8 to 16.3 sones. However, it might be easier to interpret loudness in
phons. Convert the sone units to phons using sone2phon.

fprintf("Loudness without soundproofing:   \t%.1f phons\n",sone2phon(23.8));

Loudness without soundproofing:       85.7 phons

fprintf("Loudness with added soundproofing:\t%.1f phons\n",sone2phon(16.3));

Loudness with added soundproofing:    80.3 phons

fprintf("Perceived noise reduction:\t\t%.1f phons (dB SPL at 1 kHz)\n",sone2phon(23.8)-sone2phon(16.3));

Perceived noise reduction:        5.5 phons (dB SPL at 1 kHz)

After soundproofing, acousticLoudness shows the perception of the engine noise is approximately
5.5 dB quieter. Human perception of sound is limited at very low frequencies, where most of the
engine noise is. The soundproofing is more effective at higher frequencies.

Calculate the reduction in the psychoacoustic annoyance factor. Start by computing the mean of the
acoustic sharpness.

[~,spec2hd,perc2] = acousticLoudness(x2,FS,calib,"TimeVarying",true,"TimeResolution","high");
spec2 = spec2hd(1:4:end,:,:);
shp = acousticSharpness(spec2,'TimeVarying',true);
new_sharp = mean(shp(501:end))

new_sharp = 1.0796
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Sharpness has decreased because the soundproofing is more effective at high frequency attenuation.
It is below the threshold of 1.75, so it is ignored for the annoyance factor.

Now, compute the mean of fluctuation strength and roughness.

vacil2 = acousticFluctuation(spec2);
f2 = mean(vacil2(501:end,1));
asper2 = acousticRoughness(spec2hd);
r2 = mean(asper2(2001:end,1));

Compute the new psychoacoustic annoyance factor. It has decreased, from 26.3 to 18.1.

N5hp = perc2(2); % N5 with soundproofing
pahp = N5hp * (1 + abs(2.18/(N5hp^.4)*(.4*f2+.6*r2)))

pahp = 18.0626

References

[1] Zwicker, Eberhard, and Hugo Fastl. Psychoacoustics: Facts and Models. Vol. 22. Springer Science
& Business Media, 2013.

 Effect of Soundproofing on Perceived Noise Levels

1-21



Speech Command Recognition Code Generation on Raspberry
Pi

This example shows how to deploy feature extraction and a convolutional neural network (CNN) for
speech command recognition to Raspberry Pi™. To generate the feature extraction and network code,
you use MATLAB Coder™, MATLAB® Support Package for Raspberry Pi Hardware, and the ARM®
Compute Library. In this example, the generated code is an executable on your Raspberry Pi, which is
called by a MATLAB script that displays the predicted speech command along with the signal and
auditory spectrogram. Interaction between the MATLAB script and the executable on your Raspberry
Pi is handled using the user datagram protocol (UDP). For details about audio preprocessing and
network training, see “Train Speech Command Recognition Model Using Deep Learning” on page 1-
332.

Prerequisites

• MATLAB Coder Interface for Deep Learning Libraries
• ARM processor that supports the NEON extension
• ARM Compute Library version 20.02.1 (on the target ARM hardware)
• Environment variables for the compilers and libraries

For supported versions of libraries and for information about setting up environment variables, see
“Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder).

Streaming Demonstration in MATLAB

Use the same parameters for the feature extraction pipeline and classification as developed in “Train
Speech Command Recognition Model Using Deep Learning” on page 1-332.

Define the same sample rate the network was trained on (16 kHz). Define the classification rate and
the number of audio samples input per frame. The feature input to the network is a Bark spectrogram
that corresponds to 1 second of audio data. The Bark spectrogram is calculated for 25 ms windows
with 10 ms hops. Calculate the number of individual spectrums in each spectrogram.

fs = 16000;
classificationRate = 20;
samplesPerCapture = fs/classificationRate;

segmentDuration = 1;
segmentSamples = round(segmentDuration*fs);

frameDuration = 0.025;
frameSamples = round(frameDuration*fs);

hopDuration = 0.010;
hopSamples = round(hopDuration*fs);

numSpectrumPerSpectrogram = floor((segmentSamples-frameSamples)/hopSamples) + 1;

Create an audioFeatureExtractor object to extract 50-band Bark spectrograms without window
normalization. Calculate the number of elements in each spectrogram.

afe = audioFeatureExtractor( ...
    'SampleRate',fs, ...
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    'FFTLength',512, ...
    'Window',hann(frameSamples,'periodic'), ...
    'OverlapLength',frameSamples - hopSamples, ...
    'barkSpectrum',true);

numBands = 50;
setExtractorParameters(afe,'barkSpectrum','NumBands',numBands,'WindowNormalization',false);

numElementsPerSpectrogram = numSpectrumPerSpectrogram*numBands;

Load the pretrained CNN and labels.

load('commandNet.mat')
labels = trainedNet.Layers(end).Classes;
NumLabels = numel(labels);
BackGroundIdx = find(labels == 'background'); 

Define buffers and decision thresholds to post process network predictions.

probBuffer = single(zeros([NumLabels,classificationRate/2]));
YBuffer = single(NumLabels * ones(1, classificationRate/2)); 

countThreshold = ceil(classificationRate*0.2);
probThreshold = single(0.7);

Create an audioDeviceReader object to read audio from your device. Create a dsp.AsyncBuffer
object to buffer the audio into chunks.

adr = audioDeviceReader('SampleRate',fs,'SamplesPerFrame',samplesPerCapture,'OutputDataType','single');
audioBuffer = dsp.AsyncBuffer(fs);

Create a dsp.MatrixViewer object and a timescope object to display the results.

matrixViewer = dsp.MatrixViewer("ColorBarLabel","Power per band (dB/Band)",...
    "XLabel","Frames",...
    "YLabel","Bark Bands", ...
    "Position",[400 100 600 250], ...
    "ColorLimits",[-4 2.6445], ...
    "AxisOrigin","Lower left corner", ...
    "Name","Speech Command Recognition using Deep Learning");

timeScope = timescope("SampleRate",fs, ...
    "YLimits",[-1 1], ...
    "Position",[400 380 600 250], ...
    "Name","Speech Command Recognition Using Deep Learning", ...
    "TimeSpanSource","Property", ...
    "TimeSpan",1, ...
    "BufferLength",fs, ...
    "YLabel","Amplitude", ...
    "ShowGrid",true);

Show the time scope and matrix viewer. Detect commands as long as both the time scope and matrix
viewer are open or until the time limit is reached. To stop the live detection before the time limit is
reached, close the time scope window or matrix viewer window.

show(timeScope)
show(matrixViewer)
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timeLimit = 10;

tic
while isVisible(timeScope) && isVisible(matrixViewer) && toc < timeLimit
    % Capture audio
    x = adr();
    write(audioBuffer,x);
    y = read(audioBuffer,fs,fs-samplesPerCapture);
    
    % Compute auditory features
    features = extract(afe,y);
    auditoryFeatures = log10(features + 1e-6);
    
    % Perform prediction
    probs = predict(trainedNet, auditoryFeatures);      
    [~, YPredicted] = max(probs);
    
    % Perform statistical post processing
    YBuffer = [YBuffer(2:end),YPredicted];
    probBuffer = [probBuffer(:,2:end),probs(:)];

    [YModeIdx, count] = mode(YBuffer);
    maxProb = max(probBuffer(YModeIdx,:));

    if YModeIdx == single(BackGroundIdx) || single(count) < countThreshold || maxProb < probThreshold
        speechCommandIdx = BackGroundIdx;
    else
        speechCommandIdx = YModeIdx;
    end
    
    % Update plots
    matrixViewer(auditoryFeatures');
    timeScope(x);

    if (speechCommandIdx == BackGroundIdx)
        timeScope.Title = ' ';
    else
        timeScope.Title = char(labels(speechCommandIdx));
    end
    drawnow limitrate 
end   

Hide the scopes.

hide(matrixViewer)
hide(timeScope)

Prepare MATLAB Code for Deployment

To create a function to perform feature extraction compatible with code generation, call
generateMATLABFunction on the audioFeatureExtractor object. The
generateMATLABFunction object function creates a standalone function that performs equivalent
feature extraction and is compatible with code generation.

generateMATLABFunction(afe,'extractSpeechFeatures')

The HelperSpeechCommandRecognitionRasPi supporting function encapsulates the feature
extraction and network prediction process demonstrated previously. So that the feature extraction is
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compatible with code generation, feature extraction is handled by the generated
extractSpeechFeatures function. So that the network is compatible with code generation, the
supporting function uses the coder.loadDeepLearningNetwork (MATLAB Coder) function to load
the network. The supporting function uses a dsp.UDPReceiver system object to send the auditory
spectrogram and the index corresponding to the predicted speech command from Raspberry Pi to
MATLAB. The supporting function uses the dsp.UDPReceiver system object to receive the audio
captured by your microphone in MATLAB.

Generate Executable on Raspberry Pi

Replace the hostIPAddress with your machine's address. Your Raspberry Pi sends auditory
spectrograms and the predicted speech command to this IP address.

hostIPAddress = coder.Constant('172.18.230.30');

Create a code generation configuration object to generate an executable program. Specify the target
language as C++.

cfg = coder.config('exe');
cfg.TargetLang = 'C++';

Create a configuration object for deep learning code generation with the ARM compute library that is
on your Raspberry Pi. Specify the architecture of the Raspberry Pi and attach the deep learning
configuration object to the code generation configuration object.

dlcfg = coder.DeepLearningConfig('arm-compute');
dlcfg.ArmArchitecture = 'armv7';
dlcfg.ArmComputeVersion = '20.02.1';
cfg.DeepLearningConfig = dlcfg;

Use the Raspberry Pi Support Package function, raspi, to create a connection to your Raspberry Pi.
In the following code, replace:

• raspiname with the name of your Raspberry Pi
• pi with your user name
• password with your password

r = raspi('raspiname','pi','password');

Create a coder.hardware (MATLAB Coder) object for Raspberry Pi and attach it to the code
generation configuration object.

hw = coder.hardware('Raspberry Pi');
cfg.Hardware = hw;

Specify the build folder on the Raspberry Pi.

buildDir = '~/remoteBuildDir';
cfg.Hardware.BuildDir = buildDir;

Use an auto generated C++ main file for the generation of a standalone executable.

cfg.GenerateExampleMain = 'GenerateCodeAndCompile';

Call codegen (MATLAB Coder) to generate C++ code and the executable on your Raspberry Pi. By
default, the Raspberry Pi application name is the same as the MATLAB function.
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codegen -config cfg HelperSpeechCommandRecognitionRasPi -args {hostIPAddress} -report -v

 Deploying code. This may take a few minutes. 
### Compiling function(s) HelperSpeechCommandRecognitionRasPi ...
------------------------------------------------------------------------
Location of the generated elf : /home/pi/remoteBuildDir/MATLAB_ws/R2022a/W/Ex/ExampleManager/sporwal.Bdoc22a.j1844576/deeplearning_shared-ex00376115
### Using toolchain: GNU GCC Embedded Linux
### 'W:\Ex\ExampleManager\sporwal.Bdoc22a.j1844576\deeplearning_shared-ex00376115\codegen\exe\HelperSpeechCommandRecognitionRasPi\HelperSpeechCommandRecognitionRasPi_rtw.mk' is up to date
### Building 'HelperSpeechCommandRecognitionRasPi': make  -j$(($(nproc)+1)) -Otarget -f HelperSpeechCommandRecognitionRasPi_rtw.mk all

------------------------------------------------------------------------
### Generating compilation report ...
Warning: Function 'HelperSpeechCommandRecognitionRasPi' does not terminate due to an infinite
loop.

Warning in ==> HelperSpeechCommandRecognitionRasPi Line: 86 Column: 1
Code generation successful (with warnings): View report

Initialize Application on Raspberry Pi

Create a command to open the HelperSpeechCommandRasPi application on Raspberry Pi.
Use system to send the command to your Raspberry Pi.

applicationName = 'HelperSpeechCommandRecognitionRasPi';

applicationDirPaths = raspi.utils.getRemoteBuildDirectory('applicationName',applicationName);
targetDirPath = applicationDirPaths{1}.directory;

exeName = strcat(applicationName,'.elf');
command = ['cd ' targetDirPath '; ./' exeName ' &> 1 &'];

system(r,command);

Create a dsp.UDPReceiver system object to send audio captured in MATLAB to your Raspberry Pi.
Update the targetIPAddress for your Raspberry Pi. Raspberry Pi receives the captured audio from
the same port using the dsp.UDPReceiver system object.

targetIPAddress = '172.18.231.92';
UDPSend = dsp.UDPSender('RemoteIPPort',26000,'RemoteIPAddress',targetIPAddress); 

Create a dsp.UDPReceiver system object to receive auditory features and the predicted speech
command index from your Raspberry Pi. Each UDP packet received from the Raspberry Pi consists of
auditory features in column-major order followed by the predicted speech command index. The
maximum message length for the dsp.UDPReceiver object is 65507 bytes. Calculate the buffer size
to accommodate the maximum number of UDP packets.

sizeOfFloatInBytes = 4;
maxUDPMessageLength = floor(65507/sizeOfFloatInBytes);
samplesPerPacket = 1 + numElementsPerSpectrogram; 
numPackets = floor(maxUDPMessageLength/samplesPerPacket);
bufferSize = numPackets*samplesPerPacket*sizeOfFloatInBytes;

UDPReceive = dsp.UDPReceiver("LocalIPPort",21000, ...  
    "MessageDataType","single", ...
    "MaximumMessageLength",samplesPerPacket, ...
    "ReceiveBufferSize",bufferSize);
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Reduce initialization overhead by sending a frame of zeros to the executable running on your
Raspberry Pi.

UDPSend(zeros(samplesPerCapture,1,"single"));

Perform Speech Command Recognition Using Deployed Code

Detect commands as long as both the time scope and matrix viewer are open or until the time limit is
reached. To stop the live detection before the time limit is reached, close the time scope or matrix
viewer window.

show(timeScope)
show(matrixViewer)

timeLimit = 20;

tic
while isVisible(timeScope) && isVisible(matrixViewer) && toc < timeLimit
    % Capture audio and send that to RasPi
    x = adr();
    UDPSend(x);
    
    % Receive data packet from RasPi
    udpRec = UDPReceive();
    
    if ~isempty(udpRec)
        % Extract predicted index, the last sample of received UDP packet
        speechCommandIdx = udpRec(end); 
        
        % Extract auditory spectrogram
        spec = reshape(udpRec(1:numElementsPerSpectrogram), [numBands, numSpectrumPerSpectrogram]);
        
        % Display time domain signal and auditory spectrogram    
        timeScope(x)
        matrixViewer(spec)
        
        if speechCommandIdx == BackGroundIdx
            timeScope.Title = ' ';
        else
            timeScope.Title = char(labels(speechCommandIdx));
        end
        
        drawnow limitrate 
    end
end

hide(matrixViewer)
hide(timeScope)
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To stop the executable on your Raspberry Pi, use stopExecutable. Release the UDP objects.

stopExecutable(codertarget.raspi.raspberrypi,exeName)

release(UDPSend)
release(UDPReceive)

Profile Using PIL Workflow

You can measure the execution time taken on the Raspberry Pi using a processor-in-the-loop (PIL)
workflow of Embedded Coder®. The ProfileSpeechCommandRecognitionRaspi supporting
function is the equivalent of the HelperSpeechCommandRecognitionRaspi function, except that the
former returns the speech command index and auditory spectrogram while the latter sends the same
parameters using UDP. The time taken by the UDP calls is less than 1 ms, which is relatively small
compared to the overall execution time.

Create a PIL configuration object.
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cfg = coder.config('lib','ecoder',true);
cfg.VerificationMode = 'PIL';

Set the ARM compute library and architecture.

dlcfg = coder.DeepLearningConfig('arm-compute');
cfg.DeepLearningConfig = dlcfg ;
cfg.DeepLearningConfig.ArmArchitecture = 'armv7';
cfg.DeepLearningConfig.ArmComputeVersion = '19.05';

Set up the connection with your target hardware.

if (~exist('r','var'))
  r = raspi('raspiname','pi','password');
end
hw = coder.hardware('Raspberry Pi');
cfg.Hardware = hw;

Set the build directory and target language.

buildDir = '~/remoteBuildDir';
cfg.Hardware.BuildDir = buildDir;
cfg.TargetLang = 'C++';

Enable profiling and then generate the PIL code. A MEX file named
ProfileSpeechCommandRecognition_pil is generated in your current folder.

cfg.CodeExecutionProfiling = true;
codegen -config cfg ProfileSpeechCommandRecognitionRaspi -args {rand(samplesPerCapture, 1, 'single')} -report -v

 Deploying code. This may take a few minutes. 
### Compiling function(s) ProfileSpeechCommandRecognitionRaspi ...
### Connectivity configuration for function 'ProfileSpeechCommandRecognitionRaspi': 'Raspberry Pi'
### Using toolchain: GNU GCC Embedded Linux
### Creating 'W:\Ex\ExampleManager\sporwal.Bdoc22a.j1844576\deeplearning_shared-ex00376115\codegen\lib\ProfileSpeechCommandRecognitionRaspi\coderassumptions\lib\ProfileSpeechCommandRecognitionRaspi_ca.mk' ...
### Building 'ProfileSpeechCommandRecognitionRaspi_ca': make  -j$(($(nproc)+1)) -Otarget -f ProfileSpeechCommandRecognitionRaspi_ca.mk all
### Using toolchain: GNU GCC Embedded Linux
### Creating 'W:\Ex\ExampleManager\sporwal.Bdoc22a.j1844576\deeplearning_shared-ex00376115\codegen\lib\ProfileSpeechCommandRecognitionRaspi\pil\ProfileSpeechCommandRecognitionRaspi_rtw.mk' ...
### Building 'ProfileSpeechCommandRecognitionRaspi': make  -j$(($(nproc)+1)) -Otarget -f ProfileSpeechCommandRecognitionRaspi_rtw.mk all
Location of the generated elf : /home/pi/remoteBuildDir/MATLAB_ws/R2022a/W/Ex/ExampleManager/sporwal.Bdoc22a.j1844576/deeplearning_shared-ex00376115/codegen/lib/ProfileSpeechCommandRecognitionRaspi/pil
------------------------------------------------------------------------
### Using toolchain: GNU GCC Embedded Linux
### 'W:\Ex\ExampleManager\sporwal.Bdoc22a.j1844576\deeplearning_shared-ex00376115\codegen\lib\ProfileSpeechCommandRecognitionRaspi\ProfileSpeechCommandRecognitionRaspi_rtw.mk' is up to date
### Building 'ProfileSpeechCommandRecognitionRaspi': make  -j$(($(nproc)+1)) -Otarget -f ProfileSpeechCommandRecognitionRaspi_rtw.mk all

------------------------------------------------------------------------
### Generating compilation report ...
Code generation successful: View report

Evaluate Raspberry Pi Execution Time

Call the generated PIL function multiple times to get the average execution time.

testDur = 50e-3;
numCalls = 100;

for k = 1:numCalls
    x = pinknoise(fs*testDur,'single');
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    [speechCommandIdx, auditoryFeatures] = ProfileSpeechCommandRecognitionRaspi_pil(x);
end

### Starting application: 'codegen\lib\ProfileSpeechCommandRecognitionRaspi\pil\ProfileSpeechCommandRecognitionRaspi.elf'
    To terminate execution: clear ProfileSpeechCommandRecognitionRaspi_pil
### Launching application ProfileSpeechCommandRecognitionRaspi.elf...
    Execution profiling data is available for viewing. Open Simulation Data Inspector.
    Execution profiling report available after termination.

Terminate the PIL execution.

clear ProfileSpeechCommandRecognitionRaspi_pil 

### Host application produced the following standard output (stdout) and standard error (stderr) messages:

    Execution profiling report: report(getCoderExecutionProfile('ProfileSpeechCommandRecognitionRaspi'))

Generate an execution profile report to evaluate execution time.

executionProfile = getCoderExecutionProfile('ProfileSpeechCommandRecognitionRaspi');
report(executionProfile, ...
       'Units','Seconds', ...
       'ScaleFactor','1e-03', ...
       'NumericFormat','%0.4f')  

ans = 
'W:\Ex\ExampleManager\sporwal.Bdoc22a.j1844576\deeplearning_shared-ex00376115\codegen\lib\ProfileSpeechCommandRecognitionRaspi\html\orphaned\ExecutionProfiling_d82c7024f87064b9.html'

1 Audio Toolbox Examples

1-30



The maximum execution time taken by the ProfileSpeechCommandRecognitionRaspi function is
nearly twice the average execution time. You can notice that the execution time is maximum for the
first call of the PIL function and it is due to the initialization happening in the first call. The average
execution time is approximately 20 ms, which is below the 50 ms budget (audio capture time). The
performance is measured on Raspberry Pi 4 Model B Rev 1.1.
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Speech Command Recognition Code Generation with Intel MKL-
DNN

This example shows how to deploy feature extraction and a convolutional neural network (CNN) for
speech command recognition on Intel® processors. To generate the feature extraction and network
code, you use MATLAB® Coder™ and the Intel® Math Kernel Library for Deep Neural Networks
(MKL-DNN). In this example, the generated code is a MATLAB executable (MEX) function, which is
called by a MATLAB script that displays the predicted speech command along with the time domain
signal and auditory spectrogram. For details about audio preprocessing and network training, see
“Train Speech Command Recognition Model Using Deep Learning” on page 1-332.

Prerequisites

• The MATLAB Coder Interface for Deep Learning Libraries support package
• Xeon processor with support for Intel Advanced Vector Extensions 2 (Intel AVX2)
• Intel Math Kernel Library for Deep Neural Networks (MKL-DNN)
• Environment variables for Intel MKL-DNN

For supported versions of libraries and for information about setting up environment variables, see
“Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder).

Streaming Demonstration in MATLAB

Use the same parameters for the feature extraction pipeline and classification as developed in “Train
Speech Command Recognition Model Using Deep Learning” on page 1-332.

Define the same sample rate the network was trained on (16 kHz). Define the classification rate and
the number of audio samples input per frame. The feature input to the network is a Bark spectrogram
that corresponds to 1 second of audio data. The Bark spectrogram is calculated for 25 ms windows
with 10 ms hops.

fs = 16000; 
classificationRate = 20;
samplesPerCapture = fs/classificationRate;

segmentDuration = 1;
segmentSamples = round(segmentDuration*fs);

frameDuration = 0.025;
frameSamples = round(frameDuration*fs);

hopDuration = 0.010;
hopSamples = round(hopDuration*fs);

Create an audioFeatureExtractor object to extract 50-band Bark spectrograms without window
normalization.

afe = audioFeatureExtractor( ...
    'SampleRate',fs, ...
    'FFTLength',512, ...
    'Window',hann(frameSamples,'periodic'), ...
    'OverlapLength',frameSamples - hopSamples, ...
    'barkSpectrum',true);
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numBands = 50;
setExtractorParameters(afe,'barkSpectrum','NumBands',numBands,'WindowNormalization',false);

Load the pretrained convolutional neural network and labels.

load('commandNet.mat')
labels = trainedNet.Layers(end).Classes;
numLabels = numel(labels);
backgroundIdx = find(labels == 'background'); 

Define buffers and decision thresholds to post process network predictions.

probBuffer = single(zeros([numLabels,classificationRate/2]));
YBuffer = single(numLabels * ones(1, classificationRate/2)); 

countThreshold = ceil(classificationRate*0.2);
probThreshold = single(0.7);

Create an audioDeviceReader object to read audio from your device. Create a dsp.AsyncBuffer
object to buffer the audio into chunks.

adr = audioDeviceReader('SampleRate',fs,'SamplesPerFrame',samplesPerCapture,'OutputDataType','single');
audioBuffer = dsp.AsyncBuffer(fs);

Create a dsp.MatrixViewer object and a timescope object to display the results.

matrixViewer = dsp.MatrixViewer("ColorBarLabel","Power per band (dB/Band)", ...
    "XLabel","Frames", ...
    "YLabel","Bark Bands", ...
    "Position",[400 100 600 250], ...
    "ColorLimits",[-4 2.6445], ...
    "AxisOrigin",'Lower left corner', ...
    "Name","Speech Command Recognition Using Deep Learning");

timeScope = timescope('SampleRate', fs, ...
    'YLimits',[-1 1], 'Position', [400 380 600 250], ...
    'Name','Speech Command Recognition Using Deep Learning', ...
    'TimeSpanSource','Property', ...
    'TimeSpan',1, ...
    'BufferLength',fs);

timeScope.YLabel = 'Amplitude';
timeScope.ShowGrid = true;

Show the time scope and matrix viewer. Detect commands as long as both the time scope and matrix
viewer are open or until the time limit is reached. To stop the live detection before the time limit is
reached, close the time scope window or matrix viewer window.

show(timeScope)
show(matrixViewer)
timeLimit = 10;

tic
while isVisible(timeScope) && isVisible(matrixViewer) && toc < timeLimit
    %% Capture Audio
    x = adr();
    write(audioBuffer,x);
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    y = read(audioBuffer,fs,fs-samplesPerCapture);
    
    % Compute auditory features
    features = extract(afe,y);
    auditory_features = log10(features + 1e-6);
    
    % Transpose to get the auditory spectrum
    auditorySpectrum = auditory_features';
    
    % Perform prediction
    probs = predict(trainedNet, auditory_features);      
    [~, YPredicted] = max(probs);
    
    % Perform statistical post processing
    YBuffer = [YBuffer(2:end),YPredicted];
    probBuffer = [probBuffer(:,2:end),probs(:)];

    [YMode_idx, count] = mode(YBuffer);
    count = single(count);
    maxProb = max(probBuffer(YMode_idx,:));

    if (YMode_idx == single(backgroundIdx) || count < countThreshold || maxProb < probThreshold)
        speechCommandIdx = backgroundIdx;
    else
        speechCommandIdx = YMode_idx;
    end
    
    % Update plots
    matrixViewer(auditorySpectrum);
    timeScope(x);

    if (speechCommandIdx == backgroundIdx)
        timeScope.Title = ' ';
    else
        timeScope.Title = char(labels(speechCommandIdx));
    end
    drawnow
end 

Hide the scopes.

hide(matrixViewer)
hide(timeScope)

Prepare MATLAB Code for Deployment

To create a function to perform feature extraction compatible with code generation, call
generateMATLABFunction on the audioFeatureExtractor object. The
generateMATLABFunction object function creates a standalone function that performs equivalent
feature extraction and is compatible with code generation.

generateMATLABFunction(afe,'extractSpeechFeatures')

The HelperSpeechCommandRecognition supporting function encapsulates the feature extraction and
network prediction process demonstrated previously. So that the feature extraction is compatible with
code generation, feature extraction is handled by the generated extractSpeechFeatures function.
So that the network is compatible with code generation, the supporting function uses the
coder.loadDeepLearningNetwork (MATLAB Coder) function to load the network.
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Use the HelperSpeechCommandRecognition function to perform live detection of speech commands.

show(timeScope)
show(matrixViewer)
timeLimit = 10;

tic
while isVisible(timeScope) && isVisible(matrixViewer) && toc < timeLimit
    x = adr();    
        
    [speechCommandIdx, auditorySpectrum] = HelperSpeechCommandRecognition(x);  
        
    matrixViewer(auditorySpectrum);
    timeScope(x);
   
    if (speechCommandIdx == backgroundIdx)
        timeScope.Title = ' ';
    else
        timeScope.Title = char(labels(speechCommandIdx));
    end
    drawnow
end

Hide the scopes.

hide(timeScope)
hide(matrixViewer)

Generate MATLAB Executable

Create a code generation configuration object for generation of an executable program. Specify the
target language as C++.

cfg = coder.config('mex');
cfg.TargetLang = 'C++';

Create a configuration object for deep learning code generation with the MKL-DNN library. Attach
the configuration object to the code generation configuration object.

dlcfg = coder.DeepLearningConfig('mkldnn');
cfg.DeepLearningConfig = dlcfg;

Call codegen (MATLAB Coder) to generate C++ code for the HelperSpeechCommandRecognition
function. Specify the configuration object and prototype arguments. A MEX file named
HelperSpeechCommandRecognition_mex is generated to your current folder.

codegen HelperSpeechCommandRecognition -config cfg -args {rand(samplesPerCapture, 1, 'single')} -profile -report -v

### Compiling function(s) HelperSpeechCommandRecognition ...
------------------------------------------------------------------------
[1/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWTensorBase.cpp /Fobuild\win64\MWTensorBase.obj
MWTensorBase.cpp
[2/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWElementwiseAffineLayer.cpp /Fobuild\win64\MWElementwiseAffineLayer.obj
MWElementwiseAffineLayer.cpp
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[3/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWMaxPoolingLayer.cpp /Fobuild\win64\MWMaxPoolingLayer.obj
MWMaxPoolingLayer.cpp
[4/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWInputLayerImpl.cpp /Fobuild\win64\MWInputLayerImpl.obj
MWInputLayerImpl.cpp
[5/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWInputLayer.cpp /Fobuild\win64\MWInputLayer.obj
MWInputLayer.cpp
[6/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWOutputLayer.cpp /Fobuild\win64\MWOutputLayer.obj
MWOutputLayer.cpp
[7/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWFCLayer.cpp /Fobuild\win64\MWFCLayer.obj
MWFCLayer.cpp
[8/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWCNNLayer.cpp /Fobuild\win64\MWCNNLayer.obj
MWCNNLayer.cpp
[9/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWOutputLayerImpl.cpp /Fobuild\win64\MWOutputLayerImpl.obj
MWOutputLayerImpl.cpp
[10/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWFusedConvReLULayer.cpp /Fobuild\win64\MWFusedConvReLULayer.obj
MWFusedConvReLULayer.cpp
[11/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWMaxPoolingLayerImpl.cpp /Fobuild\win64\MWMaxPoolingLayerImpl.obj
MWMaxPoolingLayerImpl.cpp
[12/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  HelperSpeechCommandRecognition_data.cpp /Fobuild\win64\HelperSpeechCommandRecognition_data.obj
HelperSpeechCommandRecognition_data.cpp
[13/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  HelperSpeechCommandRecognition_terminate.cpp /Fobuild\win64\HelperSpeechCommandRecognition_terminate.obj
HelperSpeechCommandRecognition_terminate.cpp
[14/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  colon.cpp /Fobuild\win64\colon.obj
colon.cpp
[15/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  HelperSpeechCommandRecognition_initialize.cpp /Fobuild\win64\HelperSpeechCommandRecognition_initialize.obj
HelperSpeechCommandRecognition_initialize.cpp
[16/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWElementwiseAffineLayerImpl.cpp /Fobuild\win64\MWElementwiseAffineLayerImpl.obj
MWElementwiseAffineLayerImpl.cpp
[17/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  rt_nonfinite.cpp /Fobuild\win64\rt_nonfinite.obj
rt_nonfinite.cpp
[18/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWFCLayerImpl.cpp /Fobuild\win64\MWFCLayerImpl.obj
MWFCLayerImpl.cpp
[19/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWFusedConvReLULayerImpl.cpp /Fobuild\win64\MWFusedConvReLULayerImpl.obj
MWFusedConvReLULayerImpl.cpp
[20/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  eml_int_forloop_overflow_check.cpp /Fobuild\win64\eml_int_forloop_overflow_check.obj
eml_int_forloop_overflow_check.cpp
[21/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWSoftmaxLayerImpl.cpp /Fobuild\win64\MWSoftmaxLayerImpl.obj
MWSoftmaxLayerImpl.cpp
[22/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  stft.cpp /Fobuild\win64\stft.obj
stft.cpp
[23/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  sort.cpp /Fobuild\win64\sort.obj
sort.cpp
[24/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWSoftmaxLayer.cpp /Fobuild\win64\MWSoftmaxLayer.obj
MWSoftmaxLayer.cpp
[25/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  extractSpeechFeatures.cpp /Fobuild\win64\extractSpeechFeatures.obj
extractSpeechFeatures.cpp
[26/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  HelperSpeechCommandRecognition.cpp /Fobuild\win64\HelperSpeechCommandRecognition.obj
HelperSpeechCommandRecognition.cpp
[27/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  DeepLearningNetwork.cpp /Fobuild\win64\DeepLearningNetwork.obj
DeepLearningNetwork.cpp
[28/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  sortIdx.cpp /Fobuild\win64\sortIdx.obj
sortIdx.cpp
[29/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  interface\_coder_HelperSpeechCommandRecognition_api.cpp /Fobuild\win64\_coder_HelperSpeechCommandRecognition_api.obj
_coder_HelperSpeechCommandRecognition_api.cpp
[30/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWCNNLayerImpl.cpp /Fobuild\win64\MWCNNLayerImpl.obj
MWCNNLayerImpl.cpp
[31/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  permute.cpp /Fobuild\win64\permute.obj
permute.cpp
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[32/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  predict.cpp /Fobuild\win64\predict.obj
predict.cpp
[33/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  interface\_coder_HelperSpeechCommandRecognition_info.cpp /Fobuild\win64\_coder_HelperSpeechCommandRecognition_info.obj
_coder_HelperSpeechCommandRecognition_info.cpp
[34/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  HelperSpeechCommandRecognition_mexutil.cpp /Fobuild\win64\HelperSpeechCommandRecognition_mexutil.obj
HelperSpeechCommandRecognition_mexutil.cpp
[35/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWTargetNetworkImpl.cpp /Fobuild\win64\MWTargetNetworkImpl.obj
MWTargetNetworkImpl.cpp
[36/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  interface\_coder_HelperSpeechCommandRecognition_mex.cpp /Fobuild\win64\_coder_HelperSpeechCommandRecognition_mex.obj
_coder_HelperSpeechCommandRecognition_mex.cpp
[37/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  indexShapeCheck.cpp /Fobuild\win64\indexShapeCheck.obj
indexShapeCheck.cpp
[38/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\version\cpp_mexapi_version.cpp /Fobuild\win64\cpp_mexapi_version.obj
cpp_mexapi_version.cpp
[39/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWCustomLayerForMKLDNN.cpp /Fobuild\win64\MWCustomLayerForMKLDNN.obj
MWCustomLayerForMKLDNN.cpp
[40/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  MWMkldnnUtils.cpp /Fobuild\win64\MWMkldnnUtils.obj
MWMkldnnUtils.cpp
[41/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  mtimes.cpp /Fobuild\win64\mtimes.obj
mtimes.cpp
[42/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  computeDFT.cpp /Fobuild\win64\computeDFT.obj
computeDFT.cpp
[43/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  formatSTFTOutput.cpp /Fobuild\win64\formatSTFTOutput.obj
formatSTFTOutput.cpp
[44/45] cl /c /Zp8 /GR /W3 /EHs /nologo /MD /D_CRT_SECURE_NO_DEPRECATE /D_SCL_SECURE_NO_DEPRECATE /D_SECURE_SCL=0   /DMATLAB_MEX_FILE  /DMATLAB_MEX_FILE /O2 /Oy- /DNDEBUG /fp:strict /source-charset:utf-8 /I "." /I "C:\ExampleMatlab\ExampleManager\sporwal.Bdoc21b.j1648568\deeplearning_shared-ex90506783" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include\mkldnn" /I ".\interface" /I "Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\include" /I "." -DMODEL=HelperSpeechCommandRecognition_mex -DMW_NEEDS_VERSION_H /wd4251  AsyncBuffer.cpp /Fobuild\win64\AsyncBuffer.obj
AsyncBuffer.cpp
[45/45] link build\win64\MWCNNLayer.obj build\win64\MWElementwiseAffineLayer.obj build\win64\MWFCLayer.obj build\win64\MWFusedConvReLULayer.obj build\win64\MWInputLayer.obj build\win64\MWMaxPoolingLayer.obj build\win64\MWOutputLayer.obj build\win64\MWSoftmaxLayer.obj build\win64\MWTensorBase.obj build\win64\MWElementwiseAffineLayerImpl.obj build\win64\MWFCLayerImpl.obj build\win64\MWFusedConvReLULayerImpl.obj build\win64\MWInputLayerImpl.obj build\win64\MWMaxPoolingLayerImpl.obj build\win64\MWOutputLayerImpl.obj build\win64\MWSoftmaxLayerImpl.obj build\win64\MWCNNLayerImpl.obj build\win64\MWTargetNetworkImpl.obj build\win64\MWMkldnnUtils.obj build\win64\MWCustomLayerForMKLDNN.obj build\win64\HelperSpeechCommandRecognition_data.obj build\win64\rt_nonfinite.obj build\win64\HelperSpeechCommandRecognition_initialize.obj build\win64\HelperSpeechCommandRecognition_terminate.obj build\win64\HelperSpeechCommandRecognition.obj build\win64\DeepLearningNetwork.obj build\win64\colon.obj build\win64\extractSpeechFeatures.obj build\win64\stft.obj build\win64\indexShapeCheck.obj build\win64\mtimes.obj build\win64\permute.obj build\win64\predict.obj build\win64\_coder_HelperSpeechCommandRecognition_api.obj build\win64\_coder_HelperSpeechCommandRecognition_mex.obj build\win64\computeDFT.obj build\win64\eml_int_forloop_overflow_check.obj build\win64\formatSTFTOutput.obj build\win64\sort.obj build\win64\sortIdx.obj build\win64\AsyncBuffer.obj build\win64\HelperSpeechCommandRecognition_mexutil.obj build\win64\_coder_HelperSpeechCommandRecognition_info.obj build\win64\cpp_mexapi_version.obj /nologo /manifest   /DLL /LIBPATH:"Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\lib\win64\microsoft" libmx.lib libmex.lib libmat.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib libMatlabDataArray.lib libMatlabEngine.lib  /out:"HelperSpeechCommandRecognition_mex.mexw64" /LIBPATH:"Z:\32\sporwal.Bdoc21b.j1648568\matlab\bin\win64" /LIBPATH:"Z:\32\sporwal.Bdoc21b.j1648568\matlab\extern\lib\win64\microsoft" libiomp5md.lib libmwblas.lib libemlrt.lib libcovrt.lib libut.lib libmwmathutil.lib  "Z:\32\sporwal.Bdoc21b.j1648568\matlab\lib\win64\mwdnnl.lib"
   Creating library HelperSpeechCommandRecognition_mex.lib and object HelperSpeechCommandRecognition_mex.exp

------------------------------------------------------------------------
### Generating compilation report ...
Code generation successful: View report

Perform Speech Command Recognition Using Deployed Code

Show the time scope and matrix viewer. Detect commands using the generated MEX for as long as
both the time scope and matrix viewer are open or until the time limit is reached. To stop the live
detection before the time limit is reached, close the time scope window or matrix viewer window.

show(timeScope)
show(matrixViewer)

timeLimit = 20;

tic
while isVisible(timeScope) && isVisible(matrixViewer) && toc < timeLimit
    x = adr();    
        
    [speechCommandIdx, auditorySpectrum] = HelperSpeechCommandRecognition_mex(x);
        
    matrixViewer(auditorySpectrum);
    timeScope(x);
   
    if (speechCommandIdx == backgroundIdx)
        timeScope.Title = ' ';
    else
        timeScope.Title = char(labels(speechCommandIdx));
    end

 Speech Command Recognition Code Generation with Intel MKL-DNN

1-37



    drawnow
end

hide(matrixViewer)
hide(timeScope)

Evaluate MEX Execution Time

Use tic and toc to compare the execution time to run the simulation completely in MATLAB with
the execution time of the MEX function.

Measure the performance of the simulation code.

testDur = 50e-3;
x = pinknoise(fs*testDur,'single');
numLoops = 100;
tic
for k = 1:numLoops
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    [speechCommandIdx, auditory_features] = HelperSpeechCommandRecognition(x);
end
exeTime = toc;
fprintf('SIM execution time per 50 ms of audio = %0.4f ms\n',(exeTime/numLoops)*1000);

SIM execution time per 50 ms of audio = 6.8212 ms

Measure the performance of the MEX code.

tic
for k = 1:numLoops
    [speechCommandIdx, auditory_features] = HelperSpeechCommandRecognition_mex(x);
end
exeTimeMex = toc;
fprintf('MEX execution time per 50 ms of audio = %0.4f ms\n',(exeTimeMex/numLoops)*1000);

MEX execution time per 50 ms of audio = 1.3347 ms

Evaluate the performance gained from using the MEX function. This performance test is performed
on a machine using NVIDIA Quadro P620 (Version 26) GPU and Intel(R) Xeon(R) W-2133 CPU running
at 3.60 GHz.

PerformanceGain = exeTime/exeTimeMex

PerformanceGain = 5.1107
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Speech Command Recognition in Simulink

This example shows a Simulink® model that detects the presence of speech commands in audio. The
model uses a pretrained convolutional neural network to recognize a given set of commands.

Speech Command Recognition Model

The model recognizes these speech commands:

• "yes"
• "no"
• "up"
• "down"
• "left"
• "right"
• "on"
• "off"
• "stop"
• "go"

The model uses a pretrained convolutional deep learning network. Refer to the example “Train
Speech Command Recognition Model Using Deep Learning” on page 1-332 for details on the
architecture of this network and how you train it.

Open the model.

model = 'speechCommandRecognition';
open_system(model)
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The model breaks the audio stream into one-second overlapping segments. A bark spectrogram is
computed from each segment. The spectrograms are fed to the pretrained network.

Use the manual switch to select either a live stream from your microphone or read commands stored
in audio files. For commands on file, use the rotary switch to select one of three commands (Go, Yes,
or Stop).

Auditory Spectrogram Extraction

The deep learning network was trained on auditory spectrograms computed using an
audioFeatureExtractor. The Auditory Spectrogram block in the model has been configured to
extract the same features as the network was trained on.

Run the model

Simulate the model for 20 seconds.

set_param(model,StopTime="20");
sim(model);
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The recognized command is printed in the display block. The network activations, which give a level
of confidence in the different supported commands, are displayed in a time scope.

Close the model.

close_system(model,0)
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Time-Frequency Masking for Harmonic-Percussive Source
Separation

Time-frequency masking is the process of applying weights to the bins of a time-frequency
representation to enhance, diminish, or isolate portions of audio.

The goal of harmonic-percussive source separation (HPSS) is to decompose an audio signal into
harmonic and percussive components. Applications of HPSS include audio remixing, improving the
quality of chroma features, tempo estimation, and time-scale modification [1 on page 1-64]. Another
use of HPSS is as a parallel representation when creating a late fusion deep learning system. Many of
the top performing systems of the Detection and Classification of Acoustic Scenes and Events
(DCASE) 2017 and 2018 challenges used HPSS for this reason.

This example walks through the algorithm described in [1 on page 1-64] to apply time-frequency
masking to the task of harmonic-percussive source separation.

For an example of deriving time-frequency masks using deep learning, see “Cocktail Party Source
Separation Using Deep Learning Networks” on page 1-368.

Create Harmonic-Percussive Mixture

Read in harmonic and percussive audio files. Both have a sample rate of 16 kHz.

[harmonicAudio,fs] = audioread("violin.wav");
percussiveAudio = audioread("drums.wav");

Listen to the harmonic signal and plot the spectrogram. Note that there is continuity along the
horizontal (time) axis.

sound(harmonicAudio,fs)

spectrogram(harmonicAudio,1024,512,1024,fs,"yaxis")
title("Harmonic Audio")
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Listen to the percussive signal and plot the spectrogram. Note that there is continuity along the
vertical (frequency) axis.

sound(percussiveAudio,fs)

spectrogram(percussiveAudio,1024,512,1024,fs,"yaxis")
title("Percussive Audio")
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Mix the harmonic and percussive signals. Listen to the harmonic-percussive audio and plot the
spectrogram.

mix = harmonicAudio + percussiveAudio;

sound(mix,fs)

spectrogram(mix,1024,512,1024,fs,"yaxis")
title("Harmonic-Percussive Audio")
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The HPSS proposed by [1 on page 1-64] creates two enhanced spectrograms: a harmonic-enhanced
spectrogram and a percussive-enhanced spectrogram. The harmonic-enhanced spectrogram is
created by applying median filtering along the time axis. The percussive-enhanced spectrogram is
created by applying median filtering along the frequency axis. The enhanced spectrograms are then
compared to create harmonic and percussive time-frequency masks. In the simplest form, the masks
are binary.

HPSS Using Binary Mask

Convert the mixed signal to a half-sided magnitude short-time Fourier transform (STFT).

win = sqrt(hann(1024,"periodic"));
overlapLength = floor(numel(win)/2);
fftLength = 2^nextpow2(numel(win) + 1);

y = stft(mix,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided");
ymag = abs(y);

Apply median smoothing along the time axis to enhance the harmonic audio and diminish the
percussive audio. Use a filter length of 200 ms, as suggested by [1 on page 1-64]. Plot the power
spectrum of the harmonic-enhanced audio.

timeFilterLength = 0.2;
timeFilterLengthInSamples = timeFilterLength/((numel(win) - overlapLength)/fs);
ymagharm = movmedian(ymag,timeFilterLengthInSamples,2);

surf(log10(ymagharm.^2),EdgeColor="none")
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title("Harmonic Enhanced Audio")
view([0,90])
axis tight

Apply median smoothing along the frequency axis to enhance the percussive audio and diminish the
harmonic audio. Use a filter length of 500 Hz, as suggested by [1 on page 1-64]. Plot the power
spectrum of the percussive-enhanced audio.

frequencyFilterLength = 500;
frequencyFilterLengthInSamples = frequencyFilterLength/(fs/fftLength);
ymagperc = movmedian(ymag,frequencyFilterLengthInSamples,1);

surf(log10(ymagperc.^2),EdgeColor="none")
title("Percussive Enhanced Audio")
view([0,90])
axis tight
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To create a binary mask, first sum the percussive- and harmonic-enhanced spectrums to determine
the total magnitude per bin.

totalMagnitudePerBin = ymagharm + ymagperc;

If the magnitude in a given harmonic-enhanced or percussive-enhanced bin accounts for more than
half of the total magnitude of that bin, then assign that bin to the corresponding mask.

harmonicMask = ymagharm > (totalMagnitudePerBin*0.5);
percussiveMask = ymagperc > (totalMagnitudePerBin*0.5);

Apply the harmonic and percussive masks and then return the masked audio to the time domain.

yharm = harmonicMask.*y;
yperc = percussiveMask.*y;

Perform the inverse short-time Fourier transform to return the signals to the time domain.

h = istft(yharm,Window=win,OverlapLength=overlapLength, ...
    FFTLength=fftLength,ConjugateSymmetric=true,FrequencyRange="onesided");

p = istft(yperc,Window=win,OverlapLength=overlapLength, ...
    FFTLength=fftLength,ConjugateSymmetric=true,FrequencyRange="onesided");

Listen to the recovered harmonic audio and plot the spectrogram.

sound(h,fs)
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spectrogram(h,1024,512,1024,fs,"yaxis")
title("Recovered Harmonic Audio")

Listen to the recovered percussive audio and plot the spectrogram.

sound(p,fs)

spectrogram(p,1024,512,1024,fs,"yaxis")
title("Recovered Percussive Audio")
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Plot the combination of the recovered harmonic and percussive spectrograms.

sound(h + p,fs)

spectrogram(h + p,1024,512,1024,fs,"yaxis")
title("Recovered Harmonic + Percussive Audio")
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HPSS Using Binary Mask and Residual

As suggested in [1 on page 1-64], decomposing a signal into harmonic and percussive sounds is
often impossible. They propose adding a thresholding parameter: if the bin of the spectrogram is not
clearly harmonic or percussive, categorize it as residual.

Perform the same steps described in HPSS Using Binary Mask on page 1-46 to create harmonic-
enhanced and percussive-enhanced spectrograms.

win = sqrt(hann(1024,"periodic"));
overlapLength = floor(numel(win)/2);
fftLength = 2^nextpow2(numel(win) + 1);
y = stft(mix,Window=win,OverlapLength=overlapLength, ...
    FFTLength=fftLength,FrequencyRange="onesided");
ymag = abs(y);

timeFilterLength = 0.2;
timeFilterLengthInSamples = timeFilterLength/((numel(win) - overlapLength)/fs);
ymagharm = movmedian(ymag,timeFilterLengthInSamples,2);

frequencyFilterLength = 500;
frequencyFilterLengthInSamples = frequencyFilterLength/(fs/fftLength);
ymagperc = movmedian(ymag,frequencyFilterLengthInSamples,1);

totalMagnitudePerBin = ymagharm + ymagperc;
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Using a threshold, create three binary masks: harmonic, percussive, and residual. Set the threshold
to 0.65. This means that if the magnitude of a bin of the harmonic-enhanced spectrogram is 65% of
the total magnitude for that bin, you assign that bin to the harmonic portion. If the magnitude of a bin
of the percussive-enhanced spectrogram is 65% of the total magnitude for that bin, you assign that
bin to the percussive portion. Otherwise, the bin is assigned to the residual portion. The optimal
thresholding parameter depends on the harmonic-percussive mix and your application.

threshold = ;
harmonicMask = ymagharm > (totalMagnitudePerBin*threshold);
percussiveMask = ymagperc > (totalMagnitudePerBin*threshold);
residualMask = ~(harmonicMask+percussiveMask);

Perform the same steps described in HPSS Using Binary Mask on page 1-46 to return the masked
signals to the time domain.

yharm = harmonicMask.*y;
yperc = percussiveMask.*y;
yresi = residualMask.*y;

h = istft(yharm,Window=win,OverlapLength=overlapLength, ...
    FFTLength=fftLength,ConjugateSymmetric=true,FrequencyRange="onesided");
p = istft(yperc,Window=win,OverlapLength=overlapLength, ...
    FFTLength=fftLength,ConjugateSymmetric=true,FrequencyRange="onesided");
r = istft(yresi,Window=win,OverlapLength=overlapLength, ...
    FFTLength=fftLength,ConjugateSymmetric=true,FrequencyRange="onesided");

Listen to the recovered harmonic audio and plot the spectrogram.

sound(h,fs)

spectrogram(h,1024,512,1024,fs,"yaxis")
title("Recovered Harmonic Audio")
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Listen to the recovered percussive audio and plot the spectrogram.

sound(p,fs)

spectrogram(p,1024,512,1024,fs,"yaxis")
title("Recovered Percussive Audio")
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Listen to the recovered residual audio and plot the spectrogram.

sound(r,fs)

spectrogram(r,1024,512,1024,fs,"yaxis")
title("Recovered Residual Audio")
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Listen to the combination of the harmonic, percussive, and residual signals and plot the spectrogram.

sound(h + p + r,fs)

spectrogram(h + p + r,1024,512,1024,fs,"yaxis")
title("Recovered Harmonic + Percussive + Residual Audio")
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HPSS Using Soft Mask

For time-frequency masking, masks are generally either binary or soft. Soft masking separates the
energy of the mixed bins into harmonic and percussive portions depending on the relative weights of
their enhanced spectrograms.

Perform the same steps described in HPSS Using Binary Mask on page 1-46 to create harmonic-
enhanced and percussive-enhanced spectrograms.

win = sqrt(hann(1024,"periodic"));
overlapLength = floor(numel(win)/2);
fftLength = 2^nextpow2(numel(win) + 1);
y = stft(mix,Window=win,OverlapLength=overlapLength, ...
    FFTLength=fftLength,FrequencyRange="onesided");
ymag = abs(y);

timeFilterLength = 0.2;
timeFilterLengthInSamples = timeFilterLength/((numel(win)-overlapLength)/fs);
ymagharm = movmedian(ymag,timeFilterLengthInSamples,2);

frequencyFilterLength = 500;
frequencyFilterLengthInSamples = frequencyFilterLength/(fs/fftLength);
ymagperc = movmedian(ymag,frequencyFilterLengthInSamples,1);

totalMagnitudePerBin = ymagharm + ymagperc;
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Create soft masks that separate the bin energy to the harmonic and percussive portions relative to
the weights of their enhanced spectrograms.

harmonicMask = ymagharm./totalMagnitudePerBin;
percussiveMask = ymagperc./totalMagnitudePerBin;

Perform the same steps described in HPSS Using Binary Mask on page 1-46 to return the masked
signals to the time domain.

yharm = harmonicMask.*y;
yperc = percussiveMask.*y;

h = istft(yharm,Window=win,OverlapLength=overlapLength, ...
    FFTLength=fftLength,ConjugateSymmetric=true,FrequencyRange="onesided");
p = istft(yperc,Window=win,OverlapLength=overlapLength, ...
    FFTLength=fftLength,ConjugateSymmetric=true,FrequencyRange="onesided");

Listen to the recovered harmonic audio and plot the spectrogram.

sound(h,fs)

spectrogram(h,1024,512,1024,fs,"yaxis")
title("Recovered Harmonic Audio")

Listen to the recovered percussive audio and plot the spectrogram.

sound(p,fs)
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spectrogram(p,1024,512,1024,fs,"yaxis")
title("Recovered Percussive Audio")

Example Function

The example function, HelperHPSS, provides the harmonic-percussive source separation capabilities
described in this example. You can use it to quickly explore how parameters effect the algorithm
performance.

help HelperHPSS

  [h,p] = HelperHPSS(x,fs) separates the input signal, x, into harmonic (h)
  and percussive (p) portions. If x is input as a multichannel signal, it
  is converted to mono before processing.
 
  [h,p] = HelperHPSS(...,'TimeFilterLength',TIMEFILTERLENGTH) specifies the
  median filter length along the time dimension of a spectrogram, in
  seconds. If unspecified, TIMEFILTERLENGTH defaults to 0.2 seconds.
 
  [h,p] = HelperHPSS(...,'FrequencyFilterLength',FREQUENCYFILTERLENGTH)
  specifies the median filter length along the frequency dimension of a
  spectrogram, in Hz. If unspecified, FREQUENCYFILTERLENGTH defaults to 500
  Hz.
 
  [h,p] = HelperHPSS(...,'MaskType',MASKTYPE) specifies the mask type as
  'binary' or 'soft'. If unspecified, MASKTYPE defaults to 'binary'.
  
  [h,p] = HelperHPSS(...,'Threshold',THRESHOLD) specifies the threshold of
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  the total energy for declaring an element as harmonic, percussive, or
  residual. Specify THRESHOLD as a scalar in the range [0 1]. This
  parameter is only valid if MaskType is set to 'binary'. If unspecified,
  THRESHOLD defaults to 0.5.
 
  [h,p] = HelperHPSS(...,'Window',WINDOW) specifies the analysis window
  used in the STFT. If unspecified, WINDOW defaults to
  sqrt(hann(1024,'periodic')).
 
  [h,p] = HelperHPSS(...,'FFTLength',FFTLENGTH) specifies the number of
  points in the DFT for each analysis window. If unspecified, FFTLENGTH
  defaults to the number of elements in the WINDOW.
 
  [h,p] = HelperHPSS(...,'OverlapLength',OVERLAPLENGTH) specifies the
  overlap length of the analysis windows. If unspecified, OVERLAPLENGTH
  defaults to 512.
 
  [h,p,r] = HelperHPSS(...) returns the residual signal not classified as
  harmonic or percussive.
 
  Example:
    % Load a sound file and listen to it.
      [audio,fs] = audioread('Laughter-16-8-mono-4secs.wav');
      sound(audio,fs)
 
    % Call HelperHPSS to separate the audio into harmonic and percussive
    % portions. Listen to the portions separately.
      [h,p] = HelperHPSS(audio,fs);
      sound(h,fs)
      sound(p,fs)

HPSS Using Iterative Masking

[1 on page 1-64] observed that a large frame size in the STFT calculation moves the energy towards
the harmonic component, while a small frame size moves the energy towards the percussive
component. [1 on page 1-64] proposed using an iterative procedure to take advantage of this
insight. In the iterative procedure:

1 Perform HPSS using a large frame size to isolate the harmonic component.
2 Sum the residual and percussive portions.
3 Perform HPSS using a small frame size to isolate the percussive component.

threshold1 = ;

N1 = ;
[h1,p1,r1] = HelperHPSS(mix,fs,Threshold=threshold1,Window=sqrt(hann(N1,"periodic")),OverlapLength=round(N1/2));

mix1 = p1 + r1;

threshold2 = ;

N2 = ;
[h2,p2,r2] = HelperHPSS(mix1,fs,Threshold=threshold2,Window=sqrt(hann(N2,"periodic")),OverlapLength=round(N2/2));

h = h1;
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p = p2;
r = h2 + r2;

Listen to the recovered percussive audio and plot the spectrogram.

sound(h,fs)

spectrogram(h,1024,512,1024,fs,"yaxis")
title("Recovered Harmonic Audio")

Listen to the recovered percussive audio and plot the spectrogram.

sound(p,fs)

spectrogram(p,1024,512,1024,fs,"yaxis")
title("Recovered Percussive Audio")
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Listen to the recovered residual audio and plot the spectrogram.

sound(r,fs)

spectrogram(r,1024,512,1024,fs,"yaxis")
title("Recovered Residual Audio")
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Listen to the combination of the harmonic, percussive, and residual signals and plot the spectrogram.

sound(h + p + r,fs)

spectrogram(h+p+r,1024,512,1024,fs,"yaxis")
title("Recovered Harmonic + Percussive + Residual Audio")

1 Audio Toolbox Examples

1-62



Enhanced Time Scale Modification Using HPSS

[2 on page 1-64] proposes that time scale modification (TSM) can be improved by first separating a
signal into harmonic and percussive portions and then applying a TSM algorithm optimal for the
portion. After TSM, the signal is reconstituted by summing the stretched audio.

To listen to a stretched audio without HPSS, apply time-scale modification using the default
stretchAudio function. By default, stretchAudio uses the phase vocoder algorithm.

alpha = ;
mixStretched = stretchAudio(mix,alpha);

sound(mixStretched,fs)

Separate the harmonic-percussive mix into harmonic and percussive portions using HelperHPSS. As
proposed in [2 on page 1-64], use the default vocoder algorithm to stretch the harmonic portion and
the WSOLA algorithm to stretch the percussive portion. Sum the stretched portions and listen to the
results.

[h,p] = HelperHPSS(mix,fs);
hStretched = stretchAudio(h,alpha);
pStretched = stretchAudio(p,alpha,Method="wsola");

mixStretched = hStretched + pStretched;
sound(mixStretched,fs);
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Binaural Audio Rendering Using Head Tracking

Track head orientation by fusing data received from an IMU, and then control the direction of arrival
of a sound source by applying head-related transfer functions (HRTF).

In a typical virtual reality setup, the IMU sensor is attached to the user's headphones or VR headset
so that the perceived position of a sound source is relative to a visual cue independent of head
movements. For example, if the sound is perceived as coming from the monitor, it remains that way
even if the user turns his head to the side.

Required Hardware

• Arduino Uno
• Invensense MPU-9250

Hardware Connection

First, connect the Invensense MPU-9250 to the Arduino board. For more details, see “Estimating
Orientation Using Inertial Sensor Fusion and MPU-9250” (Sensor Fusion and Tracking Toolbox).

Create Sensor Object and IMU Filter

Create an arduino object.

a = arduino;

Create the Invensense MPU-9250 sensor object.

imu = mpu9250(a);

Create and set the sample rate of the Kalman filter.

Fs = imu.SampleRate;
imufilt = imufilter('SampleRate',Fs);

Load the ARI HRTF Dataset

When sound travels from a point in space to your ears, you can localize it based on interaural time
and level differences (ITD and ILD). These frequency-dependent ITD and ILD's can be measured and
represented as a pair of impulse responses for any given source elevation and azimuth. The ARI
HRTF Dataset contains 1550 pairs of impulse responses which span azimuths over 360 degrees and
elevations from -30 to 80 degrees. You use these impulse responses to filter a sound source so that it
is perceived as coming from a position determined by the sensor's orientation. If the sensor is
attached to a device on a user's head, the sound is perceived as coming from one fixed place despite
head movements.

First, load the HRTF dataset.

ARIDataset = load('ReferenceHRTF.mat');

Then, get the relevant HRTF data from the dataset and put it in a useful format for our processing.

hrtfData = double(ARIDataset.hrtfData);
hrtfData = permute(hrtfData,[2,3,1]);
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Get the associated source positions. Angles should be in the same range as the sensor. Convert the
azimuths from [0,360] to [-180,180].

sourcePosition = ARIDataset.sourcePosition(:,[1,2]);
sourcePosition(:,1) = sourcePosition(:,1) - 180;

Load Monaural Recording

Load an ambisonic recording of a helicopter. Keep only the first channel, which corresponds to an
omnidirectional recording. Resample it to 48 kHz for compatibility with the HRTF data set.

[heli,originalSampleRate] = audioread('Heli_16ch_ACN_SN3D.wav');
heli = 12*heli(:,1); % keep only one channel

sampleRate = 48e3;
heli = resample(heli,sampleRate,originalSampleRate);

Load the audio data into a SignalSource object. Set the SamplesPerFrame to 0.1 seconds.

sigsrc = dsp.SignalSource(heli, ...
    'SamplesPerFrame',sampleRate/10, ...
    'SignalEndAction','Cyclic repetition');

Set Up the Audio Device

Create an audioDeviceWriter with the same sample rate as the audio signal.

deviceWriter = audioDeviceWriter('SampleRate',sampleRate);

Create FIR Filters for the HRTF coefficients

Create a pair of FIR filters to perform binaural HRTF filtering.

FIR = cell(1,2);
FIR{1} = dsp.FIRFilter('NumeratorSource','Input port');
FIR{2} = dsp.FIRFilter('NumeratorSource','Input port');

Initialize the Orientation Viewer

Create an object to perform real-time visualization for the orientation of the IMU sensor. Call the IMU
filter once and display the initial orientation.

orientationScope = HelperOrientationViewer;
data = read(imu);

qimu = imufilt(data.Acceleration,data.AngularVelocity);
orientationScope(qimu);
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Audio Processing Loop

Execute the processing loop for 30 seconds. This loop performs the following steps:

1 Read data from the IMU sensor.
2 Fuse IMU sensor data to estimate the orientation of the sensor. Visualize the current orientation.
3 Convert the orientation from a quaternion representation to pitch and yaw in Euler angles.
4 Use interpolateHRTF to obtain a pair of HRTFs at the desired position.
5 Read a frame of audio from the signal source.
6 Apply the HRTFs to the mono recording and play the stereo signal. This is best experienced using

headphones.

imuOverruns = 0;
audioUnderruns = 0;
audioFiltered = zeros(sigsrc.SamplesPerFrame,2);
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tic
while toc < 30

    % Read from the IMU sensor.
    [data,overrun] = read(imu);
    if overrun > 0
        imuOverruns = imuOverruns + overrun;
    end
    
    % Fuse IMU sensor data to estimate the orientation of the sensor.
    qimu = imufilt(data.Acceleration,data.AngularVelocity); 
    orientationScope(qimu);
    
    % Convert the orientation from a quaternion representation to pitch and yaw in Euler angles.
    ypr = eulerd(qimu,'zyx','frame');
    yaw = ypr(end,1);
    pitch = ypr(end,2);
    desiredPosition = [yaw,pitch];
    
    % Obtain a pair of HRTFs at the desired position.
    interpolatedIR = squeeze(interpolateHRTF(hrtfData,sourcePosition,desiredPosition));
    
    % Read audio from file   
    audioIn = sigsrc();
             
    % Apply HRTFs
    audioFiltered(:,1) = FIR{1}(audioIn, interpolatedIR(1,:)); % Left
    audioFiltered(:,2) = FIR{2}(audioIn, interpolatedIR(2,:)); % Right    
    audioUnderruns = audioUnderruns + deviceWriter(squeeze(audioFiltered)); 
end
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Cleanup

Release resources, including the sound device.

release(sigsrc)
release(deviceWriter)
clear imu a
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Speech Emotion Recognition

This example illustrates a simple speech emotion recognition (SER) system using a BiLSTM network.
You begin by downloading the data set and then testing the trained network on individual files. The
network was trained on a small German-language database [1] on page 1-82.

The example walks you through training the network, which includes downloading, augmenting, and
training the dataset. Finally, you perform leave-one-speaker-out (LOSO) 10-fold cross validation to
evaluate the network architecture.

The features used in this example were chosen using sequential feature selection, similar to the
method described in “Sequential Feature Selection for Audio Features” on page 1-540.

Download Data Set

Download the Berlin Database of Emotional Speech [1] on page 1-82. The database contains 535
utterances spoken by 10 actors intended to convey one of the following emotions: anger, boredom,
disgust, anxiety/fear, happiness, sadness, or neutral. The emotions are text independent.

dataFolder = tempdir;
dataset = fullfile(dataFolder,"Emo-DB");
if ~datasetExists(dataset)
    url = "http://emodb.bilderbar.info/download/download.zip";
    disp("Downloading Emo-DB (40.5 MB) ...")
    unzip(url,dataset)
end

Downloading Emo-DB (40.5 MB) ...

Create an audioDatastore that points to the audio files.

ads = audioDatastore(fullfile(dataset,"wav"));

The file names are codes indicating the speaker ID, text spoken, emotion, and version. The website
contains a key for interpreting the code and additional information about the speakers such as
gender and age. Create a table with the variables Speaker and Emotion. Decode the file names into
the table.

filepaths = ads.Files;
emotionCodes = cellfun(@(x)x(end-5),filepaths,UniformOutput=false);
emotions = replace(emotionCodes,["W","L","E","A","F","T","N"], ...
    ["Anger","Boredom","Disgust","Anxiety/Fear","Happiness","Sadness","Neutral"]);

speakerCodes = cellfun(@(x)x(end-10:end-9),filepaths,UniformOutput=false);
labelTable = cell2table([speakerCodes,emotions],VariableNames=["Speaker","Emotion"]);
labelTable.Emotion = categorical(labelTable.Emotion);
labelTable.Speaker = categorical(labelTable.Speaker);
summary(labelTable)

Variables:

    Speaker: 535×1 categorical

        Values:

            03       49   
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            08       58   
            09       43   
            10       38   
            11       55   
            12       35   
            13       61   
            14       69   
            15       56   
            16       71   

    Emotion: 535×1 categorical

        Values:

            Anger             127   
            Anxiety/Fear       69   
            Boredom            81   
            Disgust            46   
            Happiness          71   
            Neutral            79   
            Sadness            62   

labelTable is in the same order as the files in audioDatastore. Set the Labels property of the
audioDatastore to the labelTable.

ads.Labels = labelTable;

Perform Speech Emotion Recognition

Download and load the pretrained network, the audioFeatureExtractor object used to train the
network, and normalization factors for the features. This network was trained using all speakers in
the data set except speaker 03.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","SpeechEmotionRecognition.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
netFolder = fullfile(dataFolder,"SpeechEmotionRecognition");
load(fullfile(netFolder,"network_Audio_SER.mat"));

The sample rate set on the audioFeatureExtractor corresponds to the sample rate of the data
set.

fs = afe.SampleRate;

Select a speaker and emotion, then subset the datastore to only include the chosen speaker and
emotion. Read from the datastore and listen to the file.

speaker = ;

emotion = ;

adsSubset = subset(ads,ads.Labels.Speaker==speaker & ads.Labels.Emotion==emotion);

audio = read(adsSubset);
sound(audio,fs)

Use the audioFeatureExtractor object to extract the features and then transpose them so that
time is along rows. Normalize the features and then convert them to 20-element sequences with 10-
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element overlap, which corresponds to approximately 600 ms windows with 300 ms overlap. Use the
supporting function, HelperFeatureVector2Sequence on page 1-79, to convert the array of feature
vectors to sequences.

features = (extract(afe,audio))';

featuresNormalized = (features - normalizers.Mean)./normalizers.StandardDeviation;

numOverlap = ;
featureSequences = HelperFeatureVector2Sequence(featuresNormalized,20,numOverlap);

Feed the feature sequences into the network for prediction. Compute the mean prediction and plot
the probability distribution of the chosen emotions as a pie chart. You can try different speakers,
emotions, sequence overlap, and prediction average to test the network's performance. To get a
realistic approximation of the network's performance, use speaker 03, which the network was not
trained on.

YPred = double(predict(net,featureSequences));

average = ;
switch average
    case "mean"
        probs = mean(YPred,1);
    case "median"
        probs = median(YPred,1);
    case "mode"
        probs = mode(YPred,1);
end

pie(probs./sum(probs),string(net.Layers(end).Classes))
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The remainder of the example illustrates how the network was trained and validated.

Train Network

The 10-fold cross validation accuracy of a first attempt at training was about 60% because of
insufficient training data. A model trained on the insufficient data overfits some folds and underfits
others. To improve overall fit, increase the size of the dataset using audioDataAugmenter. 50
augmentations per file was chosen empirically as a good tradeoff between processing time and
accuracy improvement. You can decrease the number of augmentations to speed up the example.

Create an audioDataAugmenter object. Set the probability of applying pitch shifting to 0.5 and use
the default range. Set the probability of applying time shifting to 1 and use a range of [-0.3,0.3]
seconds. Set the probability of adding noise to 1 and specify the SNR range as [-20,40] dB.

numAugmentations = ;
augmenter = audioDataAugmenter(NumAugmentations=numAugmentations, ...
    TimeStretchProbability=0, ...
    VolumeControlProbability=0, ...
    ...
    PitchShiftProbability=0.5, ...
    ...
    TimeShiftProbability=1, ...
    TimeShiftRange=[-0.3,0.3], ...
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    ...
    AddNoiseProbability=1, ...
    SNRRange=[-20,40]);

Create a new folder in your current folder to hold the augmented data set.

currentDir = pwd;
writeDirectory = fullfile(currentDir,"augmentedData");
mkdir(writeDirectory)

For each file in the audio datastore:

1 Create 50 augmentations.
2 Normalize the audio to have a max absolute value of 1.
3 Write the augmented audio data as a WAV file. Append _augK to each of the file names, where K

is the augmentation number. To speed up processing, use parfor and partition the datastore.

This method of augmenting the database is time consuming and space consuming. However, when
iterating on choosing a network architecture or feature extraction pipeline, this upfront cost is
generally advantageous.

N = numel(ads.Files)*numAugmentations;

reset(ads)

numPartitions = 18;

tic
parfor ii = 1:numPartitions
    adsPart = partition(ads,numPartitions,ii);
    while hasdata(adsPart)
        [x,adsInfo] = read(adsPart);
        data = augment(augmenter,x,fs);

        [~,fn] = fileparts(adsInfo.FileName);
        for i = 1:size(data,1)
            augmentedAudio = data.Audio{i};
            augmentedAudio = augmentedAudio/max(abs(augmentedAudio),[],"all");
            augNum = num2str(i);
            if numel(augNum)==1
                iString = ['0',augNum];
            else
                iString = augNum;
            end
            audiowrite(fullfile(writeDirectory,sprintf('%s_aug%s.wav',fn,iString)),augmentedAudio,fs);
        end
    end
end
disp("Augmentation complete in " + round(toc/60,2) + " minutes.")

Augmentation complete in 3.84 minutes.

Create an audio datastore that points to the augmented data set. Replicate the rows of the label table
of the original datastore NumAugmentations times to determine the labels of the augmented
datastore.

adsAug = audioDatastore(writeDirectory);
adsAug.Labels = repelem(ads.Labels,augmenter.NumAugmentations,1);
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Create an audioFeatureExtractor object. Set Window to a periodic 30 ms Hamming window,
OverlapLength to 0, and SampleRate to the sample rate of the database. Set gtcc, gtccDelta,
mfccDelta, and spectralCrest to true to extract them. Set SpectralDescriptorInput to
melSpectrum so that the spectralCrest is calculated for the mel spectrum.

win = hamming(round(0.03*fs),"periodic");
overlapLength = 0;

afe = audioFeatureExtractor( ...
    Window=win, ...
    OverlapLength=overlapLength, ...
    SampleRate=fs, ...
    ...
    gtcc=true, ...
    gtccDelta=true, ...
    mfccDelta=true, ...
    ...
    SpectralDescriptorInput="melSpectrum", ...
    spectralCrest=true);

Train for Deployment

When you train for deployment, use all available speakers in the data set. Set the training datastore
to the augmented datastore.

adsTrain = adsAug;

Convert the training audio datastore to a tall array. If you have Parallel Computing Toolbox™, the
extraction is automatically parallelized. If you do not have Parallel Computing Toolbox™, the code
continues to run.

tallTrain = tall(adsTrain);

Extract the training features and reorient the features so that time is along rows to be compatible
with sequenceInputLayer (Deep Learning Toolbox).

featuresTallTrain = cellfun(@(x)extract(afe,x),tallTrain,UniformOutput=false);
featuresTallTrain = cellfun(@(x)x',featuresTallTrain,UniformOutput=false);
featuresTrain = gather(featuresTallTrain);

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: 0% complete
Evaluation 0% complete

- Pass 1 of 1: Completed in 1 min 7 sec
Evaluation completed in 1 min 7 sec

Use the training set to determine the mean and standard deviation of each feature.

allFeatures = cat(2,featuresTrain{:});
M = mean(allFeatures,2,"omitnan");
S = std(allFeatures,0,2,"omitnan");

featuresTrain = cellfun(@(x)(x-M)./S,featuresTrain,UniformOutput=false);

Buffer the feature vectors into sequences so that each sequence consists of 20 feature vectors with
overlaps of 10 feature vectors.
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featureVectorsPerSequence = 20;
featureVectorOverlap = 10;
[sequencesTrain,sequencePerFileTrain] = HelperFeatureVector2Sequence(featuresTrain,featureVectorsPerSequence,featureVectorOverlap);

Replicate the labels of the training and validation sets so that they are in one-to-one correspondence
with the sequences. Not all speakers have utterances for all emotions. Create an empty
categorical array that contains all the emotional categories and append it to the validation labels
so that the categorical array contains all emotions.

labelsTrain = repelem(adsTrain.Labels.Emotion,[sequencePerFileTrain{:}]);

emptyEmotions = ads.Labels.Emotion;
emptyEmotions(:) = [];

Define a BiLSTM network using bilstmLayer (Deep Learning Toolbox). Place a dropoutLayer
(Deep Learning Toolbox) before and after the bilstmLayer to help prevent overfitting.

dropoutProb1 = 0.3;
numUnits = 200;
dropoutProb2 = 0.6;
layers = [ ...
    sequenceInputLayer(afe.FeatureVectorLength)
    dropoutLayer(dropoutProb1)
    bilstmLayer(numUnits,OutputMode="last")
    dropoutLayer(dropoutProb2)
    fullyConnectedLayer(numel(categories(emptyEmotions)))
    softmaxLayer
    classificationLayer];

Define training options using trainingOptions (Deep Learning Toolbox).

miniBatchSize = 512;
initialLearnRate = 0.005;
learnRateDropPeriod = 2;
maxEpochs = 3;
options = trainingOptions("adam", ...
    MiniBatchSize=miniBatchSize, ...
    InitialLearnRate=initialLearnRate, ...
    LearnRateDropPeriod=learnRateDropPeriod, ...
    LearnRateSchedule="piecewise", ...
    MaxEpochs=maxEpochs, ...
    Shuffle="every-epoch", ...
    Verbose=false, ...
    Plots="Training-Progress");

Train the network using trainNetwork (Deep Learning Toolbox).

net = trainNetwork(sequencesTrain,labelsTrain,layers,options);
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To save the network, configured audioFeatureExtractor, and normalization factors, set
saveSERSystem to true.

saveSERSystem = ;
if saveSERSystem
    normalizers.Mean = M;
    normalizers.StandardDeviation = S;
    save("network_Audio_SER.mat","net","afe","normalizers")
end

Training for System Validation

To provide an accurate assessment of the model you created in this example, train and validate using
leave-one-speaker-out (LOSO) k-fold cross validation. In this method, you train using k− 1 speakers
and then validate on the left-out speaker. You repeat this procedure k times. The final validation
accuracy is the average of the k folds.

Create a variable that contains the speaker IDs. Determine the number of folds: 1 for each speaker.
The database contains utterances from 10 unique speakers. Use summary to display the speaker IDs
(left column) and the number of utterances they contribute to the database (right column).

speaker = ads.Labels.Speaker;
numFolds = numel(speaker);
summary(speaker)

     03      49 
     08      58 
     09      43 
     10      38 
     11      55 
     12      35 
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     13      61 
     14      69 
     15      56 
     16      71 

The helper function HelperTrainAndValidateNetwork on page 1-80 performs the steps outlined
above for all 10 folds and returns the true and predicted labels for each fold. Call
HelperTrainAndValidateNetwork with the audioDatastore, the augmented audioDatastore,
and the audioFeatureExtractor.

[labelsTrue,labelsPred] = HelperTrainAndValidateNetwork(ads,adsAug,afe);

Print the accuracy per fold and plot the 10-fold confusion chart.

for ii = 1:numel(labelsTrue)
    foldAcc = mean(labelsTrue{ii}==labelsPred{ii})*100;
    disp("Fold " + ii + ", Accuracy = " + round(foldAcc,2))
end

Fold 1, Accuracy = 65.31
Fold 2, Accuracy = 68.97
Fold 3, Accuracy = 79.07
Fold 4, Accuracy = 71.05
Fold 5, Accuracy = 72.73
Fold 6, Accuracy = 74.29
Fold 7, Accuracy = 67.21
Fold 8, Accuracy = 85.51
Fold 9, Accuracy = 71.43
Fold 10, Accuracy = 67.61

labelsTrueMat = cat(1,labelsTrue{:});
labelsPredMat = cat(1,labelsPred{:});

figure
cm = confusionchart(labelsTrueMat,labelsPredMat, ...
    Title=["Confusion Matrix for 10-Fold Cross-Validation","Average Accuracy = " round(mean(labelsTrueMat==labelsPredMat)*100,1)], ...
    ColumnSummary="column-normalized",RowSummary="row-normalized");
sortClasses(cm,categories(emptyEmotions))

1 Audio Toolbox Examples

1-78



Supporting Functions

Convert Array of Feature Vectors to Sequences
function [sequences,sequencePerFile] = HelperFeatureVector2Sequence(features,featureVectorsPerSequence,featureVectorOverlap)
    % Copyright 2019 MathWorks, Inc.
    if featureVectorsPerSequence <= featureVectorOverlap
        error("The number of overlapping feature vectors must be less than the number of feature vectors per sequence.")
    end

    if ~iscell(features)
        features = {features};
    end
    hopLength = featureVectorsPerSequence - featureVectorOverlap;
    idx1 = 1;
    sequences = {};
    sequencePerFile = cell(numel(features),1);
    for ii = 1:numel(features)
        sequencePerFile{ii} = floor((size(features{ii},2) - featureVectorsPerSequence)/hopLength) + 1;
        idx2 = 1;
        for j = 1:sequencePerFile{ii}
            sequences{idx1,1} = features{ii}(:,idx2:idx2 + featureVectorsPerSequence - 1); %#ok<AGROW>
            idx1 = idx1 + 1;
            idx2 = idx2 + hopLength;
        end
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    end
end

Train and Validate Network

function [trueLabelsCrossFold,predictedLabelsCrossFold] = HelperTrainAndValidateNetwork(varargin)
    % Copyright 2019 The MathWorks, Inc.
    if nargin == 3
        ads = varargin{1};
        augads = varargin{2};
        extractor = varargin{3};
    elseif nargin == 2
        ads = varargin{1};
        augads = varargin{1};
        extractor = varargin{2};
    end
    speaker = categories(ads.Labels.Speaker);
    numFolds = numel(speaker);
    emptyEmotions = (ads.Labels.Emotion);
    emptyEmotions(:) = [];

    % Loop over each fold.
    trueLabelsCrossFold = {};
    predictedLabelsCrossFold = {};
    
    for i = 1:numFolds
        
        % 1. Divide the audio datastore into training and validation sets.
        % Convert the data to tall arrays.
        idxTrain           = augads.Labels.Speaker~=speaker(i);
        augadsTrain        = subset(augads,idxTrain);
        augadsTrain.Labels = augadsTrain.Labels.Emotion;
        tallTrain          = tall(augadsTrain);
        idxValidation        = ads.Labels.Speaker==speaker(i);
        adsValidation        = subset(ads,idxValidation);
        adsValidation.Labels = adsValidation.Labels.Emotion;
        tallValidation       = tall(adsValidation);

        % 2. Extract features from the training set. Reorient the features
        % so that time is along rows to be compatible with
        % sequenceInputLayer.
        tallTrain         = cellfun(@(x)x/max(abs(x),[],"all"),tallTrain,UniformOutput=false);
        tallFeaturesTrain = cellfun(@(x)extract(extractor,x),tallTrain,UniformOutput=false);
        tallFeaturesTrain = cellfun(@(x)x',tallFeaturesTrain,UniformOutput=false);  %#ok<NASGU>
        [~,featuresTrain] = evalc('gather(tallFeaturesTrain)'); % Use evalc to suppress command-line output.
        tallValidation         = cellfun(@(x)x/max(abs(x),[],"all"),tallValidation,UniformOutput=false);
        tallFeaturesValidation = cellfun(@(x)extract(extractor,x),tallValidation,"UniformOutput",false);
        tallFeaturesValidation = cellfun(@(x)x',tallFeaturesValidation,UniformOutput=false); %#ok<NASGU>
        [~,featuresValidation] = evalc('gather(tallFeaturesValidation)'); % Use evalc to suppress command-line output.

        % 3. Use the training set to determine the mean and standard
        % deviation of each feature. Normalize the training and validation
        % sets.
        allFeatures = cat(2,featuresTrain{:});
        M = mean(allFeatures,2,"omitnan");
        S = std(allFeatures,0,2,"omitnan");
        featuresTrain = cellfun(@(x)(x-M)./S,featuresTrain,UniformOutput=false);
        for ii = 1:numel(featuresTrain)
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            idx = find(isnan(featuresTrain{ii}));
            if ~isempty(idx)
                featuresTrain{ii}(idx) = 0;
            end
        end
        featuresValidation = cellfun(@(x)(x-M)./S,featuresValidation,UniformOutput=false);
        for ii = 1:numel(featuresValidation)
            idx = find(isnan(featuresValidation{ii}));
            if ~isempty(idx)
                featuresValidation{ii}(idx) = 0;
            end
        end

        % 4. Buffer the sequences so that each sequence consists of twenty
        % feature vectors with overlaps of 10 feature vectors.
        featureVectorsPerSequence = 20;
        featureVectorOverlap = 10;
        [sequencesTrain,sequencePerFileTrain] = HelperFeatureVector2Sequence(featuresTrain,featureVectorsPerSequence,featureVectorOverlap);
        [sequencesValidation,sequencePerFileValidation] = HelperFeatureVector2Sequence(featuresValidation,featureVectorsPerSequence,featureVectorOverlap);

        % 5. Replicate the labels of the train and validation sets so that
        % they are in one-to-one correspondence with the sequences.
        labelsTrain = [emptyEmotions;augadsTrain.Labels];
        labelsTrain = labelsTrain(:);
        labelsTrain = repelem(labelsTrain,[sequencePerFileTrain{:}]);

        % 6. Define a BiLSTM network.
        dropoutProb1 = 0.3;
        numUnits     = 200;
        dropoutProb2 = 0.6;
        layers = [ ...
            sequenceInputLayer(size(sequencesTrain{1},1))
            dropoutLayer(dropoutProb1)
            bilstmLayer(numUnits,OutputMode="last")
            dropoutLayer(dropoutProb2)
            fullyConnectedLayer(numel(categories(emptyEmotions)))
            softmaxLayer
            classificationLayer];

        % 7. Define training options.
        miniBatchSize       = 512;
        initialLearnRate    = 0.005;
        learnRateDropPeriod = 2;
        maxEpochs           = 3;
        options = trainingOptions("adam", ...
            MiniBatchSize=miniBatchSize, ...
            InitialLearnRate=initialLearnRate, ...
            LearnRateDropPeriod=learnRateDropPeriod, ...
            LearnRateSchedule="piecewise", ...
            MaxEpochs=maxEpochs, ...
            Shuffle="every-epoch", ...
            Verbose=false);

        % 8. Train the network.
        net = trainNetwork(sequencesTrain,labelsTrain,layers,options);

        % 9. Evaluate the network. Call classify to get the predicted labels
        % for each sequence. Get the mode of the predicted labels of each
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        % sequence to get the predicted labels of each file.
        predictedLabelsPerSequence = classify(net,sequencesValidation);
        trueLabels = categorical(adsValidation.Labels);
        predictedLabels = trueLabels;
        idx1 = 1;
        for ii = 1:numel(trueLabels)
            predictedLabels(ii,:) = mode(predictedLabelsPerSequence(idx1:idx1 + sequencePerFileValidation{ii} - 1,:),1);
            idx1 = idx1 + sequencePerFileValidation{ii};
        end
        trueLabelsCrossFold{i} = trueLabels; %#ok<AGROW>
        predictedLabelsCrossFold{i} = predictedLabels; %#ok<AGROW>
    end
end
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End-to-End Deep Speech Separation

This example showcases an end-to-end deep learning network for speaker-independent speech
separation.

Introduction

Speech separation is a challenging and critical speech processing task. A number of speech
separation methods based on deep learning have been proposed recently, most of which rely on time-
frequency transformations of the time-domain audio mixture (See “Cocktail Party Source Separation
Using Deep Learning Networks” on page 1-368 for an implementation of such a deep learning
system).

Solutions based on time-frequency methods suffer from two main drawbacks:

• The conversion of the time-frequency representations back to the time domain requires phase
estimation, which introduces errors and leads to imperfect reconstruction.

• Relatively long windows are required to yield high resolution frequency representations, which
leads to high computational complexity and unacceptable latency for real-time scenarios.

In this example, you explore a deep learning speech separation network (based on [1]) which acts
directly on the audio signal and bypasses the issues arising from time-frequency transformations.

Separate Speech using the Pretrained Network

Download the Pretrained Network

Before training the deep learning network from scratch, you will use a pretrained version of the
network to separate two speakers from an example mixture signal.

First, download the pretrained network and example audio files.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","speechSeparation.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
netFolder = fullfile(dataFolder,"speechSeparation");

Prepare Test Signal

Load two audio signals corresponding to two different speakers. Both signals are sampled at 8 kHz.

Fs = 8000;
s1 = audioread(fullfile(netFolder,'speaker1.wav'));
s2 = audioread(fullfile(netFolder,'speaker2.wav'));

Normalize the signals.

s1 = s1/max(abs(s1));
s2 = s2/max(abs(s2));

Listen to a few seconds of each signal.

T = 5;
sound(s1(1:T*Fs))
pause(T)
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sound(s2(1:T*Fs))
pause(T)

Combine the two signals into a mixture signal.

mix = s1+s2;
mix = mix/max(abs(mix));

Listen to the first few seconds of the mixture signal.

sound(mix(1:T*Fs))
pause(T)

Separate Speakers

Load the parameters of the pretrained speech separation network.

load(fullfile(netFolder,'paramsBest.mat'),'learnables','states')

Separate the two speakers in the mixture signals by calling the separateSpeakers function.

[z1,z2] = separateSpeakers(mix,learnables,states,false);

Listen to the first few seconds of the first estimated speech signal.

sound(z1(1:T*Fs))
pause(T)

Listen to the second estimated signal.

sound(z2(1:T*Fs))
pause(T)

To illustrate the effect of speech separation, plot the estimated and original separated signals along
with the mixture signal.

s1 = s1(1:length(z1));
s2 = s2(1:length(z2));
mix = mix(1:length(s1));

t  = (0:length(s1)-1)/Fs;

figure;
subplot(311)
plot(t,s1)
hold on
plot(t,z1)
grid on
legend('Speaker 1 - Actual','Speaker 1 - Estimated')
subplot(312)
plot(t,s2)
hold on
plot(t,z2)
grid on
legend('Speaker 2 - Actual','Speaker 2 - Estimated')
subplot(313)
plot(t,mix)
grid on

1 Audio Toolbox Examples

1-84



legend('Mixture')
xlabel('Time (s)')

Compare to a Time-Frequency Transformation Deep Learning Network

Next, you compare the performance of the network to the network developed in the “Cocktail Party
Source Separation Using Deep Learning Networks” on page 1-368 example. This speech separation
network is based on traditional time-frequency representations of the audio mixture (using the short-
time Fourier transform, STFT, and the inverse short-time Fourier transform, ISTFT).

Download the pretrained network.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","CocktailPartySourceSeparation.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
cocktailNetFolder = fullfile(dataFolder,"CocktailPartySourceSeparation");

The function separateSpeakersTimeFrequency encapsulates the steps required to separate
speech using this network. The function performs the following steps:

• Compute the magnitude STFT of the input time-domain mixture.
• Compute a soft time-frequency mask by passing the STFT to the network.
• Compute the STFT of the separated signals by multiplying the mixture STFT by the mask.
• Reconstruct the time-domain separated signals using ISTFT. The phase of the mixture STFT is

used.
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Refer to the “Cocktail Party Source Separation Using Deep Learning Networks” on page 1-368
example for more details about this network.

Separate the two speakers.

[y1,y2] = separateSpeakersTimeFrequency(mix,cocktailNetFolder);

Listen to the first separated signal.

sound(y1(1:Fs*T))
pause(T)

Listen to the second separated signal.

sound(y2(1:Fs*T))
pause(T)

Evaluate Network Performance using SI-SNR

You will compare the two networks using the scale-invariant source-to-noise ratio (SI-SNR) objective
measure [1].

Compute the SISNR for the first speaker with the end-to-end network.

First, normalize the actual and estimated signals.

s10 = s1 - mean(s1);
z10 = z1 - mean(z1);

Compute the "signal" component of the SNR.

t = sum(s10.*z10) .* z10 ./ (sum(z10.^2)+eps);

Compute the "noise" component of the SNR.

n = s1 - t;

Now compute the SI-SNR (in dB).

v1 = 20*log((sqrt(sum(t.^2))+eps)./sqrt((sum(n.^2))+eps))/log(10);
fprintf('End-to-end network - Speaker 1 SISNR: %f dB\n',v1)

End-to-end network - Speaker 1 SISNR: 14.316869 dB

The SI-SNR computation steps are encapsulated in the function SISNR. Use the function to compute
the SI-SNR of the second speaker with the end-to-end network.

v2 = SISNR(z2,s2);
fprintf('End-to-end network - Speaker 2 SISNR: %f dB\n',v2)

End-to-end network - Speaker 2 SISNR: 13.706421 dB

Next, compute the SI-SNR for each speaker for the STFT-based network.

w1 = SISNR(y1,s1(1:length(y1)));
w2 = SISNR(y2,s2(1:length(y2)));
fprintf('STFT network - Speaker 1 SISNR: %f dB\n',w1)

STFT network - Speaker 1 SISNR: 7.003790 dB
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fprintf('STFT network - Speaker 2 SISNR: %f dB\n',w2)

STFT network - Speaker 2 SISNR: 7.382209 dB

Training the Speech Separation Network

Examine the Network Architecture

The network is based on [1] and consists of three stages: Encoding, mask estimation or separation,
and decoding.

• The encoder transforms the time-domain input mixture signals into an intermediate
representation using convolutional layers.

• The mask estimator computes one mask per speaker. The intermediate representation of each
speaker is obtained by multiplying the encoder's output by its respective mask. The mask
estimator is comprised of 32 blocks of convolutional and normalization layers with skip
connections between blocks.

• The decoder transforms the intermediate representations to time-domain separated speech
signals using transposed convolutional layers.

The operation of the network is encapsulated in separateSpeakers.

Optionally Reduce the Dataset Size

To train the network with the entire dataset and achieve the highest possible accuracy, set
reduceDataset to false. To run this example quickly, set reduceDataset to true. This will run the
rest of the example on only a handful of files.

reduceDataset = true;

Download the Training Dataset

You use a subset of the LibriSpeech Dataset [2] to train the network. The LibriSpeech Dataset is a
large corpus of read English speech sampled at 16 kHz. The data is derived from audiobooks read
from the LibriVox project.

Download the LibriSpeech dataset. If reduceDataset is true, this step is skipped.

downloadDatasetFolder = tempdir;
datasetFolder = fullfile(downloadDatasetFolder,"LibriSpeech","train-clean-360");
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if ~reduceDataset
    filename = "train-clean-360.tar.gz";
    url = "http://www.openSLR.org/resources/12/" + filename;
    if ~datasetExists(datasetFolder)
        gunzip(url,downloadDatasetFolder);
        unzippedFile = fullfile(downloadDatasetFolder,filename);
        untar(unzippedFile{1}(1:end-3),downloadDatasetFolder);
    end
end

Preprocess the Dataset

The LibriSpeech dataset is comprised of a large number of audio files with a single speaker. It does
not contain mixture signals where 2 or more persons are speaking simultaneously.

You will process the original dataset to create a new dataset that is suitable for training the speech
separation network.

The steps for creating the training dataset are encapsulated in createTrainingDataset. The
function creates mixture signals comprised of utterances of two random speakers. The function
returns three audio datastores:

• mixDatastore points to mixture files (where two speakers are talking simultaneously).
• speaker1Datastore points to files containing the isolated speech of the first speaker in the

mixture.
• speaker2Datastore points to files containing the isolated speech of the second speaker in the

mixture.

Define the mini-batch size and the maximum training signal length (in number of samples).

miniBatchSize = 2;
duration = 2*8000;

Create the training dataset.

[mixDatastore,speaker1Datastore,speaker2Datastore] = createTrainingDataset(netFolder,datasetFolder,downloadDatasetFolder,reduceDataset,miniBatchSize,duration);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

Combine the datastores. This ensures that the files stay in the correct order when you shuffle them at
the start of each new epoch in the training loop.

ds = combine(mixDatastore,speaker1Datastore,speaker2Datastore);

Create a minibatch queue from the datastore.

mqueue = minibatchqueue(ds,'MiniBatchSize',miniBatchSize,'OutputEnvironment','cpu','OutputAsDlarray',false);

Specify Training Options

Define training parameters.

Train for 10 epochs.

if reduceDataset
    numEpochs = 1;
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else
    numEpochs = 10; %#ok
end

Specify the options for Adam optimization. Set the initial learning rate to 1e-3. Use a gradient decay
factor of 0.9 and a squared gradient decay factor of 0.999.

learnRate = 1e-3;
averageGrad = [];
averageSqGrad = [];

gradDecay = 0.9;
sqGradDecay = 0.999;

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™.

executionEnvironment = "auto"; % Change to "cpu" to train on a CPU.

Set Up Validation Data

You will use the test signal you previously employed to test the pretrained network to compute a
validation SI-SNR periodically during training.

If a GPU is available, move the validation signal to the GPU.

mix = dlarray(mix,'SCB');
if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
    mix = gpuArray(mix);
end

Define the number of iterations between validation SI-SNR computations.

numIterPerValidation = 50;

Define a vector to hold the validation SI-SNR from each iteration.

valSNR = [];

Define a variable to hold the best validation SI-SNR.

bestSNR = -Inf;

Define a variable to hold the epoch in which the best validation score occurred.

bestEpoch = 1;

Initialize Network

Initialize the network parameters. learnables is a structure containing the learnable parameters
from the network layers. states is a structure containing the states from the normalization layers.

[learnables,states] = initializeNetworkParams;

Train the Network

Execute the training loop. This can take many hours to run.

Note that there is no a priori way to associate the estimated output speaker signals with the expected
speaker signals. This is resolved by using Utterance-level permutation invariant training (uPIT) [1].
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The loss is based on computing the SI-SNR. uPIT minimizes the loss over all permutations between
outputs and targets. It is defined in the function uPIT.

The validation SI-SNR is computed periodically. If the SI-SNR is the best value to-date, the network
parameters are saved to params.mat.

iteration = 0;

% Loop over epochs.
for jj =1:numEpochs

    % Shuffle the data
    shuffle(mqueue);

    while hasdata(mqueue)

        % Compute validation loss/SNR periodically
        if mod(iteration,numIterPerValidation)==0
            
            [z1,z2] = separateSpeakers(mix, learnables,states,false);
            
            l = uPIT(z1,s1,z2,s2);
            valSNR(end+1) = l; %#ok

            if l > bestSNR
                bestSNR = l;
                bestEpoch = jj;
                filename = 'params.mat';
                save(filename,'learnables','states');
            end
        end

        iteration = iteration + 1;

        % Get a new batch of training data
        [mixBatch,x1Batch,x2Batch] = next(mqueue);
        mixBatch = reshape(mixBatch,[duration 1 miniBatchSize]);
        x1Batch = reshape(x1Batch,[duration 1 miniBatchSize]);
        x2Batch = reshape(x2Batch,[duration 1 miniBatchSize]);

        mixBatch = dlarray(mixBatch,'SCB');
        x1Batch = dlarray(x1Batch,'SCB');
        x2Batch = dlarray(x2Batch,'SCB');
      
        if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
            x1Batch = gpuArray(x1Batch);
            x2Batch = gpuArray(x2Batch);
            mixBatch = gpuArray(mixBatch);
        end

        % Evaluate the model gradients and states using dlfeval and the modelLoss function.
        [~,gradients,states] = dlfeval(@modelLoss,mixBatch,x1Batch,x2Batch,learnables,states,miniBatchSize);

        % Update the network parameters using the ADAM optimizer.
        [learnables,averageGrad,averageSqGrad] = adamupdate(learnables,gradients,averageGrad,averageSqGrad,iteration,learnRate,gradDecay,sqGradDecay);
        
    end
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    % Reduce the learning rate if the validation accuracy did not improve
    % during the epoch
    if bestEpoch ~= jj
        learnRate = learnRate/2;
    end
end

Plot the validation SNR values.

if ~reduceDataset
    valIterNum = 0:length(valSNR)-1;
    figure
    semilogx(numIterPerValidation*(valIterNum-1),valSNR,'b*-')
    grid on
    xlabel('Iteration #')
    ylabel('Validation SINR (dB)')
    valFig.Visible = 'on';
end
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Supporting Functions

function [mixDatastore,speaker1Datastore,speaker2Datastore] = createTrainingDataset(netFolder,datasetFolder,downloadDatasetFolder,reduceDataset,miniBatchSize,duration)
% createTrainingDataset Create training dataset

newDatasetPath = fullfile(downloadDatasetFolder,'speech-sep-dataset');

% Create the new dataset folders.
if isfolder(newDatasetPath)
    rmdir(newDatasetPath,'s')
end
mkdir(newDatasetPath);
mkdir([newDatasetPath '/sp1']);
mkdir([newDatasetPath '/sp2']);
mkdir([newDatasetPath '/mix']);

%Create an audioDatastore that points to the LibriSpeech dataset.
if reduceDataset
    netFolder = char(netFolder);
    ads = audioDatastore([repmat({fullfile(netFolder,'speaker1.wav')},1,4),...
                          repmat({fullfile(netFolder,'speaker2.wav')},1,4)]);
else
    ads = audioDatastore(datasetFolder,'IncludeSubfolders',true);
end

% The LibriSpeech dataset is comprised of signals from different speakers.
% The unique speaker ID is encoded in the audio file names.

% Extract the speaker IDs from the file names.
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if reduceDataset
    ads.Labels = categorical([repmat({'1'},1,4),repmat({'2'},1,4)]);
else
    ads.Labels = categorical(extractBetween(ads.Files,fullfile(datasetFolder,filesep),filesep));
end

% You will create mixture signals comprised of utterances of two random speakers.  
% Randomize the IDs of all the speakers.
names = unique(ads.Labels);
names = names(randperm(length(names)));

% In this example, you create training signals based on 400 speakers. You
% generate mixture signals based on combining utterances from 200 pairs of
% speakers. 

% Define the two groups of speakers.
numPairs = min(200,floor(numel(names)/2)); 
n1 = names(1:numPairs);
n2 = names(numPairs+1:2*numPairs);

% Create the new dataset. For each pair of speakers: 
% * Use subset to create two audio datastores, each containing files
%   corresponding to their respective speaker.
% * Adjust the datastores so that they have the same number of files.
% * Combine the two datastores using combine. 
% * Use writeall to preprocess the files of the combined datastore and write
%   the new resulting signals to disk.

% The preprocessing steps performed to create the signals before writing
% them to disk are encapsulated in the function createTrainingFiles. For
% each pair of signals:
% * You downsample the signals from 16 kHz to 8 kHz. 
% * You randomly select 4 seconds from each downsampled signal. 
% * You create the mixture by adding the 2 signal chunks.
% * You adjust the signal power to achieve a randomly selected
%   signal-to-noise value in the range [-5,5] dB.
% * You write the 3 signals (corresponding to the first speaker, the second
%   speaker, and the mixture, respectively) to disk.
parfor index=1:length(n1)
    spkInd1 = n1(index);
    spkInd2 = n2(index);
    spk1ds = subset(ads,ads.Labels==spkInd1);
    spk2ds = subset(ads,ads.Labels==spkInd2);
    L = min(length(spk1ds.Files),length(spk2ds.Files));
    L = floor(L/miniBatchSize) * miniBatchSize;
    spk1ds = subset(spk1ds,1:L);
    spk2ds = subset(spk2ds,1:L);
    pairds = combine(spk1ds,spk2ds);
    writeall(pairds,newDatasetPath,'FolderLayout','flatten','WriteFcn',@(data,writeInfo,outputFmt)createTrainingFiles(data,writeInfo,outputFmt,reduceDataset,duration));
end

% Create audio datastores pointing to the files corresponding to the individual speakers and the mixtures.
mixDatastore = audioDatastore(fullfile(newDatasetPath,'mix'));
speaker1Datastore = audioDatastore(fullfile(newDatasetPath,'sp1'));
speaker2Datastore = audioDatastore(fullfile(newDatasetPath,'sp2'));
end

function mix = createTrainingFiles(data,writeInfo,~,varargin)

1 Audio Toolbox Examples

1-92



% createTrainingFiles - Preprocess the training signals and write them to disk

reduceDataset = varargin{1};
duration = varargin{2};

x1 = data{1};
x2 = data{2};

% Resample from 16 kHz to 8 kHz
if ~reduceDataset
    x1 = resample(x1,1,2);
    x2 = resample(x2,1,2);
end

% Read a chunk from the first speaker signal
if length(x1)<=duration
    x1 = [x1;zeros(duration-length(x1),1)];
else
    startInd = randi([1 length(x1)-duration],1);
    endInd = startInd + duration - 1;
    x1 = x1(startInd:endInd);
end

% Read a chunk from the second speaker signal
if length(x2)<=duration
    x2 = [x2;zeros(duration-length(x2),1)];
else
    startInd = randi([1 length(x2)-duration],1);
    endInd = startInd + duration - 1;
    x2 = x2(startInd:endInd);
end

x1 = x1./max(abs(x1));
x2 = x2./max(abs(x2));

% SNR [-5 5] dB
s = snr(x1,x2);
targetSNR = 10 * (rand - 0.5);
x1b = 10^((targetSNR-s)/20) * x1;
mix = x1b + x2;
mix = mix./max(abs(mix));

if reduceDataset
    [~,n] = fileparts(tempname);
    name = sprintf('%s.wav',n);
else
    [~,s1] = fileparts(writeInfo.ReadInfo{1}.FileName);
    [~,s2] = fileparts(writeInfo.ReadInfo{2}.FileName);
    name = sprintf('%s-%s.wav',s1,s2);
end

audiowrite(sprintf('%s',fullfile(writeInfo.Location,'sp1',name)),x1,8000);
audiowrite(sprintf('%s',fullfile(writeInfo.Location,'sp2',name)),x2,8000);
audiowrite(sprintf('%s',fullfile(writeInfo.Location,'mix',name)),mix,8000);

end

function [loss,gradients,states] = modelLoss(mix,x1,x2,learnables,states,miniBatchSize)
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% modelLoss Compute the model loss, gradients, and states

[y1,y2,states] = separateSpeakers(mix,learnables,states,true);

m = uPIT(x1,y1,x2,y2);
l = sum(m);
loss = -l./miniBatchSize;

gradients = dlgradient(loss,learnables);

end

function m = uPIT(x1,y1,x2,y2)
% uPIT - Compute utterance-level permutation invariant training
v1 = SISNR(y1,x1);
v2 = SISNR(y2,x2);
m1 = mean([v1;v2]);

v1 = SISNR(y2,x1);
v2 = SISNR(y1,x2);
m2 = mean([v1;v2]);

m = max(m1,m2);
end

function z = SISNR(x,y)
% SISNR - Compute SI-SNR
x = x - mean(x);
y = y - mean(y);

t = sum(x.*y) .* y ./ (sum(y.^2)+eps);
n = x - t;

z = 20*log((sqrt(sum(t.^2))+eps)./sqrt((sum(n.^2))+eps))/log(10);

end

function [learnables,states] = initializeNetworkParams
% initializeNetworkParams - Initialize the learnables and states of the
% network
learnables.Conv1W = initializeGlorot(20,1,256);
learnables.Conv1B = dlarray(zeros(256,1,'single'));

learnables.ln_weight = dlarray(ones(1,256,'single'));
learnables.ln_bias = dlarray(zeros(1,256,'single'));

learnables.Conv2W = initializeGlorot(1,256,256);
learnables.Conv2B = dlarray(zeros(256,1,'single'));

for index=1:32
    blk = [];
    blk.Conv1W = initializeGlorot(1,256,512);
    blk.Conv1B = dlarray(zeros(512,1,'single'));
    blk.Prelu1 = dlarray(single(0.25));
    blk.BN1Offset = dlarray(zeros(512,1,'single'));
    blk.BN1Scale = dlarray(ones(512,1,'single'));
    blk.Conv2W = initializeGlorot(3,1,512);
    blk.Conv2W =  reshape(blk.Conv2W,[3 1 1 512]);
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    blk.Conv2B = dlarray(zeros(512,1,'single'));
    blk.Prelu2 = dlarray(single(0.25));
    blk.BN2Offset= dlarray(zeros(512,1,'single'));
    blk.BN2Scale= dlarray(ones(512,1,'single'));
    blk.Conv3W = initializeGlorot(1,512,256);
    blk.Conv3B = dlarray(ones(256,1,'single'));

    learnables.Blocks(index) = blk;

    s = [];
    s.BN1Mean= dlarray(zeros(512,1,'single'));
    s.BN1Var= dlarray(ones(512,1,'single'));
    s.BN2Mean = dlarray(zeros(512,1,'single'));
    s.BN2Var = dlarray(ones(512,1,'single'));

    states(index) = s; %#ok
end

learnables.Conv3W = initializeGlorot(1,256,512);
learnables.Conv3B = dlarray(zeros(512,1,'single'));

learnables.TransConv1W = initializeGlorot(20,1,256);
learnables.TransConv1B = dlarray(zeros(1,1, 'single'));

end

function weights = initializeGlorot(filterSize,numChannels,numFilters)
% initializeGlorot - Perform Glorot initialization
sz = [filterSize numChannels numFilters];
numOut = prod(filterSize) * numFilters;
numIn = prod(filterSize) * numFilters;

Z = 2*rand(sz,'single') - 1;
bound = sqrt(6 / (numIn + numOut));

weights = bound * Z;
weights = dlarray(weights);

end

function [output1, output2, states] = separateSpeakers(input, learnables, states, training)
% separateSpeakers - Separate two speaker signals from a mixture input
if ~isa(input,'dlarray')
    input = dlarray(input,'SCB');
end

weights = learnables.Conv1W;
bias = learnables.Conv1B;
x = dlconv(input, weights,bias, 'Stride', 10);

x = relu(x);
x0 = x;

x = x-mean(x, 2);
x = x./sqrt(mean(x.^2, 2) + 1e-5);
x = x.*learnables.ln_weight + learnables.ln_bias;

weights = learnables.Conv2W;
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bias = learnables.Conv2B;
encoderOut = dlconv(x, weights, bias);

for index = 1:32
    [encoderOut,s] = convBlock(encoderOut, index-1,learnables.Blocks(index),states(index),training);
    states(index) = s;
end

weights = learnables.Conv3W;
bias = learnables.Conv3B;
masks = dlconv(encoderOut, weights, bias);
masks = relu(masks);

mask1 = masks(:,1:256,:);
mask2 = masks(:,257:512,:);

out1 = x0 .* mask1;
out2 = x0 .* mask2;

weights = learnables.TransConv1W;
bias = learnables.TransConv1B;
output2 = dltranspconv(out1, weights, bias, 'Stride', 10);
output1 = dltranspconv(out2, weights, bias, 'Stride', 10);

if ~training
    output1 = gather(extractdata(output1));
    output2 = gather(extractdata(output2));

    output1 = output1./max(abs(output1));
    output2 = output2./max(abs(output2));
end

end

function [output,state] = convBlock(input, count,learnables,state,training)

% Conv:
weights = learnables.Conv1W;
bias = learnables.Conv1B;
conv1Out = dlconv(input, weights, bias);

% PRelu:
conv1Out = relu(conv1Out) - learnables.Prelu1.*relu(-conv1Out);

% BatchNormalization:
offset = learnables.BN1Offset;
scale = learnables.BN1Scale;
datasetMean = state.BN1Mean;
datasetVariance = state.BN1Var;
if training
    [batchOut, dsmean, dsvar] = batchnorm(conv1Out, offset, scale, datasetMean, datasetVariance);
    state.BN1Mean = dsmean;
    state.BN1Var = dsvar;
else
    batchOut = batchnorm(conv1Out, offset, scale, datasetMean, datasetVariance);
end

% Conv:
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weights = learnables.Conv2W;
bias = learnables.Conv2B;
padding = [1 1] * 2^(mod(count,8));
dilationFactor = 2^(mod(count,8));
convOut = dlconv(batchOut, weights, bias,'DilationFactor', dilationFactor, 'Padding', padding);

% PRelu:
convOut = relu(convOut) - learnables.Prelu2.*relu(-convOut);

% BatchNormalization:
offset = learnables.BN2Offset;
scale = learnables.BN2Scale;
datasetMean = state.BN2Mean;
datasetVariance = state.BN2Var;
if training
    [batchOut, dsmean, dsvar] = batchnorm(convOut, offset, scale, datasetMean, datasetVariance);
    state.BN2Mean = dsmean;
    state.BN2Var = dsvar;
else
    batchOut = batchnorm(convOut, offset, scale, datasetMean, datasetVariance);
end

% Conv:
weights = learnables.Conv3W;
bias = learnables.Conv3B;
output = dlconv(batchOut, weights, bias);

% Skip connection
output = output + input;

end

function [speaker1,speaker2] = separateSpeakersTimeFrequency(mix,pathToNet)
% separateSpeakersTimeFrequency - STFT-based speaker separation function
WindowLength  = 128;
FFTLength     = 128;
OverlapLength = 128-1;
win           = hann(WindowLength,"periodic");

% Downsample to 4 kHz
mix = resample(mix,1,2);

P0 = stft(mix, 'Window', win, 'OverlapLength', OverlapLength,...
    'FFTLength', FFTLength, 'FrequencyRange', 'onesided');
P = log(abs(P0) + eps);
MP = mean(P(:));
SP = std(P(:));
P = (P-MP)/SP;

seqLen = 20;
PSeq  = zeros(1 + FFTLength/2,seqLen,1,0);
seqOverlap = seqLen;

loc = 1;
while loc < size(P,2)-seqLen
    PSeq(:,:,:,end+1) = P(:,loc:loc+seqLen-1); %#ok
    loc = loc + seqOverlap;
end
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PSeq  = reshape(PSeq, [1 1 (1 + FFTLength/2) * seqLen size(PSeq,4)]);

s = load(fullfile(pathToNet,"CocktailPartyNet.mat"));
CocktailPartyNet = s.CocktailPartyNet;
estimatedMasks = predict(CocktailPartyNet,PSeq);

estimatedMasks = estimatedMasks.';
estimatedMasks = reshape(estimatedMasks,1 + FFTLength/2,numel(estimatedMasks)/(1 + FFTLength/2));

mask1   = estimatedMasks; 
mask2 = 1 - mask1;

P0 = P0(:,1:size(mask1,2));

P_speaker1 = P0 .* mask1;

speaker1 = istft(P_speaker1, 'Window', win, 'OverlapLength', OverlapLength,...
    'FFTLength', FFTLength, 'ConjugateSymmetric', true,...
    'FrequencyRange', 'onesided');
speaker1 = speaker1 / max(abs(speaker1));

P_speaker2 = P0 .* mask2;

speaker2 = istft(P_speaker2, 'Window', win, 'OverlapLength', OverlapLength,...
    'FFTLength',FFTLength, 'ConjugateSymmetric',true,...
    'FrequencyRange', 'onesided');
speaker2 = speaker2 / max(speaker2);

speaker1 = resample(double(speaker1),2,1);
speaker2 = resample(double(speaker2),2,1);
end
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Delay-Based Pitch Shifter

This example shows an audio plugin designed to shift the pitch of a sound in real time.

Algorithm

The figure below illustrates the pitch shifting algorithm.

The algorithm is based on cross-fading between two channels with time-varying delays and gains.
This method takes advantage of the pitch-shift Doppler effect that occurs as a signal's delay is
increased or decreased.

The figure below illustrates the variation of channel delays and gains for an upward pitch shift
scenario: The delay of channel 1 decreases at a fixed rate from its maximum value (in this example,
30 ms). Since the gain of channel 2 is initially equal to zero, it does not contribute to the output. As
the delay of channel 1 approaches zero, the delay of channel 2 starts decreasing down from 30 ms. In
this cross-fading region, the gains of the two channels are adjusted to preserve the output power
level. Channel 1 is completely faded out by the time its delay reaches zero. The process is then
repeated, going back and forth between the two channels.
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For a downward pitch effect, the delays are increased from zero to the maximum value.

The desired output pitch may be controlled by varying the rate of change of the channel delays.
Cross-fading reduces the audible glitches that occur during the transition between channels.
However, if cross-fading happens over too long a time, the repetitions present in the overlap area may
create spurious modulation and comb-filtering effects.

Pitch Shifter Audio Plugin

audiopluginexample.PitchShifter is an audio plugin object that implements the delay-based pitch
shifting algorithm. The plugin parameters are the pitch shift (in semi-tones), and the cross-fading
factor (which controls the overlap between the two delay branches). You can incorporate the object
into a MATLAB simulation, or use it to generate an audio plugin using generateAudioPlugin.

In addition to the output audio signal, the object returns two extra outputs, corresponding to the
delays and gains of the two channels, respectively.

You can open a test bench for audiopluginexample.PitchShifter by using Audio Test Bench.
The test bench provides a user interface (UI) to help you test your audio plugin in MATLAB. You can
tune the plugin parameters as the test bench is executing. You can also open a dsp.TimeScope and
a spectrumAnalyzer to view and compare the input and output signals in the time and frequency
domains, respectively.

You can also use audiopluginexample.PitchShifter in MATLAB just as you would use any other
MATLAB object. You can use the configureMIDI command to enable tuning the object via a MIDI
device. This is particularly useful if the object is part of a streaming MATLAB simulation where the
command window is not free.
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runPitchShift is a simple function that may be used to perform pitch shifting as part of a larger
MATLAB simulation. The function instantiates an audiopluginexample.PitchShifter plugin,
and uses the setSampleRate method to set its sampling rate to the input argument Fs. The plugin's
parameter's are tuned by setting their values to the input arguments pitch and overlap, respectively.
Note that it is also possible to generate a MEX-file from this function using the codegen command.
Performance is improved in this mode without compromising the ability to tune parameters.

MATLAB Simulation

audioPitchShifterExampleApp implements a real-time pitch shifting app.

Execute audioPitchShifterExampleApp to open the app. In addition to playing the pitch-shifted
output audio, the app plots the time-varying channel delays and gains, as well as the input and output
signals.

audioPitchShifterExampleApp opens a UI designed to interact with the simulation. The UI
allows you to tune the parameters of the pitch shifting algorithm, and the results are reflected in the
simulation instantly. The plots reflects your changes as you tune these parameters. For more
information on the UI, call help HelperCreateParamTuningUI.

audioPitchShifterExampleApp wraps around HelperPitchShifterSim and iteratively calls it.
HelperPitchShifterSim instantiates, initializes and steps through the objects forming the
algorithm.
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MATLAB Coder can be used to generate C code for HelperPitchShifterSim. In order to generate
a MEX-file for your platform, execute HelperPitchShifterCodeGeneration from a folder with
write permissions.

By calling audioPitchShifterExampleApp with 'true' as an argument, the generated MEX-file
HelperPitchShifterSimMEX can be used instead of HelperPitchShifterSim for the simulation.
In this scenario, the UI is still running inside the MATLAB environment, but the main processing
algorithm is being performed by a MEX-file. Performance is improved in this mode without
compromising the ability to tune parameters.

Call audioPitchShifterExampleApp with 'true' as argument to use the MEX-file for simulation.
Again, the simulation runs till the user explicitly stops it from the UI.

References

[1] 'Using Multiple Processors for Real-Time Audio Effects', Bogdanowicz, K. ; Belcher, R; AES - May
1989.

[2] 'A Detailed Analysis of a Time-Domain Formant-Corrected Pitch-Shifting Algorithm', Bristow-
Johnson, R. ; AES - October 1993.
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Psychoacoustic Bass Enhancement for Band-Limited Signals

This example shows an audio plugin designed to enhance the perceived sound level in the lower part
of the audible spectrum.

Introduction

Small loudspeakers typically have a poor low frequency response, which can have a negative impact
on overall sound quality. This example implements psychoacoustic bass enhancement to improve
sound quality of audio played on small loudspeakers.

The example is based on the algorithm in [1 on page 1-105]. A non-linear device shifts the low-
frequency range of the signal to a high-frequency range through the generation of harmonics. The
pitch of the original signal is preserved due to the "virtual pitch" psychoacoustic phenomenon.

The algorithm is implemented using an audio plugin object.

Algorithm

The figure below illustrates the algorithm used in [1 on page 1-105].

1. The input stereo signal is split into lowpass and highpass components using a crossover filter. The
filter's crossover frequency is equal to the speaker's cutoff frequency (set to 60 Hz in this example).

2. The highpass component, hpstereo, is split into left and right channels: hplef t and hpright,
respectively.

3. The lowpass component, lpstereo, is converted to mono, lpmono, by adding the left and right
channels element by element.

4. lpmono is passed through a full wave integrator. The full wave integrator shifts lpmono to higher
harmonics.

y n =
0 if u n > 0 and u n− 1 ≤ 0
y n− 1 + u n− 1 otherwise

• u[n] is the input signal, lpmono

• y[n] is the output signal
• n is the time index
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5. y[n] is passed through a bandpass filter with lower cutoff frequency set to the speaker's cutoff
frequency. The filter's upper cutoff frequency may be adjusted to fine-tune output sound quality.

6. yBP[n], the bandpass filtered signal, passes through tunable gain, G.

7. yG is added to the left and right highpass channels.

8. The left and right channels are concatenated into a single matrix and output.

Although the resulting output stereo signal does not contain low-frequency elements, the input's bass
pitch is preserved thanks to the generated harmonics.

Bass Enhancer Audio plugin

audiopluginexample.BassEnhancer is an audio plugin object that implements the psychoacoustic bass
enhancement algorithm. The plugin parameters are the upper cutoff frequency of the bandpass filter,
and the gain applied at the output of the bandpass filter (G in the diagram above). You can
incorporate the object into a MATLAB simulation, or use it to generate an audio plugin using
generateAudioPlugin.

You can open a test bench for audiopluginexample.BassEnhancer using Audio Test Bench. The
test bench provides a graphical user interface to help you test your audio plugin in MATLAB. You can
tune the plugin parameters as the test bench is executing. You can also open a timescope and a
spectrumAnalyzer to view and compare the input and output signals in the time and frequency
domains, respectively.

bassEnhancer = audiopluginexample.BassEnhancer;
audioTestBench(bassEnhancer)
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You can also use audiopluginexample.BassEnhancer in MATLAB just as you would use any other
MATLAB object. You can use configureMIDI to enable tuning the object using a MIDI device. This is
particularly useful if the object is part of a streaming MATLAB simulation where the command
window is not free.

HelperBassEnhancerSim is a simple function that may be used to perform bass enhancement as
part of a larger MATLAB simulation. The function instantiates an
audiopluginexample.BassEnhancer plugin, and uses the setSampleRate method to set its
sampling rate to the input argument Fs. The plugin's parameters are tuned by setting their values to
the input arguments Fcutoff and G, respectively. Note that it is also possible to generate a MEX-file
from this function using the codegen command. Performance is improved in this mode without
compromising the ability to tune parameters.

References

[1] Aarts, Ronald M, Erik Larsen, and Daniel Schobben. “Improving Perceived Bass and
Reconstruction of High Frequencies for Band Limited Signals.” Proceedings 1st IEEE Benelux
Workshop on Model Based Coding of Audio (MPCA-2002) , November 15, 2002, 59–71.
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Tunable Filtering and Visualization Using Audio Plugins

This example shows how to visualize the magnitude response of a tunable filter. The filters in this
example are implemented as audio plugins. This example uses the visualize and audioTestBench
functionality of the Audio Toolbox™.

Tunable Filter Examples

Audio Toolbox provides several examples of tunable filters that have been implemented as audio
plugins:

audiopluginexample.BandpassIIRFilter

audiopluginexample.HighpassIIRFilter

audiopluginexample.LowpassIIRFilter

audiopluginexample.ParametricEqualizerWithUDP

audiopluginexample.ShelvingEqualizer

audiopluginexample.VarSlopeBandpassFilter

visualize

All of these example audio plugins can be used with the visualize function in order to view the
magnitude response of the filters as they are tuned in real time.

audioTestBench

Any audio plugin can be tuned in real time using audioTestBench. The tool allows you to test an
audio plugin with audio signals from a file or device. The tool also enables you to view the power
spectrum and the time-domain waveform for the input and output signals.

Update Visualization While Running Plugin

audiopluginexample.BandpassIIRFilter, audiopluginexample.HighpassIIRFilter, and
audiopluginexample.LowpassIIRFilter are the simplest of the six examples because the code
is written so that the visualization is updated only when data is processed by the filter. Create the
audio plugin, then call visualize and audioTestBench

hpf = audiopluginexample.HighpassIIRFilter;
visualize(hpf)
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audioTestBench(hpf)
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Note that moving the cutoff frequency in audioTestBench does not update the magnitude response
plot. However, once the 'Run' (or play) button is pressed, you can see and hear the changing
magnitude response of the filter as the cutoff frequency is tuned in real time.
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Update Visualization at Any Time

audiopluginexample.ShelvingEqualizer and
audiopluginexample.VarSlopeBandpassFilter have visualize functions which update the
magnitude response plot even when not processing data. The visualization is also updated in real
time once audio is being processed.

audioTestBench('-close')
varfilter = audiopluginexample.VarSlopeBandpassFilter;
visualize(varfilter)

audioTestBench(varfilter)
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Visualize Individual and Combined Magnitude Response

audiopluginexample.ParametricEqualizerWithUDP illustrates how to visualize individual
sections in a 3-section biquad filter along with the overall response of the 3 sections combined.

audioTestBench('-close')
equalizer = audiopluginexample.ParametricEqualizerWithUDP;
visualize(equalizer)

audioTestBench(equalizer)
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audioTestBench('-close')
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Communicate Between a DAW and MATLAB Using UDP

This example shows how to communicate between a digital audio workstation (DAW) and MATLAB®
using the user datagram protocol (UDP). The information shared between the DAW and MATLAB can
used to perform visualization in real time in MATLAB on parameters that are being changed in the
DAW.

User Datagram Protocol (UDP)

UDP is a core member of the Internet protocol suite. It is a simple connectionless transmission that
does not employ any methods for error checking. Because it does not check for errors, UDP is a fast
but unreliable alternative to the transmission control protocol (TCP) and stream control transmission
protocol (SCTP). UDP is widely used in applications that are willing to trade fidelity for high-speed
transmission, such as video conferencing and real-time computer games. If you use UDP for
communication within a single machine, packets are less likely to drop. The tutorials outlined here
work best when executed on a single machine.

UDP and MATLAB

These System objects enable you to use UDP with MATLAB:

• dsp.UDPReceiver - Receive UDP packets from network
• dsp.UDPSender - Send UDP packets to network

To communicate between a DAW and MATLAB using UDP, place a UDP sender in the plugin used in
the DAW, and run a corresponding UDP receiver in MATLAB.

The dsp.UDPSender and dsp.UDPReceiver System objects use prebuilt library files that are
included with MATLAB.

Example Plugins

These Audio Toolbox™ example plugins use UDP:

• audiopluginexample.UDPSender - Send an audio signal from a DAW to the network. If you
generate this plugin and deploy it to a DAW, the plugin sends frames of a stereo signal to the
network. The frame size is determined by the DAW. You can modify the example plugin to send any
information you want to analyze in MATLAB.
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• audiopluginexample.ParametricEqualizerWithUDP - Send a plugin's filter coefficients
from a DAW to the network. If you generate this plugin and run it in a DAW, the plugin sends the
coefficients of the parametric equalizer you tune in the DAW to the network. The
HelperUDPPluginVisualizer function contains a UDP receiver that receives the datagram,
and uses it to plot the magnitude response of the filter you are tuning in a DAW.

Send Audio from DAW to MATLAB

Step 1: Generate a VST Plugin

To generate a VST plugin from audiopluginexample.UDPSender, use the generateAudioPlugin
function. It is a best practice to move to a directory that can store the generated plugin before
executing this command:

generateAudioPlugin audiopluginexample.UDPSender

.......

The generated plugin is saved to your current folder and named UDPSender.

Step 2: Open DAW with Appropriate Environment Variables Set

To run the UDP sender outside of MATLAB, you must open the DAW from a command terminal with
the appropriate environment variables set. Setting environment variables enables the deployed UDP
sender to use the necessary library files in MATLAB. To learn how to set the environment variables,
see the tutorial specific to your system:

• “Set Run-Time Library Path on Windows Systems”
• “Set Run-Time Library Path on macOS Systems”

After you set the environment variables, open your DAW from the same command terminal, such as in
this example terminal from a Windows system.

Step 3: Receive and Process an Audio Signal

a. In the DAW, open the generated UDPSender file.

b. In MATLAB, run this function: HelperUDPPluginReceiver

The audio signal is displayed on the spectrum analyzer for analysis.
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Send Coefficients from DAW to MATLAB

1. Follow steps 1-2 from Send Audio from DAW to MATLAB, replacing
audiopluginexample.UDPSender with
audiopluginexample.ParametricEqualizerWithUDP.

2. Receive and process filter coefficients

a. In the DAW, open the generated ParameterEqualizerWithUDP file. The plugin display name is
ParametricEQ.

b. In MATLAB, run this command: HelperUDPPluginVisualizer

The HelperUDPPluginVisualizer function uses a dsp.UDPReceiver to receive the filter
coefficients and then displays the magnitude response for 60 seconds. You can modify the code to
extend or reduce the amount of time. The plotted magnitude response corresponds to the parametric
equalizer plugin you tune in the DAW.
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Acoustic Echo Cancellation (AEC)

This example shows how to apply adaptive filters to acoustic echo cancellation (AEC).

Introduction

Acoustic echo cancellation is important for audio teleconferencing when simultaneous communication
(or full-duplex transmission) of speech is necessary. In acoustic echo cancellation, a measured
microphone signal  contains two signals:

• The near-end speech signal 
• The far-end echoed speech signal 

The goal is to remove the far-end echoed speech signal from the microphone signal so that only the
near-end speech signal is transmitted. This example has some sound clips, so you might want to
adjust your computer's volume now.

The Room Impulse Response

You first need to model the acoustics of the loudspeaker-to-microphone signal path where the
speakerphone is located. Use a long finite impulse response filter to describe the characteristics of
the room. The following code generates a random impulse response that is not unlike what a
conference room would exhibit. Assume a system sample rate of 16000 Hz.

fs = 16000;
M = fs/2 + 1;
frameSize = 2048;

[B,A] = cheby2(4,20,[0.1 0.7]);
impulseResponseGenerator = dsp.IIRFilter('Numerator',[zeros(1,6) B], ...
    'Denominator',A);

FVT = fvtool(impulseResponseGenerator);  % Analyze the filter

1 Audio Toolbox Examples

1-118



roomImpulseResponse = impulseResponseGenerator( ...
        (log(0.99*rand(1,M)+0.01).*sign(randn(1,M)).*exp(-0.002*(1:M)))');
roomImpulseResponse = roomImpulseResponse/norm(roomImpulseResponse)*4;
room = dsp.FIRFilter('Numerator', roomImpulseResponse');

fig = figure;
plot(0:1/fs:0.5, roomImpulseResponse);
xlabel('Time (s)');
ylabel('Amplitude');
title('Room Impulse Response');
fig.Color = [1 1 1];
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The Near-End Speech Signal

The teleconferencing system's user is typically located near the system's microphone. Here is what a
male speech sounds like at the microphone.

load nearspeech

player          = audioDeviceWriter('SupportVariableSizeInput', true, ...
                                    'BufferSize', 512, 'SampleRate', fs);
nearSpeechSrc   = dsp.SignalSource('Signal',v,'SamplesPerFrame',frameSize);
nearSpeechScope = timescope('SampleRate', fs, 'TimeSpanSource','Property',...
                    'TimeSpan', 35, 'TimeSpanOverrunAction', 'Scroll', ...
                    'YLimits', [-1.5 1.5], ...
                    'BufferLength', length(v), ...
                    'Title', 'Near-End Speech Signal', ...
                    'ShowGrid', true);

% Stream processing loop
while(~isDone(nearSpeechSrc))
    % Extract the speech samples from the input signal
    nearSpeech = nearSpeechSrc();
    % Send the speech samples to the output audio device
    player(nearSpeech);
    % Plot the signal
    nearSpeechScope(nearSpeech);
end
release(nearSpeechScope);
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The Far-End Speech Signal

In a teleconferencing system, a voice travels out the loudspeaker, bounces around in the room, and
then is picked up by the system's microphone. Listen to what the speech sounds like if it is picked up
at the microphone without the near-end speech present.

load farspeech
farSpeechSrc    = dsp.SignalSource('Signal',x,'SamplesPerFrame',frameSize);
farSpeechSink   = dsp.SignalSink;
farSpeechScope  = timescope('SampleRate', fs, 'TimeSpanSource','Property',...
                    'TimeSpan', 35, 'TimeSpanOverrunAction', 'Scroll', ...
                    'YLimits', [-0.5 0.5], ...
                    'BufferLength', length(x), ...
                    'Title', 'Far-End Speech Signal', ...
                    'ShowGrid', true);

% Stream processing loop
while(~isDone(farSpeechSrc))
    % Extract the speech samples from the input signal
    farSpeech = farSpeechSrc();
    % Add the room effect to the far-end speech signal
    farSpeechEcho = room(farSpeech);
    % Send the speech samples to the output audio device
    player(farSpeechEcho);
    % Plot the signal
    farSpeechScope(farSpeech);
    % Log the signal for further processing
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    farSpeechSink(farSpeechEcho);
end
release(farSpeechScope);

The Microphone Signal

The signal at the microphone contains both the near-end speech and the far-end speech that has been
echoed throughout the room. The goal of the acoustic echo canceler is to cancel out the far-end
speech, such that only the near-end speech is transmitted back to the far-end listener.

reset(nearSpeechSrc);
farSpeechEchoSrc = dsp.SignalSource('Signal', farSpeechSink.Buffer, ...
                    'SamplesPerFrame', frameSize);
micSink         = dsp.SignalSink;
micScope        = timescope('SampleRate', fs,'TimeSpanSource','Property',...
                    'TimeSpan', 35, 'TimeSpanOverrunAction', 'Scroll',...
                    'YLimits', [-1 1], ...
                    'BufferLength', length(x), ...
                    'Title', 'Microphone Signal', ...
                    'ShowGrid', true);

% Stream processing loop
while(~isDone(farSpeechEchoSrc))
    % Microphone signal = echoed far-end + near-end + noise
    micSignal = farSpeechEchoSrc() + nearSpeechSrc() + ...
                0.001*randn(frameSize,1);
    % Send the speech samples to the output audio device
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    player(micSignal);
    % Plot the signal
    micScope(micSignal);
    % Log the signal
    micSink(micSignal);
end
release(micScope);

The Frequency-Domain Adaptive Filter (FDAF)

The algorithm in this example is the Frequency-Domain Adaptive Filter (FDAF). This algorithm is
very useful when the impulse response of the system to be identified is long. The FDAF uses a fast
convolution technique to compute the output signal and filter updates. This computation executes
quickly in MATLAB®. It also has fast convergence performance through frequency-bin step size
normalization. Pick some initial parameters for the filter and see how well the far-end speech is
cancelled in the error signal.

% Construct the Frequency-Domain Adaptive Filter
echoCanceller    = dsp.FrequencyDomainAdaptiveFilter('Length', 2048, ...
                    'StepSize', 0.025, ...
                    'InitialPower', 0.01, ...
                    'AveragingFactor', 0.98, ...
                    'Method', 'Unconstrained FDAF');

AECScope1   = timescope(4, fs, ...
                'LayoutDimensions', [4,1],'TimeSpanSource','Property', ...
                'TimeSpan', 35, 'TimeSpanOverrunAction', 'Scroll', ...
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                'BufferLength', length(x));

AECScope1.ActiveDisplay = 1;
AECScope1.ShowGrid      = true;
AECScope1.YLimits       = [-1.5 1.5];
AECScope1.Title         = 'Near-End Speech Signal';

AECScope1.ActiveDisplay = 2;
AECScope1.ShowGrid      = true;
AECScope1.YLimits       = [-1.5 1.5];
AECScope1.Title         = 'Microphone Signal';

AECScope1.ActiveDisplay = 3;
AECScope1.ShowGrid      = true;
AECScope1.YLimits       = [-1.5 1.5];
AECScope1.Title         = 'Output of Acoustic Echo Canceller mu=0.025';

AECScope1.ActiveDisplay = 4;
AECScope1.ShowGrid      = true;
AECScope1.YLimits       = [0 50];
AECScope1.YLabel        = 'ERLE (dB)';
AECScope1.Title         = 'Echo Return Loss Enhancement mu=0.025';

% Near-end speech signal
release(nearSpeechSrc);
nearSpeechSrc.SamplesPerFrame = frameSize;

% Far-end speech signal
release(farSpeechSrc);
farSpeechSrc.SamplesPerFrame = frameSize;

% Far-end speech signal echoed by the room
release(farSpeechEchoSrc);
farSpeechEchoSrc.SamplesPerFrame = frameSize;

Echo Return Loss Enhancement (ERLE)

Since you have access to both the near-end and far-end speech signals, you can compute the echo
return loss enhancement (ERLE), which is a smoothed measure of the amount (in dB) that the
echo has been attenuated. From the plot, observe that you achieved about a 35 dB ERLE at the end of
the convergence period.

diffAverager = dsp.FIRFilter('Numerator', ones(1,1024));
farEchoAverager = clone(diffAverager);
setfilter(FVT,diffAverager);

micSrc = dsp.SignalSource('Signal', micSink.Buffer, ...
    'SamplesPerFrame', frameSize);

% Stream processing loop - adaptive filter step size = 0.025
while(~isDone(nearSpeechSrc))
    nearSpeech = nearSpeechSrc();
    farSpeech = farSpeechSrc();
    farSpeechEcho = farSpeechEchoSrc();
    micSignal = micSrc();
    % Apply FDAF
    [y,e] = echoCanceller(farSpeech, micSignal);
    % Send the speech samples to the output audio device
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    player(e);
    % Compute ERLE
    erle = diffAverager((e-nearSpeech).^2)./ farEchoAverager(farSpeechEcho.^2);
    erledB = -10*log10(erle);
    % Plot near-end, far-end, microphone, AEC output and ERLE
    AECScope1(nearSpeech, micSignal, e, erledB);
end
release(AECScope1);
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Effects of Different Step Size Values

To get faster convergence, you can try using a larger step size value. However, this increase causes
another effect: the adaptive filter is "misadjusted" while the near-end speaker is talking. Listen to
what happens when you choose a step size that is 60% larger than before.

% Change the step size value in FDAF
reset(echoCanceller);
echoCanceller.StepSize = 0.04;

AECScope2 = clone(AECScope1);
AECScope2.ActiveDisplay = 3;
AECScope2.Title = 'Output of Acoustic Echo Canceller mu=0.04';
AECScope2.ActiveDisplay = 4;
AECScope2.Title = 'Echo Return Loss Enhancement mu=0.04';

reset(nearSpeechSrc);
reset(farSpeechSrc);
reset(farSpeechEchoSrc);
reset(micSrc);
reset(diffAverager);
reset(farEchoAverager);

% Stream processing loop - adaptive filter step size = 0.04
while(~isDone(nearSpeechSrc))
    nearSpeech = nearSpeechSrc();
    farSpeech = farSpeechSrc();
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    farSpeechEcho = farSpeechEchoSrc();
    micSignal = micSrc();
    % Apply FDAF
    [y,e] = echoCanceller(farSpeech, micSignal);
    % Send the speech samples to the output audio device
    player(e);
    % Compute ERLE
    erle = diffAverager((e-nearSpeech).^2)./ farEchoAverager(farSpeechEcho.^2);
    erledB = -10*log10(erle);
    % Plot near-end, far-end, microphone, AEC output and ERLE
    AECScope2(nearSpeech, micSignal, e, erledB);
end

release(nearSpeechSrc);
release(farSpeechSrc);
release(farSpeechEchoSrc);
release(micSrc);
release(diffAverager);
release(farEchoAverager);
release(echoCanceller);
release(AECScope2);

Echo Return Loss Enhancement Comparison

With a larger step size, the ERLE performance is not as good due to the misadjustment introduced by
the near-end speech. To deal with this performance difficulty, acoustic echo cancelers include a
detection scheme to tell when near-end speech is present and lower the step size value over these
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periods. Without such detection schemes, the performance of the system with the larger step size is
not as good as the former, as can be seen from the ERLE plots.

Latency Reduction Using Partitioning

Traditional FDAF is numerically more efficient than time-domain adaptive filtering for long impulse
responses, but it imposes high latency, because the input frame size must be a multiple of the
specified filter length. This can be unacceptable for many real-world applications. Latency may be
reduced by using partitioned FDAF, which partitions the filter impulse response into shorter
segments, applies FDAF to each segment, and then combines the intermediate results. The frame size
in that case must be a multiple of the partition (block) length, thereby greatly reducing the latency
for long impulse responses.

% Reduce the frame size from 2048 to 256
frameSize = 256;
nearSpeechSrc.SamplesPerFrame    = frameSize;
farSpeechSrc.SamplesPerFrame     = frameSize;
farSpeechEchoSrc.SamplesPerFrame = frameSize;
micSrc.SamplesPerFrame           = frameSize;
% Switch the echo canceller to Partitioned constrained FDAF
echoCanceller.Method      = 'Partitioned constrained FDAF';
% Set the block length to frameSize
echoCanceller.BlockLength = frameSize;

% Stream processing loop
while(~isDone(nearSpeechSrc))
    nearSpeech = nearSpeechSrc();
    farSpeech = farSpeechSrc();
    farSpeechEcho = farSpeechEchoSrc();
    micSignal = micSrc();
    % Apply FDAF
    [y,e] = echoCanceller(farSpeech, micSignal);
    % Send the speech samples to the output audio device
    player(e);
    % Compute ERLE
    erle = diffAverager((e-nearSpeech).^2)./ farEchoAverager(farSpeechEcho.^2);
    erledB = -10*log10(erle);
    % Plot near-end, far-end, microphone, AEC output and ERLE
    AECScope2(nearSpeech, micSignal, e, erledB);
end
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Active Noise Control Using a Filtered-X LMS FIR Adaptive Filter

This example shows how to apply adaptive filters to the attenuation of acoustic noise via active noise
control.

Active Noise Control

In active noise control, one attempts to reduce the volume of an unwanted noise propagating through
the air using an electro-acoustic system using measurement sensors such as microphones and output
actuators such as loudspeakers. The noise signal usually comes from some device, such as a rotating
machine, so that it is possible to measure the noise near its source. The goal of the active noise
control system is to produce an "anti-noise" that attenuates the unwanted noise in a desired quiet
region using an adaptive filter. This problem differs from traditional adaptive noise cancellation in
that: - The desired response signal cannot be directly measured; only the attenuated signal is
available. - The active noise control system must take into account the secondary loudspeaker-to-
microphone error path in its adaptation.

For more implementation details on active noise control tasks, see S.M. Kuo and D.R. Morgan, "Active
Noise Control Systems: Algorithms and DSP Implementations", Wiley-Interscience, New York, 1996.

The Secondary Propagation Path

The secondary propagation path is the path the anti-noise takes from the output loudspeaker to the
error microphone within the quiet zone. The following commands generate a loudspeaker-to-error
microphone impulse response that is bandlimited to the range 160 - 2000 Hz and with a filter length
of 0.1 seconds. For this active noise control task, we shall use a sampling frequency of 8000 Hz.

Fs     = 8e3;  % 8 kHz
N      = 800;  % 800 samples@8 kHz = 0.1 seconds
Flow   = 160;  % Lower band-edge: 160 Hz
Fhigh  = 2000; % Upper band-edge: 2000 Hz
delayS = 7;
Ast    = 20;   % 20 dB stopband attenuation
Nfilt  = 8;    % Filter order

% Design bandpass filter to generate bandlimited impulse response
filtSpecs = fdesign.bandpass('N,Fst1,Fst2,Ast',Nfilt,Flow,Fhigh,Ast,Fs);
bandpass = design(filtSpecs,'cheby2','FilterStructure','df2tsos', ...
    'SystemObject',true);

% Filter noise to generate impulse response
secondaryPathCoeffsActual = bandpass([zeros(delayS,1); ...
                       log(0.99*rand(N-delayS,1)+0.01).* ...
                       sign(randn(N-delayS,1)).*exp(-0.01*(1:N-delayS)')]);
secondaryPathCoeffsActual = ...
    secondaryPathCoeffsActual/norm(secondaryPathCoeffsActual);

t = (1:N)/Fs;
plot(t,secondaryPathCoeffsActual,'b');
xlabel('Time [sec]');
ylabel('Coefficient value');
title('True Secondary Path Impulse Response');
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Estimating the Secondary Propagation Path

The first task in active noise control is to estimate the impulse response of the secondary propagation
path. This step is usually performed prior to noise control using a synthetic random signal played
through the output loudspeaker while the unwanted noise is not present. The following commands
generate 3.75 seconds of this random noise as well as the measured signal at the error microphone.

ntrS = 30000;
randomSignal = randn(ntrS,1); % Synthetic random signal to be played
secondaryPathGenerator = dsp.FIRFilter('Numerator',secondaryPathCoeffsActual.');
secondaryPathMeasured = secondaryPathGenerator(randomSignal) + ... % random signal propagated through secondary path
    0.01*randn(ntrS,1); % measurement noise at the microphone

Designing the Secondary Propagation Path Estimate

Typically, the length of the secondary path filter estimate is not as long as the actual secondary path
and need not be for adequate control in most cases. We shall use a secondary path filter length of 250
taps, corresponding to an impulse response length of 31 ms. While any adaptive FIR filtering
algorithm could be used for this purpose, the normalized LMS algorithm is often used due to its
simplicity and robustness. Plots of the output and error signals show that the algorithm converges
after about 10000 iterations.

M = 250;
muS = 0.1;
secondaryPathEstimator = dsp.LMSFilter('Method','Normalized LMS','StepSize', muS, ...
    'Length', M);
[yS,eS,SecondaryPathCoeffsEst] = secondaryPathEstimator(randomSignal,secondaryPathMeasured);

 Active Noise Control Using a Filtered-X LMS FIR Adaptive Filter

1-131



n = 1:ntrS;
figure, plot(n,secondaryPathMeasured,n,yS,n,eS);
xlabel('Number of iterations');
ylabel('Signal value');
title('Secondary Identification Using the NLMS Adaptive Filter');
legend('Desired Signal','Output Signal','Error Signal');

Accuracy of the Secondary Path Estimate

How accurate is the secondary path impulse response estimate? This plot shows the coefficients of
both the true and estimated path. Only the tail of the true impulse response is not estimated
accurately. This residual error does not significantly harm the performance of the active noise control
system during its operation in the chosen task.

figure, plot(t,secondaryPathCoeffsActual, ...
    t(1:M),SecondaryPathCoeffsEst, ...
    t,[secondaryPathCoeffsActual(1:M)-SecondaryPathCoeffsEst(1:M); secondaryPathCoeffsActual(M+1:N)]);
xlabel('Time [sec]');
ylabel('Coefficient value');
title('Secondary Path Impulse Response Estimation');
legend('True','Estimated','Error');
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The Primary Propagation Path

The propagation path of the noise to be cancelled can also be characterized by a linear filter. The
following commands generate an input-to-error microphone impulse response that is bandlimited to
the range 200 - 800 Hz and has a filter length of 0.1 seconds.

delayW = 15;
Flow   = 200; % Lower band-edge: 200 Hz
Fhigh  = 800; % Upper band-edge: 800 Hz
Ast    = 20;  % 20 dB stopband attenuation
Nfilt  = 10;  % Filter order

% Design bandpass filter to generate bandlimited impulse response
filtSpecs2 = fdesign.bandpass('N,Fst1,Fst2,Ast',Nfilt,Flow,Fhigh,Ast,Fs);
bandpass2 = design(filtSpecs2,'cheby2','FilterStructure','df2tsos', ...
    'SystemObject',true);

% Filter noise to generate impulse response
primaryPathCoeffs = bandpass2([zeros(delayW,1); log(0.99*rand(N-delayW,1)+0.01).* ...
    sign(randn(N-delayW,1)).*exp(-0.01*(1:N-delayW)')]);
primaryPathCoeffs = primaryPathCoeffs/norm(primaryPathCoeffs);

figure, plot(t,primaryPathCoeffs,'b');
xlabel('Time [sec]');
ylabel('Coefficient value');
title('Primary Path Impulse Response');
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The Noise to Be Cancelled

Typical active noise control applications involve the sounds of rotating machinery due to their
annoying characteristics. Here, we synthetically generate noise that might come from a typical
electric motor.

Initialization of Active Noise Control

The most popular adaptive algorithm for active noise control is the filtered-X LMS algorithm. This
algorithm uses the secondary path estimate to calculate an output signal whose contribution at the
error sensor destructively interferes with the undesired noise. The reference signal is a noisy version
of the undesired sound measured near its source. We shall use a controller filter length of about 44
ms and a step size of 0.0001 for these signal statistics.

% FIR Filter to be used to model primary propagation path
primaryPathGenerator = dsp.FIRFilter('Numerator',primaryPathCoeffs.');

% Filtered-X LMS adaptive filter to control the noise
L = 350;
muW = 0.0001;
noiseController = dsp.FilteredXLMSFilter('Length',L,'StepSize',muW, ...
    'SecondaryPathCoefficients',SecondaryPathCoeffsEst);

% Sine wave generator to synthetically create the noise
A = [.01 .01 .02 .2 .3 .4 .3 .2 .1 .07 .02 .01];
La = length(A);
F0 = 60;
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k = 1:La;
F = F0*k;
phase = rand(1,La); % Random initial phase
sine = audioOscillator('NumTones', La, 'Amplitude',A,'Frequency',F, ...
    'PhaseOffset',phase,'SamplesPerFrame',512,'SampleRate',Fs);

% Audio player to play noise before and after cancellation
player = audioDeviceWriter('SampleRate',Fs);

% Spectrum analyzer to show original and attenuated noise
scope = spectrumAnalyzer('SampleRate',Fs,'OverlapPercent',80, ...
    'PlotAsTwoSidedSpectrum',false, ...
    'ShowLegend',true, ...
    'ChannelNames', {'Original noisy signal', 'Attenuated noise'});

Simulation of Active Noise Control Using the Filtered-X LMS Algorithm

Here we simulate the active noise control system. To emphasize the difference we run the system
with no active noise control for the first 200 iterations. Listening to its sound at the error microphone
before cancellation, it has the characteristic industrial "whine" of such motors.

Once the adaptive filter is enabled, the resulting algorithm converges after about 5 (simulated)
seconds of adaptation. Comparing the spectrum of the residual error signal with that of the original
noise signal, we see that most of the periodic components have been attenuated considerably. The
steady-state cancellation performance may not be uniform across all frequencies, however. Such is
often the case for real-world systems applied to active noise control tasks. Listening to the error
signal, the annoying "whine" is reduced considerably.

for m = 1:400
    % Generate synthetic noise by adding sine waves with random phase
    x = sine();
    d = primaryPathGenerator(x) + ...  % Propagate noise through primary path
        0.1*randn(size(x)); % Add measurement noise
    if m <= 200
        % No noise control for first 200 iterations
        e = d;
    else
        % Enable active noise control after 200 iterations
        xhat = x + 0.1*randn(size(x));
        [y,e] = noiseController(xhat,d);
    end
    player(e);     % Play noise signal
    scope([d,e]); % Show spectrum of original (Channel 1)
                     % and attenuated noise (Channel 2)
end
release(player); % Release audio device
release(scope); % Release spectrum analyzer
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Acoustic Noise Cancellation Using LMS

This example shows how to use the Least Mean Square (LMS) algorithm to subtract noise from an
input signal. The LMS adaptive filter uses the reference signal on the Input port and the desired
signal on the Desired port to automatically match the filter response. As it converges to the correct
filter model, the filtered noise is subtracted and the error signal should contain only the original
signal.

Exploring the Example

In the model, the signal output at the upper port of the Acoustic Environment subsystem is white
noise. The signal output at the lower port is composed of colored noise and a signal from a WAV file.
This example model uses an adaptive filter to remove the noise from the signal output at the lower
port. When you run the simulation, you hear both noise and a person playing the drums. Over time,
the adaptive filter in the model filters out the noise so you only hear the drums.

Acoustic Noise Cancellation Model

Utilizing Your Audio Device

Run the model to listen to the audio signal in real time. The stop time is set to infinity. This allows you
to interact with the model while it is runs. For example, you can change the filter or alternate from
slow adaptation to fast adaptation (and vice versa), and get a sense of the real-time audio processing
behavior under these conditions.
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Color Codes of the Blocks

Notice the colors of the blocks in the model. These are sample time colors that indicate how fast a
block executes. Here, the fastest discrete sample time is red, and the second fastest discrete sample
time is green. You can see that the color changes from red to green after down-sampling by 32 (in the
Downsample block before the Waterfall Scope block). Further information on displaying sample time
colors can be found in the Simulink® documentation.

Waterfall Scope

The Waterfall window displays the behavior of the adaptive filter's filter coefficients. It displays
multiple vectors of data at one time. These vectors represent the values of the filter's coefficients of a
normalized LMS adaptive filter, and are the input data at consecutive sample times. The data is
displayed in a three-dimensional axis in the Waterfall window. By default, the x-axis represents
amplitude, the y-axis represents samples, and the z-axis represents time. The Waterfall window has
toolbar buttons that enable you to zoom in on displayed data, suspend data capture, freeze the
scope's display, save the scope position, and export data to the workspace.

Acoustic Environment Subsystem

You can see the details of the Acoustic Environment subsystem by double clicking on that block.
Gaussian noise is used to create the signal sent to the Exterior Mic output port. If the input to the
Filter port changes from 0 to 1, the Digital Filter block changes from a lowpass filter to a bandpass
filter. The filtered noise output from the Digital Filter block is added to the signal coming from a WAV-
file to produce the signal sent to the Pilot's Mic output port.

References

[1] Haykin, Simon S. Adaptive Filter Theory. 3rd ed, Prentice Hall, 1996.

1 Audio Toolbox Examples

1-138



Delay-Based Audio Effects

This example shows how to design and use three audio effects that are based on varying delay: echo,
chorus and flanger. The example also shows how the algorithms, developed in MATLAB, can be easily
ported to Simulink.

Introduction

Audio effects can be generated by adding a processed ('wet') signal to the original ('dry') audio signal.
A simple effect, echo, adds a delayed version of the signal to the original. More complex effects, like
chorus and flanger, modulate the delayed version of the signal.

Echo

You can model the echo effect by delaying the audio signal and adding it back. Feedback is often
added to the delay line to give a fading effect. The echo effect is implemented in the
audioexample.Echo class. The block diagram shows a high-level implementation of an echo effect.

The echo effect example has four tunable parameters that can be modified while the simulation is
running:

• Delay - Delay applied to audio signal, in seconds
• Gain - Linear gain of the delayed audio
• FeedbackLevel - Feedback gain applied to delay line
• WetDryMix - Ratio of wet signal added to dry signal

You can try out audioexample.Echo by running audioDelayEffectsExampleApp with 'echo' as
input. The example reads an audio signal from a file, applies the echo effect, and then plays the
processed signal through your audio output device. It also launches a UI that allows you to tune the
parameters of the echo effect. You can pass an additional argument that determines duration to play
the audio.

duration = 30; % in seconds
audioDelayEffectsExampleApp('echo',duration);
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Chorus

The chorus effect usually has multiple independent delays, each modulated by a low-frequency
oscillator. audioexample.Chorus implements this effect. The block diagram shows a high-level
implementation of a chorus effect.
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The chorus effect example has six tunable parameters that can be modified while the simulation is
running:

• Delay - Base delay applied to audio signal, in seconds
• Depth 1 - Amplitude of modulator applied to first delay branch
• Rate 1 - Frequency of modulator applied to first delay branch, in Hz
• Depth 2 - Amplitude of modulator applied to second delay branch
• Rate 2 - Frequency of modulator applied to second delay branch, in Hz
• WetDryMix - Ratio of wet signal added to dry signal

You can try out audioexample.Chorus by running audioDelayEffectsExampleApp with
'chorus' as input. The example reads an audio signal from a file, applies the chorus effect, then
plays the processed signal through your audio output device. It also launches a UI that allows you to
tune the parameters of the chorus effect. You can pass an additional argument that determines
duration to play the audio.

duration = 30; % in seconds
audioDelayEffectsExampleApp('chorus',duration);
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Flanger

You can model the flanging effect by delaying the audio input by an amount that is modulated by a
low-frequency oscillator (LFO). The delay line used in flanger can also have a feedback path.
audioexample.Flanger implements this effect. The block diagram shows a high-level implementation
of a flanger effect.

The flanger effect example has five tunable parameters that can be modified while the simulation is
running:
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• Delay - Base delay applied to audio signal, in seconds
• Depth - Amplitude of LFO
• Rate - Frequency of LFO, in Hz
• FeedbackLevel - Feedback gain applied to delay line
• WetDryMix - Ratio of wet signal added to dry signal

You can try out audioexample.Flanger by running audioDelayEffectsExampleApp with
'flanger' as input. The example reads an audio signal from a file, applies the flanger effect, then
plays the processed signal through your audio output device. It also launches a UI that allows you to
tune the parameters of the flanger effect. The second input to this function is optional, and decides
how long the audio should be played. You can pass an additional argument that determines duration
to play the audio.

duration = 30; % in seconds
audioDelayEffectsExampleApp('flanger',duration);

Audio Effects in Simulink

You can use the System objects audioexample.Echo, audioexample.Chorus and
audioexample.Flanger in Simulink by using the MATLAB System (Simulink) block. The model
audiodelaybasedeffects has these effects ready for simulation.

open_system('audiodelaybasedeffects')
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You can select the effect to be applied by double-clicking on the Effect Selector block.

Once the effect has been selected, you can click on Launch Parameter Tuning UI button to bring
up the dialog that has all tunable parameters of the effect.

This dialog will remain available even during simulation. You can run the model and tune properties
of the effect to listen to how they affect the audio output.

1 Audio Toolbox Examples

1-144



Add Reverberation Using Freeverb Algorithm

This example shows how to apply reverberation to audio by using the Freeverb reverberation
algorithm. The reverberation can be tuned using a user interface (UI) in MATLAB or through a MIDI
controller. This example illustrates MATLAB® and Simulink® implementations.

Introduction

Reverberators are used to add the effect of multiple decaying echoes, or reverbs, to audio signals. A
common use of reverberation is to simulate music played in a closed room. Most digital audio
workstations (DAWs) have options to add such effects to the sound track.

In this example, you add reverberation to audio through the Freeverb algorithm. Freeverb is a
popular implementation of the Schroeder reverberator. A high-level model of the Freeverb algorithm
is shown below:

Example Architecture

The reverberator is implemented in the System object audioexample.FreeverbReverberator.
The object has five properties that can be tuned while the simulation is running: RoomSize,
StereoWidth, WetDryMix, Balance, and Volume. RoomSize affects the feedback gain of the comb
filters. StereoWidth and WetDryMix both take part in the mixing stage that happens after filtering
is complete. The default values of the StereoSpread, CombDelayLength, and
AllpassDelayLength properties are taken from the Freeverb specifications.

MATLAB Simulation

To use the reverberator on an audio signal, run audioFreeverbReverberationExampleApp.

audioFreeverbReverberationExampleApp

The audioFreeverbReverberationExampleApp command first sets up the audio source and
player. It then iteratively calls the audioexample.FreeverbReverberator System object with the
audio input, providing addition of reverberation in a streaming fashion. The output of the object is
played back so you can hear the effect added to the audio.

The simulation opens a UI to interact with audioexample.FreeverbReverberator while the
simulation is running. The UI allows you to tune parameters and the results are reflected in the
simulation instantly. For example, moving the slider Room size to the left while the simulation is
running decreases the reflectivity of the walls of the room being simulated.
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There are also three buttons on the UI - the Reset button will reset the states of the comb and allpass
sections in reverberator to their initial values and the Pause Simulation button will hold the
simulation until you click on it again. The simulation may be terminated by either closing the UI or by
clicking on the Stop simulation button. If you have a MIDI controller, it is possible to synchronize it
with the UI. You can do this by choosing a MIDI control in the dialog that is opened when you right-
click on the sliders or buttons and select "Synchronize" from the context menu. The chosen MIDI
control then works in accordance with the slider or button so that operating one control is tracked by
the other.

If you see a lot of queue underrun warnings, you will need to adjust the buffer and queue size of audio
player used in audioFreeverbReverberationExampleApp. More information on this can be found
at the documentation page for audioDeviceWriter. The audio source in this example is an audio
file, but you can replace it with an audio input device (through audioDeviceReader) to add
reverberation to live audio. For ways to reduce latency while not having any overruns/underruns, you
can follow the example “Measure Audio Latency” on page 1-252.

Using a Generated MEX File

Using MATLAB Coder™, you can generate a MEX file for the main processing algorithm by executing
the HelperFreeverbCodeGeneration command. You can use the generated MEX file by executing
the audioFreeverbReverberationExampleApp command with true as an argument.

audioFreeverbReverberationExampleApp(true)
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Simulink Version

audiofreeverbreverberation is a Simulink model that implements the same Freeverb
reverberation example highlighted in the previous sections.

In this model, the addition of reverberation is modeled using the
audioexample.FreeverbReverberator System object used inside a MATLAB System block. Using
the MATLAB System block saves you the effort of reimplementing a MATLAB algorithm in Simulink.
You can open the UI to tune Freeverb parameters by clicking the 'Launch Parameter Tuning UI' link
on the model.

The model generates code when it is simulated. Therefore, it must be executed from a folder with
write permissions.

Acknowledgement

The algorithm in this example is based on the public domain 'Freeverb' model written by Jezar at
Dreampoint (June 2000).

Reference

Smith, J.O. "Freeverb", in "Physical Audio Signal Processing", https://ccrma.stanford.edu/~jos/pasp/
Freeverb.html, online book, 2010 edition, accessed April 24, 2014.
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Multiband Dynamic Range Compression

This example shows how to simulate a digital audio multiband dynamic range compression system.

Introduction

Dynamic range compression reduces the dynamic range of a signal by attenuating the level of strong
peaks, while leaving weaker peaks unchanged. Compression has applications in audio recording,
mixing, and in broadcasting.

Multiband compression compresses different audio frequency bands separately, by first splitting the
audio signal into multiple bands and then passing each band through its own independently
adjustable compressor. Multiband compression is widely used in audio production and is often
included in audio workstations.

The multiband compressor in this example first splits an audio signal into different bands using a
multiband crossover filter. Linkwitz-Riley crossover filters are used to obtain an overall allpass
frequency response. Each band is then compressed using a separate dynamic range compressor. Key
compressor characteristics, such as the compression ratio, the attack and release time, the threshold
and the knee width, are independently tunable for each band. The effect of compression on the
dynamic range of the signal is showcased.

Linkwitz-Riley Crossover Filters

A Linkwitz-Riley crossover filter consists of a combination of a lowpass and highpass filter, each
formed by cascading two lowpass or highpass Butterworth filters. Summing the response of the two
filters yields a gain of 0 dB at the crossover frequency, so that the crossover acts like an allpass filter
(and therefore introducing no distortion in the audio signal).

crossoverFilter may be used to implement a Linkwitz-Riley System object. Since a Linkwitz-Riley
crossover filter is formed by cascading two Butterworth filters, its order is always even. A
Butterworth filter's slope is equal to 6*N dB/octave, where N is the filter order. When the
CrossoverSlopes property of crossoverFilter is divisible by 12 (i.e. the filter is even-ordered),
the object implements a Linkwitz-Riley crossover. Otherwise, the object implements a Butterworth
crossover, where the lowpass and highpass sections are each implemented using a single Butterworth
filter of order CrossoverSlopes/6.

Here is an example where an fourth-order Linkwitz-Riley crossover is used to filter a signal. Notice
that the lowpass and highpass sections each have a -6 dB gain at the crossover frequency. The sum of
the lowpass and highpass sections is allpass.

Fs = 44100;

% Linkwitz-Riley filter
crossover = crossoverFilter(1,5000,4*6,Fs);

% Transfer function estimator                                
transferFuncEstimator = dsp.TransferFunctionEstimator( ...
    'FrequencyRange','onesided','SpectralAverages',20);

frameLength = 1024;

scope = dsp.ArrayPlot( ...
    'PlotType','Line', ...
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    'YLimits',[-40 1], ...
    'YLabel','Magnitude (dB)', ...
    'XScale','log', ...
    'SampleIncrement',(Fs/2)/(frameLength/2+1), ...
    'XLabel','Frequency (Hz)', ...
    'Title','Eighth order Linkwitz-Riley Crossover Filter', ...
    'ShowLegend',true, ...
    'ChannelNames',{'Band 1','Band 2','Sum'});

tic
while toc < 10
    in = randn(frameLength,1);
    % Return lowpass and highpass responses of the crossover filter
    [ylp,yhp] = crossover(in);
    % sum the responses
    y = ylp + yhp;
    v = transferFuncEstimator(repmat(in,1,3),[ylp yhp y]);
    scope(20*log10(abs(v)));
end

Multiband Crossover Filters

crossoverFilter may also be used to implement a multiband crossover filter by combining two-
band crossover filters and allpass filters in a tree-like structure. The filter divides the spectrum into
multiple bands such that their sum is a perfect allpass filter.
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The example below shows a four-band crossover filter formed of fourth order Linkwitz-Riley crossover
filters. Notice the allpass response of the sum of the four bands.

Fs = 44100;
crossover = crossoverFilter(3,[2e3 5e3 10e3],[24 24 24],44100);
transferFuncEstimator = dsp.TransferFunctionEstimator('FrequencyRange','onesided','SpectralAverages',20);
L = 2^14;
scope = dsp.ArrayPlot( ...
    'PlotType','Line', ...
    'XOffset',0, ...
    'YLimits',[-120 5], ...
    'XScale','log', ...
    'SampleIncrement', .5 * Fs/(L/2 + 1 ), ...
    'YLabel','Frequency Response (dB)', ...
    'XLabel','Frequency (Hz)', ...
    'Title','Four-Band Crossover Filter', ...
    'ShowLegend',true, ...
    'ChannelNames',{'Band 1','Band 2','Band 3','Band 4','Sum'});
tic;
while toc < 10
   in = randn(L,1);
   % Split the signal into four bands
   [ylp,ybp1,ybp2,yhp] = crossover(in);
   y = ylp + ybp1 + ybp2 + yhp;
   z  = transferFuncEstimator(repmat(in,1,5),[ylp,ybp1,ybp2,yhp,y]);
   scope(20*log10(abs(z)))   
end
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Dynamic Range Compression

compressor is a dynamic range compressor System object. The input signal is compressed when it
exceeds the specified threshold. The amount of compression is controlled by the specified
compression ratio. The attack and release times determine how quickly the compressor starts or
stops compressing. The knee width provides a smooth transition for the compressor gain around the
threshold. Finally, a make-up gain can be applied at the output of the compressor. This make-up gain
amplifies both strong and weak peaks equally.

The static compression characteristic of the compressor depends on the compression ratio, the
threshold and the knee width. The example below illustrates the static compression characteristic for
a hard knee:

drc = compressor(-15,5);
visualize(drc);

In order to view the effect of threshold, ratio and knee width on the compressor's static
characteristic, change the values of the Threshold, Ratio and KneeWidth properties. The static
characteristic plot should change accordingly.

The compressor's attack time is defined as the time (in msec) it takes for the compressor's gain to
rise from 10% to 90% of its final value when the signal level exceeds the threshold. The compressor's
release time is defined as the time (in seconds) it takes the compressor's gain to drop from 90% to
10% of its value when the signal level drops below the threshold. The example below illustrates the
signal envelope for different release and attack times:
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Fs = 44100;

drc = compressor(-10,5, ...
    'SampleRate',Fs, ...
    'AttackTime',0.050, ...
    'ReleaseTime',0.200, ...
    'MakeUpGainMode','Property');

x = [ones(Fs,1);0.1*ones(Fs,1)];
[y,g] = drc(x);

t = (1/Fs) * (0: 2*Fs - 1);

figure

subplot(211)
plot(t,x);
hold on
grid on
plot(t,y,'r')
ylabel('Amplitude')
legend('Input','Compressed Output')

subplot(212)
plot(t,g)
grid on
legend('Compressor gain (dB)')
xlabel('Time (sec)')
ylabel('Gain (dB)')
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The input maximum level is 0 dB, which is above the specified -10 dB threshold. The steady-state
compressor output for a 0 dB input is -10 + 10/5 = -8 dB. The gain is therefore -8 dB. The attack time
is defined as the time it takes the compressor gain to rise from 10% to 90% of its final value when the
input level goes above the threshold, or in this case, from -0.8 dB to -7.2 dB. Let's find the times at
which the gains in the compression stage are equal to -0.8 dB and -7.2 dB, respectively:

[~,t1] = min(abs(g(1:Fs) + 0.1 * 8));
[~,t2] = min(abs(g(1:Fs) + 0.9 * 8));
tAttack = (t2 - t1) / Fs;
fprintf('Attack time is %d s\n',tAttack)

Attack time is 5.000000e-02 s

The input signal then drops back down to 0, where there is no compression. The release time is
defined as the time it takes the gain to drop from 90% to 10% of its absolute value when the input
goes below the threshold, or in this case, -7.2 dB to -0.8 dB. Let's find the times at which the gains in
the no-compression stage are equal to -7.2 dB and -0.8 dB, respectively:

[~,t1] = min(abs(g(Fs:end) + 0.9 * 8));
[~,t2] = min(abs(g(Fs:end) + 0.1 * 8));
tRelease = (t2 - t1) / Fs;
fprintf('Release time is %d s\n',tRelease)

Release time is 2.000000e-01 s

The example below illustrates the effect of dynamic range compression on an audio signal. The
compression threshold is set to -15 dB, and the compression ratio is 7.
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frameLength = 1024;
reader = dsp.AudioFileReader('Filename', ...
    'RockGuitar-16-44p1-stereo-72secs.wav', ...
    'SamplesPerFrame',frameLength);
% Compressor. Threshold = -15 dB, ratio = 7
drc = compressor(-15,7, ...
    'SampleRate',reader.SampleRate, ...
    'MakeUpGainMode','Property', ...
    'KneeWidth',5);
scope = timescope('SampleRate',reader.SampleRate, ...
    'TimeSpanSource','property',...
    'TimeSpan',1,'BufferLength',Fs*4, ...
    'ShowGrid',true, ...
    'LayoutDimensions',[2 1], ...
    'NumInputPorts',2, ...
    'TimeSpanOverrunAction','Scroll');
scope.ActiveDisplay = 1;
scope.YLimits = [-1 1];
scope.ShowLegend = true;
scope.ChannelNames = {'Original versus compressed audio'};
scope.ActiveDisplay = 2;
scope.YLimits = [-6 0];
scope.YLabel = 'Gain (dB)';
scope.ShowLegend = true;
scope.ChannelNames = {'compressor gain in dB'};

while ~isDone(reader)
   x = reader();
   [y,g] = drc(x);
   x1 = x(:,1);
   y1 = y(:,1);
   scope([x1,y1],g(:,1))
end
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Simulink Version of the Multiband Dynamic Range Compression Example

The following model implements the multiband dynamic range compression example:

model = 'audiomultibanddynamiccompression';
open_system(model)

In this example, the audio signal is first divided into four bands using a multiband crossover filter.
Each band is compressed using a separate compressor. The four bands are then recombined to form
the audio output. The dynamic range of the uncompressed and compressed signals (defined as the
ratio of the largest absolute value of the signal to the signal RMS) is computed. To hear the difference
between the original and compressed audio signals, toggle the switch on the top level.

The model integrates a User Interface (UI) designed to interact with the simulation. The UI allows
you to tune parameters and the results are reflected in the simulation instantly. To launch the UI that
controls the simulation, click the 'Launch Parameter Tuning UI' link on the model.

set_param(model,'StopTime','(1/44100) * 8192 * 20');
sim(model);

Close the model:

bdclose(model)
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MATLAB Version of the Multiband Dynamic Range Compression Example

HelperMultibandCompressionSim is the MATLAB function containing the multiband dynamic
range compression example's implementation. It instantiates, initializes and steps through the objects
forming the algorithm.

The function multibandAudioCompressionExampleApp wraps around
HelperMultibandCompressionSim and iteratively calls it. It also plots the uncompressed versus
compressed audio signals. Plotting occurs when the plotResults input to the function is 'true'.

Execute multibandAudioCompressionExampleApp to run the simulation and plot the results on
scopes. Note that the simulation runs for as long as the user does not explicitly stop it.

multibandAudioCompressionExampleApp launches a UI designed to interact with the simulation.
The UI allows you to tune parameters and the results are reflected in the simulation instantly. For
more information on the UI, please refer to HelperCreateParamTuningUI.

MATLAB Coder can be used to generate C code for the function
HelperMultibandCompressionSim. In order to generate a MEX-file for your platform, execute
HelperMultibandCompressionCodeGeneration.

By calling the wrapper function multibandAudioCompressionExampleApp with 'true' as an
argument, the generated MEX-file can be used instead of HelperMultibandCompressionSim for
the simulation. In this scenario, the UI is still running inside the MATLAB environment, but the main
processing algorithm is being performed by a MEX-file. Performance is improved in this mode without
compromising the ability to tune parameters.

Call multibandAudioCompressionExampleApp(true) to use the MEX-file for simulation. Again,
the simulation runs till the user explicitly stops it from the UI.
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Pitch Shifting and Time Dilation Using a Phase Vocoder in
MATLAB

This example shows how to implement a phase vocoder to time stretch and pitch scale an audio
signal.

Introduction

The phase vocoder performs time stretching and pitch scaling by transforming the audio into
frequency domain. The following block diagram shows the operations involved in the phase vocoder
implementation.

The phase vocoder has an analysis section that performs an overlapped short-time FFT (ST-FFT) and
a synthesis section that performs an overlapped inverse short-time FFT (IST-FFT). To time stretch a
signal, the phase vocoder uses a larger hop size for the overlap-add operation in the synthesis section
than the analysis section. Here, the hop size is the number of samples processed at one time. As a
result, there are more samples at the output than at the input although the frequency content
remains the same. Now, you can pitch scale this signal by playing it back at a higher sample rate,
which produces a signal with the original duration but a higher pitch.

Initialization

To achieve optimal performance, you must create and initialize your System objects before using
them in a processing loop. Use these next sections of code to initialize the required variables and load
the input speech data. You set an analysis hop size of 64 and a synthesis hop size of 90 because you
want to stretch the signal by a factor of 90/64.

Initialize some variables used in configuring the System objects you create below.

WindowLen = 256;
AnalysisLen = 64;
SynthesisLen = 90;
Hopratio = SynthesisLen/AnalysisLen;

Create a System object to read in the input speech signal from an audio file.

reader = dsp.AudioFileReader('SpeechDFT-16-8-mono-5secs.wav', ...
  'SamplesPerFrame',AnalysisLen, ...
  'OutputDataType','double');

Create STFT/ISTFT pair
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win = sqrt(hanning(WindowLen,'periodic'));
stft = dsp.STFT(win, WindowLen - AnalysisLen, WindowLen);                   
istft = dsp.ISTFT(win, WindowLen - SynthesisLen );

Create a System object to play the original speech signal.

Fs = 8000;
player = audioDeviceWriter('SampleRate',Fs, ...
    'SupportVariableSizeInput',true, ...
    'BufferSize',512);

Create a System object to log your data.

logger = dsp.SignalSink;

Initialize the variables used in the processing loop.

unwrapdata = 2*pi*AnalysisLen*(0:WindowLen-1)'/WindowLen;
yangle = zeros(WindowLen,1);
firsttime = true;

Stream Processing Loop

Now that you have instantiated your System objects, you can create a processing loop that performs
time stretching on the input signal. The loop is stopped when you reach the end of the input file,
which is detected by the AudioFileReader System object.

while ~isDone(reader)
    y = reader();

    player(y); % Play back original audio

    % ST-FFT
    yfft = stft(y);
    
    % Convert complex FFT data to magnitude and phase.
    ymag       = abs(yfft);
    yprevangle = yangle;
    yangle     = angle(yfft);

    % Synthesis Phase Calculation
    % The synthesis phase is calculated by computing the phase increments
    % between successive frequency transforms, unwrapping them, and scaling
    % them by the ratio between the analysis and synthesis hop sizes.
    yunwrap = (yangle - yprevangle) - unwrapdata;
    yunwrap = yunwrap - round(yunwrap/(2*pi))*2*pi;
    yunwrap = (yunwrap + unwrapdata) * Hopratio;
    if firsttime
        ysangle = yangle;
        firsttime = false;
    else
        ysangle = ysangle + yunwrap;
    end

    % Convert magnitude and phase to complex numbers.
    ys = ymag .* complex(cos(ysangle), sin(ysangle));

    % IST-FFT
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    yistfft = istft(ys);

    logger(yistfft) % Log signal 
end

Release

Call release on the System objects to close any open files and devices.

release(reader)
release(player)

Play the Time-Stretched Signals

loggedSpeech = logger.Buffer(200:end)';
player = audioDeviceWriter('SampleRate',Fs, ...
    'SupportVariableSizeInput',true, ...
    'BufferSize',512);
player(loggedSpeech.');

Play the Pitch-Scaled Signals

The pitch-scaled signal is the time-stretched signal played at a higher sampling rate which produces a
signal with a higher pitch.

Fs_new = Fs*(SynthesisLen/AnalysisLen);
player = audioDeviceWriter('SampleRate',Fs_new, ...
    'SupportVariableSizeInput',true, ...
    'BufferSize',1024);
player(loggedSpeech.');

Time Dilation with audioTimeScaler

You can easily apply time dilation with audioTimeScaler. audioTimeScaler implements an
analysis-synthesis phase vocoder for time scaling.

Instantiate an audioTimeScaler with the desired speedup factor, window, and analysis hop length:

ats = audioTimeScaler(AnalysisLen/SynthesisLen,'Window',win,'OverlapLength',WindowLen-AnalysisLen);

Create a System object to play the time-stretched speech signal.

player = audioDeviceWriter('SampleRate',Fs, ...
    'SupportVariableSizeInput',true, ...
    'BufferSize',512);

Create a processing loop that performs time stretching on the input signal.

while ~isDone(reader)
    
    x = reader();

    % Time-scale the signal
    y = ats(x);
    
    % Play the time-scaled signal
    player(y);
end
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release(reader)
release(player)

Summary

This example shows the implementation of a phase vocoder to perform time stretching and pitch
scaling of a speech signal. You can hear these time-stretched and pitch-scaled signals when you run
the example.
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of the Trade," Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona,
Italy, December 7-9, 2000.
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Pitch Shifting and Time Dilation Using a Phase Vocoder in
Simulink

This example shows how to use a phase vocoder to implement time dilation and pitch shifting of an
audio signal.

The Example Model

The phase vocoder in this example consists of an analysis section, a phase calculation section and a
synthesis section. The analysis section consists of an overlapped, short-time windowed FFT. The start
of each frame to be transformed is delayed from the previous frame by the amount specified in the
Analysis hop size parameter. The synthesis section consists of a short-time windowed IFFT and an
overlap add of the resulting frames. The overlap size during synthesis is specified by the Synthesis
hop size parameter.

The vocoder output has a different sample rate than its input. The ratio of the output to input sample
rates is the Synthesis hop size divided by the Analysis hop size. If the output is played at the input
sample rate, it is time stretched or time reduced depending on that ratio. If the output is played at
the output sample rate, the sound duration is identical to the input, but is pitch shifted either up or
down.

To prevent distortion, the phase of the frequency domain signal is modified in the phase calculation
section. In the frequency domain, the signal is split into its magnitude and phase components. For
each bin, a phase difference between frames is calculated, then normalized by the nominal phase of
the bin. Phase modification first requires that the normalized phase differences be unwrapped. The
unwrapped differences are multiplied by the Synthesis hop size divided by the Analysis hop size.
The differences are accumulated, frame by frame, to recover the phase components. Magnitude and
phase components are then recombined.

Exploring the Example

On running the model, the pitch-scaled signal is automatically played once the simulation has
finished. The Audio Playback block allows you to choose between Pitch Shifting and Time Dilation
modes.

Double-click the Phase Vocoder block. Change the Synthesis hop-size parameter to 64, the same
value as the Analysis hop-size parameter. Run the simulation and listen to the three signals. The
pitch-scaled signal has the same pitch as the original signal, and the time-stretched signal has the
same speed as the original signal.

Next change the Synthesis hop-size parameter in the Phase Vocoder block to 48, which is less than
the Analysis hop-size parameter. Run the simulation and listen to the three signals. The pitch-scaled
signal has a lower pitch than the original signal. The time-stretched signal is faster than the original
signal.

To see the implementation, right-click on the Phase Vocoder block and select Mask > Look Under
Mask.
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Remove Interfering Tone From Audio Stream

This example shows how to remove a 250 Hz interfering tone from a streaming audio signal using a
notch filter.

Introduction

A notch filter is used to eliminate a specific frequency from a given signal. In their most common
form, the filter design parameters for notch filters are center frequency for the notch and the 3 dB
bandwidth. The center frequency is the frequency point at which the filter has a gain of zero. The 3
dB bandwidth measures the frequency width of the notch filter computed at the half-power, or 3 dB,
attenuation point.

In this example, you tune a notch filter in order to eliminate a 250 Hz sinusoidal tone corrupting an
audio signal. You can control both the center frequency and the bandwidth of the notch filter and
listen to the filtered audio signal as you tune the design parameters.

Example Architecture

The audioToneRemovalExampleApp command opens a user interface designed to interact with the
simulation. It also opens a spectrum analyzer to view the spectrum of the audio with and without
filtering and the magnitude response of the notch filter.

audioToneRemovalExampleApp
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The notch filter is implemented using dsp.NotchPeakFilter. The filter has two specification
modes: 'Design parameters' and 'Coefficients'. The 'Design parameters' mode allows you to specify
the center frequency and bandwidth in Hz. This is the only mode used in this example. The
'Coefficients' mode allows you to specify the multipliers or coefficients in the filter directly. In the
latter mode, each coefficient affects only one characteristic of the filter (either the center frequency
or the 3 dB bandwidth). In other words, the effect of tuning the coefficients is completely decoupled.
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Using a Generated MEX File

Using MATLAB Coder, you can generate a MEX file for the main processing algorithm by executing
the HelperAudioToneRemovalCodeGeneration command. You can use the generated MEX file by
executing the audioToneRemovalExampleApp(true) command.
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Vorbis Decoder

This example shows how to implement a Vorbis decoder, which is a freeware, open-source alternative
to the MP3 standard. This audio decoding format supports the segmentation of encoded data into
small packets for network transmission.

Vorbis Basics

The Vorbis encoding format [1] is an open-source lossy audio compression algorithm similar to
MPEG-1 Audio Layer 3, more commonly known as MP3. Vorbis has many of the same features as
MP3, while adding flexibility and functionality. The Vorbis specification only defines the format of the
bitstream and the decoding algorithm. This allows developers to improve the encoding algorithm over
time and remain compatible with existing decoders.

Encoding starts by splitting the original signal into overlapping frames. Vorbis allows frames of
different lengths so that it can efficiently handle stationary and transient signals. Each frame is
multiplied by a window and transformed using the modified discrete cosine transform (mdct). The
frames are then split into a rough approximation called the floor, and a remainder called the residue.

The flexibility of the Vorbis format is illustrated by its use of different methods to represent and
encode the floor and residue portions of the signal. The algorithm introduces modes as a mechanism
to specify these different methods and thereby code various frames differently.

Vorbis uses Huffman coding to compress the data contained in the floor and residue portions. Vorbis
uses a dynamic probability model rather than the static probability model of MP3. Specifically, Vorbis
builds custom codebooks for audio signals, which can differ for 'floor' and 'residue' and from frame to
frame.
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After Huffman encoding is complete, the frame data is bitpacked into a logical packet. In Vorbis, a
series of such packets is always preceded by a header. The header contains all the information
needed for correct decoding. This information includes a complete set of codebooks, descriptions of
methods to represent the floor and residue, and the modes and mappings for multichannel support.
The header can also include general information such as bit rates, sampling rate, song and artist
names, etc.

Vorbis provides its own format, known as 'Ogg', to encapsulate logical packets into transport streams.
The Ogg format provides mechanisms such as framing, synchronization, positioning, and error
correction, which are necessary for data transfer over networks.

Problem Overview and Design Details

The Vorbis decoder in this example implements the specifications of the Vorbis I format, which is a
subset of Vorbis. The example model decodes any raw binary OGG file containing a mono or stereo
audio signal. The example model has the capability to decode and play back a wide variety of Vorbis
audio files in real time.

You can test this example with any Vorbis audio file, or with the included handel file. To load the file
into the model, replace the file name in the annotated code at the top level of the model with the
name of the file you want to test. When this step is complete, click the annotated code to load the new
audio file. The model is configured to notify you if the output sampling rate has been changed due to
a change in the input data. In this case, the simulation needs to be restarted with the new sample
rate.

In order to implement a Vorbis decoder in Simulink®, you must address the variable-sized data
packets. This example addresses the variable-sized packets by capturing a whole page of the Ogg
bitstream using the 'OggS' synchronization pattern. For practical purposes, a page is assumed to be
no larger than 5500 bytes. After obtaining a segmentation table at the beginning of the page, the
model extracts logical packets from the remainder of the page. Asynchronous control over the
decoding sequence is implemented using the Stateflow chart 'Decode All Pages of Data'.
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Initially, the chart tries to detect the 'OggS' synchronization pattern and then follow the decoding
steps described above. Decoding the page is done with the Simulink function 'decodePage' and then
the model immediately goes back to detecting the next 'OggS' sequence. The state
'ResetPageCounter' is added in parallel with the Stateflow algorithm described above to support the
looping of the compressed input file for an unlimited number of iterations.

Data pages contain different types of information: header, codebooks, and audio signal data. The
'Read Setup Info', 'Read the Header', and 'Decode Audio' subsystems inside the 'decodePage'
Simulink function are responsible for handling each of these different kinds of information.

The decoding process is implemented using MATLAB Function blocks. Most bit-unpacking routines in
the example are implemented with MATLAB code.

The recombining of the floor and residue and the subsequent inverse MDCT (IMDCT) are also
implemented with a MATLAB Function block that uses the fast imdct function of Audio Toolbox. The
variable frame lengths are taken into account using a fixed-size maximum-length frame at the input
and output of the Function block, and by using a window length parameter in both the Function block
code and a Selector block immediately following the Function block.

The IMDCT transforms the frames back to the time domain, ready to be multiplied by the synthesis
window and then combined with an overlap-add operation.

The output block in the top level of the model feeds the output of the decoding block to the audio
playback device on your system. The valid portion of the decoded signal is input to the Audio Device
Writer block.

References

[1] Complete specification of the Vorbis decoder standard https://xiph.org/vorbis/doc/
Vorbis_I_spec.html
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Dynamic Range Compression Using Overlap-Add
Reconstruction

This example shows how to compress the dynamic range of a signal by modifying the range of the
magnitude at each frequency bin. This nonlinear spectral modification is followed by an overlap-add
FFT algorithm for reconstruction. This system might be used as a speech enhancement system for the
hearing impaired. The algorithm in this simulation is derived from a patented system for adaptive
processing of telephone voice signals for the hearing impaired originally developed by Alvin M. Terry
and Thomas P. Krauss at US West Advanced Technologies Inc., US patent number 5,388,185.
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This system decomposes the input signal into overlapping sections of length 256. The overlap is 192
so that every 64 samples, a new section is defined and a new FFT is computed. After the spectrum is
modified and the inverse FFT is computed, the overlapping parts of the sections are added together.
If no spectral modification is performed, the output is a scaled replica of the input. A reference for
the overlap-add method used for the audio signal reconstruction is Rabiner, L. R. and R. W. Schafer.
Digital Processing of Speech Signals. Englewood Cliffs, NJ: Prentice Hall, 1978, pgs. 274-277.

Compression maps the dynamic range of the magnitude at each frequency bin from the range 0 to
100 dB to the range ymin to ymax dB. ymin and ymax are vectors in the MATLAB® workspace with
one element for each frequency bin; in this case 256. The phase is not altered. This is a non-linear
spectral modification. By compressing the dynamic range at certain frequencies, the listener should
be able to perceive quieter sounds without being blasted out when they get loud, as in linear
equalization.

To use this system to demonstrate frequency-dependent dynamic range compression, start the
simulation. After repositioning the input and output figures so you can see them at the same time,
change the Slider Gain from 1 to 1000 to 10000. Notice the relative heights of the output peaks
change as you increase the magnitude.

 Dynamic Range Compression Using Overlap-Add Reconstruction

1-171



LPC Analysis and Synthesis of Speech

This example shows how to use the Levinson-Durbin and Time-Varying Lattice Filter blocks for low-
bandwidth transmission of speech using linear predictive coding.

Example Model
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Example Description

The example consists of two parts: analysis and synthesis. The analysis portion 'LPC Analysis' is found
in the transmitter section of the system. Reflection coefficients and the residual signal are extracted
from the original speech signal and then transmitted over a channel. The synthesis portion 'LPC
Synthesis', which is found in the receiver section of the system, reconstructs the original signal using
the reflection coefficients and the residual signal.

In this simulation, the speech signal is divided into 20 ms frames (160 samples), with an overlap of 10
ms (80 samples). Each frame is windowed using a Hamming window. Eleventh-order autocorrelation
coefficients are found, and then the reflection coefficients are calculated from the autocorrelation
coefficients using the Levinson-Durbin algorithm. The original speech signal is passed through an
analysis filter, which is an all-zero filter with coefficients same as the reflection coefficients obtained
above. The output of the filter is the residual signal. This residual signal is passed through a synthesis
filter which is the inverse of the analysis filter. The output of the synthesis filter is the original signal.
This is played through the 'Audio Device Writer' block.
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Simulation of a Plucked String

This example shows how to simulate a plucked string using digital waveguide synthesis.

Introduction

A digital waveguide is a computational model for physical media through which sound propagates.
They are essentially bidirectional delay lines with some wave impedance. Each delay line can be
thought of as a sampled acoustic traveling wave. Using the digital waveguide, a linear one-
dimensional acoustic system like the vibration of a guitar string can be modeled.

Exploring the Example

The result of the simulation is automatically played back using the Audio Device Writer block. To
see the implementation, look under the Digital Waveguide Synthesis block by right clicking on the
block and selecting Mask > Look Under Mask.

Acknowledgements

This Simulink® implementation is based on a MATLAB® file implementation available from Daniel
Ellis's home page at Columbia University.

References

The online textbook Digital Waveguide Modeling of Musical Instruments by Julius O. Smith III
covers significant background related to digital waveguides.

The Harmony Central website also provides useful background information on a variety of related
topics.
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Audio Phaser Using Multiband Parametric Equalizer

This example shows how to implement a real-time audio "phaser" effect which can be tuned by a user
interface (UI). It also shows how to generate a VST plugin for the phaser that you can import into a
Digital Audio Workstation (DAW).

Introduction

The phaser is an audio effect produced when an audio signal is passed through one or more notch
filters. The center frequencies of the notch filters are typically modulated at some consistent rate to
produce a "swirling" effect on the audio. The modulation source is typically a low frequency oscillator
such as a sine wave. Different waveform shapes create different phaser effects.

You can use any audio file with this example. However, the phasing effect is more audible with some
audio files than with others. A file that is suggested for this example is RockGuitar-16-44p1-
stereo-72secs.wav. Another option is to use a pink noise source instead of a file.

This example uses the audiopluginexample.Phaser audio plugin class. The plugin implements a
multi-notch filter with notch frequencies modulated by an audioOscillator. The multi-notch filter
is implemented through the multibandParametricEQ System object. The bands of the equalizer
can be made to act as individual notch filters by setting their gain to -inf.

Test the Phaser

You can test the phaser implemented in audiopluginexample.Phaser using Audio Test Bench. The
audio test bench sets up the audio file reader and audio device writer objects, and streams the audio
through the phaser in a processing loop.

Initialize the phaser and visualize its magnitude response.

phaser = audiopluginexample.Phaser;
visualize(phaser)

 Audio Phaser Using Multiband Parametric Equalizer

1-175



Launch the Audio Test Bench.

audioTestBench(phaser)
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The Audio Test Bench enables you to tune the audio phaser using sliders and drop-down menus.
Changing slider or drop-down values updates the magnitude response plot of the phaser in real time.

The four sliders are:

• Rate - Controls the rate at which the center frequency of the notch filters sweep up and down the
audio spectrum.

• Center Frequency - Controls the center frequency of the lowest notch. The center frequency of
other notches is calculated relative to this value and the modulation source.

• Depth - Controls how far the notch frequencies modulate around the center frequency.
• Qualify Factor - Sets the quality factor (or "Q") of each notch. A higher Q setting creates a

narrower bandwidth notch.

There are also two drop-down menus:

• Notches - Sets the number of notch filters. More notches can be used to create a more dramatic
effect.

• Modulation Source - The waveform that controls the center frequencies of the notch filters.
Different waveforms create different sweep sounds.

The audio test bench by default streams audio from a file on disk. You can change it to a sound card
microphone/line-in input, or pink noise (useful for testing).

Click the Run button on the UI to start streaming and hear the phaser effect.

Run as VST Plugin

You may find that audio dropouts occur when using higher numbers of notches or high Rate settings.
One way to work around this is to generate a VST plugin to take the place of the portion of the code
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that performs the actual audio processing. Switch the Run As drop-down to VST Plugin. On running
the simulation now, a VST plugin will be generated and loaded back into MATLAB for use in the
simulation.

Generate Audio Plugin

To generate and port a VST plugin to a Digital Audio Workstation, click on the Generate VST 2
Audio Plugin button on the toolbar of audio test bench, or run the generateAudioPlugin
command.

generateAudioPlugin audiopluginexample.Phaser
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Loudness Normalization in Accordance with EBU R 128
Standard

This example shows how to use tools from Audio Toolbox™ to measure loudness, loudness range, and
true-peak value. It also shows how to normalize audio to meet the EBU R 128 standard compliance.

Introduction

Volume normalization was traditionally performed by looking at peak signal measurements. However,
this method had the drawback that excessively compressed audio could pass a signal-level threshold
but still be very loud to hear. The result was a loudness war, where recordings tended to be louder
than before and inconsistent across genres.

The modern solution to the loudness war is to measure the perceived loudness in combination with
a true-peak level measurement. International standards like ITU BS.1770-4, EBU R 128, and ATSC
A/85 have been developed to standardize loudness measurements based on the power of the audio
signal. Many countries have already passed legislations for compliance with broadcast standards on
loudness levels.

In this example, you measure loudness and supplementary parameters for both offline (file-based)
and live (streaming) audio signals. You also see ways to normalize audio to be compliant with target
levels.

EBU R 128 Standard

Audio Toolbox enables you to measure loudness and associated parameters according to the EBU R
128 standard. This standard defines the following measures of loudness:

• Momentary loudness: Uses a sliding window of length 400 ms.
• Short-term loudness: Uses a sliding window of length 3 s.
• Integrated loudness: Aggregate loudness from start till end.
• Loudness range: Quantifies variation of loudness on a macroscopic timescale.
• True-peak value: Peak sample level of interpolated signal.

For a more detailed description of these parameters, refer to the documentation for EBU R 128
standard.

Offline Loudness Measurement and Normalization

For cases where you already have the recorded audio samples, you can use the
integratedLoudness function to measure loudness. It returns the integrated loudness, in units of
LUFS, and loudness range, in units of LU, of the complete audio file.

[x, fs] = audioread('RockGuitar-16-44p1-stereo-72secs.wav');
[loudness, LRA] = integratedLoudness(x,fs);
fprintf('Loudness before normalization: %.1f LUFS\n',loudness)

Loudness before normalization: -8.2 LUFS

EBU R 128 defines the target loudness level to be -23 LUFS. The loudness of the audio file is clearly
above this level. A simple level reduction operation can be used to normalize the loudness.
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target = -23;
gaindB = target - loudness;
gain = 10^(gaindB/20);
xn = x.*gain;
audiowrite('RockGuitar_normalized.wav',xn,fs)

The loudness of the new audio file is at the target level.

[x, fs] = audioread('RockGuitar_normalized.wav');
loudness = integratedLoudness(x,fs);
fprintf('Loudness after normalization: %.1f LUFS\n',loudness)

Loudness after normalization: -23.0 LUFS

Live Loudness Measurement and Normalization

For streaming audio, EBU R 128 defines momentary and short-term loudness. You can use the
loudnessMeter System object to measure momentary loudness, short-term loudness, integrated
loudness, loudness range, and true-peak value of a live audio signal.

First, stream the audio signal to your sound card and measure its loudness using loudnessMeter.
The visualize method of loudnessMeter opens a user interface (UI) that displays all the
loudness-related measurements as the simulation progresses.

reader = dsp.AudioFileReader('RockGuitar-16-44p1-stereo-72secs.wav', ...
    'SamplesPerFrame',1024); 
fs = reader.SampleRate;
inputLoudness = loudnessMeter('SampleRate',fs);
player = audioDeviceWriter('SampleRate',fs);
runningMax = dsp.MovingMaximum('SpecifyWindowLength',false);
visualize(inputLoudness)
while ~isDone(reader)
    audioIn = reader();
    [loudness,~,~,~,tp] = inputLoudness(audioIn);
    maxTP = runningMax(tp);
    player(audioIn);
end

fprintf('Max true-peak value before normalization: %.1f dBTP\n',maxTP(end))

Max true-peak value before normalization: -0.3 dBTP

1 Audio Toolbox Examples

1-180



release(reader)
release(player)

As you can see on the UI, the loudness of the audio stream is clearly above the -23 LUFS threshold.
Its maximum true-peak level of -0.3 dBTP is also above the threshold of -1 dBTP specified by EBU R
128. Normalizing the loudness of a live audio stream is trickier than normalizing the loudness of a
file. One way to help get the loudness value close to a target threshold is to use an Automatic Gain
Controller (AGC). In the following code, you use the audioexample.AGC System object to normalize
the power of an audio signal to -23 dB. The AGC estimates the audio signal's power by looking at the
previous 400 ms, which is the window size used to calculate momentary loudness. There are two
loudness meters used in this example - one for the input to AGC and one for the output from AGC.
The UIs for the two loudness meters may launch at the same location on your screen, so you will have
to move one to the side to compare the measured loudness before and after AGC.

outputLoudness = loudnessMeter('SampleRate',fs);
gainController = audioexample.AGC('DesiredOutputPower',-23, ...
    'AveragingLength',0.4*fs,'MaxPowerGain',20);
reset(inputLoudness) % Reuse the same loudness meter from before
reset(runningMax)     
visualize(inputLoudness)
visualize(outputLoudness)
while ~isDone(reader)
    audioIn = reader();
    loudnessBeforeNorm = inputLoudness(audioIn);
    [audioOut, gain] = gainController(audioIn);
    [loudnessAfterNorm,~,~,~,tp] = outputLoudness(audioOut);
    maxTP = runningMax(tp);
    player(audioOut);
end
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fprintf('Max true-peak value after normalization: %.1f dBTP\n',maxTP(end))

Max true-peak value after normalization: 8.3 dBTP

release(reader)
release(player)

Using AGC not only brought the loudness of the audio close to the target of -23 LUFS, but it also got
the maximum true-peak value below the allowed -1 dBTP. In some cases, the maximum true-peak
value remains above -1 dBTP although the loudness is at or below -23 LUFS. For such scenarios, you
can pass the audio through a limiter.
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Multistage Sample-Rate Conversion of Audio Signals

This example shows how to use a multistage/multirate approach to sample rate conversion between
different audio sampling rates.

The example uses dsp.SampleRateConverter. This component automatically determines how
many stages to use and designs the filter required for each stage in order to perform the sample rate
conversion in a computationally efficient manner.

This example focuses on converting an audio signal sampled at 96 kHz (DVD quality) to an audio
signal sampled at 44.1 kHz (CD quality).

Setup

Define some parameters to be used throughout the example.

frameSize = 64;
inFs      = 96e3;

Generating the 96 kHz Signal

Generate the chirp signal using dsp.Chirp as follows:

source = dsp.Chirp(InitialFrequency=0,TargetFrequency=48e3, ...
    SweepTime=8,TargetTime=8,SampleRate=inFs, ...
    SamplesPerFrame=frameSize,Type="Quadratic");

Create Spectrum Analyzers

Create two spectrum analyzers. These will be used to visualize the frequency content of the original
signal as well as that of the signals converted to 44.1 kHz.

SpectrumAnalyzer44p1 = spectrumAnalyzer( ...
    SampleRate=44100, ...
    Method="welch", ...
    AveragingMethod="exponential", ...
    ForgettingFactor=1e-7, ...
    ViewType="spectrum-and-spectrogram", ...
    TimeSpanSource="property",TimeSpan=8, ...
    Window="kaiser",SidelobeAttenuation=220, ...
    YLimits=[-250, 50],ColorLimits=[-150, 20], ...
    PlotAsTwoSidedSpectrum=false);

SpectrumAnalyzer96 = spectrumAnalyzer( ...
    SampleRate=96000, ...
    Method="welch", ...
    AveragingMethod="exponential", ...
    ForgettingFactor=1e-7, ...
    ViewType="spectrum-and-spectrogram", ...
    TimeSpanSource="property",TimeSpan=8, ...
    Window="kaiser",SidelobeAttenuation=220, ...
    YLimits=[-250, 50],ColorLimits=[-150, 20], ...
    PlotAsTwoSidedSpectrum=false);
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Spectrum of Original Signal Sampled at 96 kHz

The loop below plots the spectrogram and power spectrum of the original 96 kHz signal. The chirp
signal starts at 0 and sweeps to 48 kHz over a simulated time of 8 seconds.

NFrames = 8*inFs/frameSize;
for k = 1:NFrames
    sig96 = source();          % Source
    SpectrumAnalyzer96(sig96); % Spectrogram
end
release(source)
release(SpectrumAnalyzer96)

Setting up the Sample Rate Converter

In order to convert the signal, dsp.SampleRateConverter is used. A first attempt sets the
bandwidth of interest to 40 kHz, i.e. to cover the range [-20 kHz, 20 kHz]. This is the usually accepted
range that is audible to humans. The stopband attenuation for the filters to be used to remove
spectral replicas and aliased replicas is left at the default value of 80 dB.

BW40 = 40e3;
OutFs = 44.1e3;
SRC40kHz80dB = dsp.SampleRateConverter(Bandwidth=BW40, ...
    InputSampleRate=inFs,OutputSampleRate=OutFs);
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Analysis of the Filters Involved in the Conversion

Use info to get information on the filters that are designed to perform the conversion. This reveals
that the conversion will be performed in two steps. The first step involves a decimation by two filter
which converts the signal from 96 kHz to 48 kHz. The second step involves an FIR rate converter that
interpolates by 147 and decimates by 160. This results in the 44.1 kHz required. The freqz
command can be used to visualize the combined frequency response of the two stages involved.
Zooming in reveals that the passband extends up to 20 kHz as specified and that the passband ripple
is in the milli-dB range (less than 0.003 dB).

info(SRC40kHz80dB)
[H80dB,f] = freqz(SRC40kHz80dB,0:10:25e3);
plot(f,20*log10(abs(H80dB)/norm(H80dB,inf)))
xlabel("Frequency (Hz)")
ylabel("Magnitude (dB)")
axis([0 25e3 -140 5])

ans =

    'Overall Interpolation Factor    : 147
     Overall Decimation Factor       : 320
     Number of Filters               : 2
     Multiplications per Input Sample: 42.334375
     Number of Coefficients          : 8618
     Filters:                         
        Filter 1:
        dsp.FIRDecimator     - Decimation Factor   : 2 
        Filter 2:
        dsp.FIRRateConverter - Interpolation Factor: 147
                             - Decimation Factor   : 160 
     '
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Asynchronous Buffer

The sample rate conversion from 96 kHz to 44.1 kHz produces 147 samples for every 320 input
samples. Because the chirp signal is generated with frames of 64 samples, an asynchronous buffer is
needed. The chirp signal is written 64 samples at a time, and whenever there are enough samples
buffered, 320 of them are read and fed to the sample rate converter.

buff = dsp.AsyncBuffer;

Main Processing Loop

The loop below performs the sample rate conversion in streaming fashion. The computation is fast
enough to operate in real time if need be.

The spectrogram and power spectrum of the converted signal are plotted. The extra lines in the
spectrogram correspond to spectral aliases/images remaining after filtering. The replicas are
attenuated by better than 80 dB as can be verified with the power spectrum plot.

srcFrameSize = 320;
for k = 1:NFrames
    sig96 = source();       % Generate chirp
    write(buff,sig96);      % Buffer data
    if buff.NumUnreadSamples >= srcFrameSize
        sig96buffered = read(buff,srcFrameSize);
        sig44p1 = SRC40kHz80dB(sig96buffered); % Convert sample-rate
        SpectrumAnalyzer44p1(sig44p1);   % View spectrum of converted signal
    end
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end

release(source)
release(SpectrumAnalyzer44p1)
release(buff)

A More Precise Sample Rate Converter

In order to improve the sample rate converter quality, two changes can be made. First, the bandwidth
can be extended from 40 kHz to 43.5 kHz. This in turn requires filters with a sharper transition.
Second, the stopband attenuation can be increased from 80 dB to 160 dB. Both these changes come
at the expense of more filter coefficients over all as well as more multiplications per input sample.

BW43p5 = 43.5e3;
SRC43p5kHz160dB = dsp.SampleRateConverter(Bandwidth=BW43p5, ...
    InputSampleRate=inFs,OutputSampleRate=OutFs, ...
    StopbandAttenuation=160);

Analysis of the Filters Involved in the Conversion

The previous sample rate converter involved 8618 filter coefficients and a computational cost of 42.3
multiplications per input sample. By increasing the bandwidth and stopband attenuation, the cost
increases substantially to 123896 filter coefficients and 440.34 multiplications per input sample. The
frequency response reveals a much sharper filter transition as well as larger stopband attenuation.
Moreover, the passband ripple is now in the micro-dB scale. NOTE: this implementation involves the
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design of very long filters which takes several minutes to complete. However, this is a one time cost
which happens offline (before the actual sample rate conversion).

info(SRC43p5kHz160dB)
[H160dB,f] = freqz(SRC43p5kHz160dB,0:10:25e3);
plot(f,20*log10(abs(H160dB)/norm(H160dB,inf)));
xlabel("Frequency (Hz)")
ylabel("Magnitude (dB)")
axis([0 25e3 -250 5])

ans =

    'Overall Interpolation Factor    : 147
     Overall Decimation Factor       : 320
     Number of Filters               : 2
     Multiplications per Input Sample: 440.340625
     Number of Coefficients          : 123896
     Filters:                         
        Filter 1:
        dsp.FIRDecimator     - Decimation Factor   : 2 
        Filter 2:
        dsp.FIRRateConverter - Interpolation Factor: 147
                             - Decimation Factor   : 160 
     '
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Main Processing Loop

The processing is repeated with the more precise sample rate converter.

Once again the spectrogram and power spectrum of the converted signal are plotted. Notice that the
imaging/aliasing is attenuated enough that they are not visible in the spectrogram. The power
spectrum shows spectral aliases attenuated by more than 160 dB (the peak is at about 20 dB).

for k = 1:NFrames
    sig96 = source();              % Generate chirp
    over = write(buff,sig96);      % Buffer data
    if buff.NumUnreadSamples >= srcFrameSize
        [sig96buffered,under] = read(buff,srcFrameSize);
        sig44p1 = SRC43p5kHz160dB(sig96buffered); % Convert sample-rate
        SpectrumAnalyzer44p1(sig44p1);   % View spectrum of converted signal
    end
end

release(source)
release(SpectrumAnalyzer44p1)
release(buff)
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Graphic Equalization

This example demonstrates two forms of graphic equalizers constructed using building blocks from
Audio Toolbox™. It also shows how to export them as VST plugins to be used in a Digital Audio
Workstation (DAW).

Graphic Equalizers

Equalizers are commonly used by audio engineers and consumers to adjust the frequency response of
audio. For example, they can be used to compensate for bias introduced by speakers, or to add bass
to a song. They are essentially a group of filters designed to provide a custom overall frequency
response.

One of the more sophisticated equalization techniques is known as parametric equalization.
Parametric equalizers provide control over three filter parameters: center frequency, bandwidth, and
gain. Audio Toolbox™ provides the multibandParametricEQ System object and the Single-Band
Parametric EQ block for parametric equalization.

While parametric equalizers are useful when you want to fine-tune the frequency response, there are
simpler equalizers for cases when you need fewer controls. Octave, two-third octave, and one-third
octave have emerged as common bandwidths for equalizers based on the behavior of the human ear.
Standards like IS0 266:1997(E), ANSI S1.11-2004, and IEC 61672-1:2013 define center frequencies
for octave and fractional octave filters. This leaves only one parameter to tune: filter gain. Graphic
equalizers provide control over the gain parameter while using standard center frequencies and
common bandwidths.

In this example, you use two implementations of graphic equalizers. They differ in arrangement of
constituent filters: One uses a bank of parallel octave- or fractional octave-band filters, and the other
uses a cascade of biquad filters. The center frequencies in both implementations follow the ANSI
S1.11-2004 standard.

Graphic Equalizers with Parallel Filters

One way to construct a graphic equalizer is to place a group of bandpass filters in parallel. The
bandwidth of each filter is octave or fractional octave, and their center frequency is set so that
together they cover the audio frequency range of [20, 20000] Hz.
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The transfer function is a sum of transfer function of the branches.

You can tune the gains to boost or cut the corresponding frequency band while the simulation runs.
Because the gains are independent of the filter design, tuning the gains does not have a significant
computational cost. The parallel filter structure is well suited to parallel hardware implementation.
The magnitude response of the bandpass filters should be close to zero at all other frequencies
outside its bandwidth to avoid interaction between the filters. However, this is not practical, leading
to inter-band interference.

You can use the graphicEQ System object to implement a graphic equalizer with a parallel structure.

eq = graphicEQ('Structure','Parallel')

eq = 
  graphicEQ with properties:

       EQOrder: 2
     Bandwidth: '1 octave'
     Structure: 'Parallel'
         Gains: [0 0 0 0 0 0 0 0 0 0]
    SampleRate: 44100

This designs a parallel implementation of second order filters with 1-octave bandwidth. It takes ten
octave filters to cover the range of audible frequencies. Each element of the Gains property controls
the gain of one branch of the parallel configuration.

Configure the object you created to boost low and high frequencies, similar to a rock preset.

eq.Gains = [4, 4.2, 4.6, 2.7, -3.7, -5.2, -2.5, 2.3, 5.4, 6.5, 6.5]

eq = 
  graphicEQ with properties:

       EQOrder: 2
     Bandwidth: '1 octave'
     Structure: 'Parallel'
         Gains: [4 4.2000 4.6000 2.7000 -3.7000 -5.2000 -2.5000 2.3000 5.4000 6.5000]
    SampleRate: 44100

Call visualize to view the magnitude response of the equalizer design.

visualize(eq)
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You can test the equalizer implemented in graphicEQ using Audio Test Bench. The audio test bench
sets up the audio file reader and audio device writer objects, and streams the audio through the
equalizer in a processing loop. It also assigns a slider to each gain value and labels the center
frequency it corresponds to, so you can easily change the gain and hear its effect. Modifying the value
of the slider simultaneously updates the magnitude response plot.

audioTestBench(eq)
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Graphic Equalizers with Cascade Filters

A different implementation of the graphic equalizer uses cascaded equalizing filters (peak or notch)
implemented as biquad filters. The transfer function of the equalizer can be written as a product of
the transfer function of individual biquads.

To motivate the usefulness of this implementation, first look at the magnitude response of the parallel
structure when all gains are 0 dB.

parallelGraphicEQ = graphicEQ('Structure','Parallel');
visualize(parallelGraphicEQ)
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You will notice that the magnitude response is not flat. This is because the filters have been designed
independently, and each has a transition width where the magnitude response droops. Moreover,
because of non-ideal stopband, there is leakage from the stopband of one filter to the passband of its
neighbor. The leakage can cause actual gains to differ from expected gains.

parallelGraphicEQ_10dB = graphicEQ('Structure','Parallel');
parallelGraphicEQ_10dB.Gains = 10*ones(1,10);
visualize(parallelGraphicEQ_10dB)
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Note that the gains are never 10 dB in the frequency response. A cascaded structure can mitigate
this to an extent because the gain is inherent in the design of the filter. Setting the gain of all
cascaded biquads to 0 dB leads to them being bypassed. Since there are no branches in this type of
structure, this means you have a no-gain path between the input and the output. graphicEQ
implements the cascaded structure by default.

cascadeGraphicEQ = graphicEQ;
visualize(cascadeGraphicEQ)
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Moreover, when you set the gains to 10 dB, notice that the resultant frequency response has close to
10 dB of gain at the center frequencies.

cascadeGraphicEQ_10dB = graphicEQ;
cascadeGraphicEQ_10dB.Gains = 10*ones(1,10);
visualize(cascadeGraphicEQ_10dB)
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The drawback of cascade design is that the coefficients of a biquad stage need to be redesigned
whenever the corresponding gain changes. This isn't needed for the parallel implementation because
gain is just a multiplier to each parallel branch. A parallel connection of bandpass filters also avoids
accumulating phase errors and quantization noise found in the cascade.

Fractional Octave Bandwidth

The graphicEQ object supports 1 octave, 2/3 octave, and 1/3 octave bandwidths. Reducing
the bandwidth of individual filters allows you finer control over frequency response. To verify this, set
the gains to boost mid frequencies, similar to a pop preset.

octaveGraphicEQ = graphicEQ;
octaveGraphicEQ.Gains = [-2.1,-1.8,-1.4,2.7,4.2,4.6,3.1,-1,-1.8,-1.8,-1.4];
visualize(octaveGraphicEQ)
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oneThirdOctaveGraphicEQ = graphicEQ;
oneThirdOctaveGraphicEQ.Bandwidth = '1/3 octave';
oneThirdOctaveGraphicEQ.Gains = [-2,-1.9,-1.8,-1.6,-1.5,-1.4,0,1.2,2.7, ...
    3.2,3.8,4.2,4.4,4.5,4.6,4,3.5,3.1,1.5,-0.1,-1,-1.2,-1.6,-1.8,-1.8, ...
    -1.8,-1.8,-1.7,-1.5,-1.4,-1.3];
visualize(oneThirdOctaveGraphicEQ)
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Generate Audio Plugin

To generate and port a VST plugin to a Digital Audio Workstation, run the generateAudioPlugin
command. For example, you can generate a two-third octave graphic equalizer through the
commands shown below. You will need to be in a directory with write permissions when you run these
commands.

twoThirdOctaveGraphicEQ = graphicEQ;
twoThirdOctaveGraphicEQ.Bandwidth = '2/3 octave';
createAudioPluginClass(twoThirdOctaveGraphicEQ);
generateAudioPlugin twoThirdOctaveGraphicEQPlugin

Graphic Equalization in Simulink

You can use the same features described in this example in Simulink through the Graphic EQ block. It
provides a slider for each gain value so you can easily boost or cut a frequency band while the
simulation is running.
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Audio Weighting Filters

This example shows how to obtain A-weighting and C-weighting filters the weightingFilter
System object in the Audio Toolbox™.

In many applications involving acoustic measurements, the final sensor is the human ear. For this
reason, acoustic measurements usually attempt to describe the subjective perception of a sound by
this organ. Instrumentation devices are built to provide a linear response, but the ear is a nonlinear
sensor. Special filters, known as weighting filters, are used to account for the nonlinearities.

A and C Weighting (ANSI® S1.42 Standard)

You can design A and C weighting filters that follow the ANSI S1.42 [1 on page 1-202] and IEC
61672-1 [2 on page 1-202] standards using weightingFilter System object. An A-weighting filter is
a bandpass filter designed to simulate the perceived loudness of low-level tones. An A-weighting filter
progressively de-emphasizes frequencies below 500 Hz. A C-weighting filter removes sounds outside
the audio range of 20 Hz to 20 kHz and simulates the loudness perception of high-level tones. The
following code designs an IIR filter for A-weighting with a sampling rate of 48 kHz.

AWeighting = weightingFilter('A-weighting',48000)

AWeighting = 
  weightingFilter with properties:

        Method: 'A-weighting'
    SampleRate: 48000

A and C-weighting filter designs are based on direct implementation of the filter's transfer function
based on poles and zeros specified in the ANSI S1.42 standard.

The IEC 61672-1 standard requires that the filter magnitudes fall within a specified tolerance mask.
The standard defines two masks, one with stricter tolerance values than the other. A filter that meets
the tolerance specifications of the stricter mask is referred to as a Class 1 filter. A filter that meets
the specifications of the less strict mask is referred to as a Class 2 filter. You can view the magnitude
response of the filter along with a mask corresponding to Class 1 or Class 2 specifications by calling
the visualize method on the object. Note that the choice of the Class value will not affect the filter
design itself but it will be used to render the correct tolerance mask in the visualization plot.

visualize(AWeighting,'class 1')
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The A- and C-weighting standards specify tolerance magnitude values for up to 20 kHz. In the
following example we use a sample rate of 28 kHz and design a C-weighting filter. Even though the
Nyquist interval for this sample rate is below the maximum specified 20 kHz frequency, the design
still meets the Class 2 tolerances as shown by the green mask around the magnitude response plot.
The design, however, does not meet Class 1 tolerances due to the small sample rate value and you
will see the mask around the magnitude response plot turn red.

CWeighting = weightingFilter('C-weighting',28000)

CWeighting = 
  weightingFilter with properties:

        Method: 'C-weighting'
    SampleRate: 28000

visualize(CWeighting,'class 2')
visualize(CWeighting,'class 1')
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Sound Pressure Measurement of Octave Frequency Bands

This example demonstrates how to measure sound pressure levels of octave frequency bands. A user
interface (UI) enables you to experiment with various parameters while the measurement is
displayed.

Sound Pressure Measurement

Many applications involving acoustic measurements must take into account the non-linear
characteristics of the human auditory system. For that reason, sound levels are generally reported in
decibels (dB) and on a frequency scale that increases logarithmically. Frequency weighting adjusts
levels to take into account the ear's frequency-dependent sensitivity. A-weighting is the most
common, as it cuts low and high frequencies similarly to the auditory system for "normal" levels. C-
weighting is an alternative for measuring very loud sounds, as it mimics the human ear's flatter
response at level over 100 dB.

This example uses the splMeter System object to measure sound pressure levels (SPL). You can
measure sound pressure levels of audio files or perform live SPL measurements with a microphone.

You can specify the weighting filter (Z/A/C) and frequency bandwidth used for the measurements. For
more information on the weighting filters, see the “Audio Weighting Filters” on page 1-200 example.

MATLAB Simulation

soundPressureMeasurementExampleApp loads the SPL meter user interface (shown below). The
demonstration begins with pink noise, which measures relatively flat on the octave frequency scale.
You can experiment with different audio sources, frequency weightings, and bandwidths.

Execute soundPressureMeasurementExampleApp to run the demonstration and display the
measurements.
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Cochlear Implant Speech Processor

This example shows how to simulate the design of a cochlear implant that can be placed in the inner
ear of a profoundly deaf person to restore partial hearing. Signal processing is used in cochlear
implants to convert sound to electrical pulses. The pulses can bypass the damaged parts of a deaf
person's ear and be transmitted to the brain to provide partial hearing.

This example highlights some of the choices made when designing cochlear implant speech
processors using Audio Toolbox™. In particular, the benefits of using a cascaded multirate, multistage
FIR filter bank instead of a parallel, single-rate, second-order-section IIR filter bank are shown.

Human Hearing

Converting sound into something the human brain can understand involves the inner, middle, and
outer ear, hair cells, neurons, and the central nervous system. When a sound is made, the outer ear
picks up acoustic waves, which are converted into mechanical vibrations by tiny bones in the middle
ear. The vibrations move to the inner ear, where they travel through fluid in a snail-shaped structure
called the cochlea. The fluid displaces different points along the basilar membrane of the cochlea.
Displacements along the basilar membrane contain the frequency information of the acoustic signal.
A schematic of the membrane is shown here (not drawn to scale).
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Frequency Sensitivity in the Cochlea

Different frequencies cause the membrane to displace maximally at different positions. Low
frequencies cause the membrane to be displaced near its apex, while high frequencies stimulate the
membrane at its base. The amplitude of the displacement of the membrane at a particular point is
proportional to the amplitude of the frequency that has excited it. When a sound is composed of many
frequencies, the basilar membrane is displaced at multiple points. In this way the cochlea separates
complex sounds into frequency components.

Each region of the basilar membrane is attached to hair cells that bend proportionally to the
displacement of the membrane. The bending causes an electrochemical reaction that stimulates
neurons to communicate the sound information to the brain through the central nervous system.

Alleviating Deafness with Cochlear Implants

Deafness is most often caused by degeneration or loss of hair cells in the inner ear, rather than a
problem with the associated neurons. This means that if the neurons can be stimulated by a means
other than hair cells, some hearing can be restored. A cochlear implant does just that. The implant
electrically stimulates neurons directly to provide information about sound to the brain.
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The problem of how to convert acoustic waves to electrical impulses is one that Signal Processing
helps to solve. Multichannel cochlear implants have the following components in common:

• A microphone to pick up sound
• A signal processor to convert acoustic waves to electrical signals
• A transmitter
• A bank of electrodes that receive the electrical signals from the transmitter, and then stimulate

auditory nerves

Just as the basilar membrane of the cochlea resolves a wave into its component frequencies, so does
the signal processor in a cochlear implant divide an acoustic signal into component frequencies, that
are each then transmitted to an electrode. The electrodes are surgically implanted into the cochlea of
the deaf person so that they each stimulate the appropriate regions in the cochlea for the frequency
they are transmitting. Electrodes transmitting high-frequency (high-pitched) signals are placed near
the base, while those transmitting low-frequency (low-pitched) signals are placed near the apex.
Nerve fibers in the vicinity of the electrodes are stimulated and relay the information to the brain.
Loud sounds produce high-amplitude electrical pulses that excite a greater number of nerve fibers,
while quiet ones excite less. In this way, information about both the frequencies and amplitudes of the
components making up a sound can be transmitted to the brain of a deaf person.

Exploring the Example

The block diagram at the top of the model represents a cochlear implant speech processor, from the
microphone which picks up the sound (Input Source block) to the electrical pulses that are generated.
The frequencies increase in pitch from Channel 0, which transmits the lowest frequency, to Channel
7, which transmits the highest.

To hear the original input signal, double-click the Original Signal block at the bottom of the model. To
hear the output signal of the simulated cochlear implant, double-click the Reconstructed Signal block.

There are a number of changes you can make to the model to see how different variables affect the
output of the cochlear implant speech processor. Remember that after you make a change, you must
rerun the model to implement the changes before you listen to the reconstructed signal again.
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Simultaneous Versus Interleaved Playback

Research has shown that about eight frequency channels are necessary for an implant to provide
good auditory understanding for a cochlear implant user. Above eight channels, the reconstructed
signal usually does not improve sufficiently to justify the rising complexity. Therefore, this example
resolves the input signal into eight component frequencies, or electrical pulses.

The Speech Synthesized from Generated Pulses block at the bottom left of the model allows you to
either play each electrical channel simultaneously or sequentially. Oftentimes cochlear implant users
experience inferior results with simultaneous frequencies, because the electrical pulses interact with
each other and cause interference. Emitting the pulses in an interleaved manner mitigates this
problem for many people. You can toggle the Synthesis mode of the Speech Synthesized From
Generated Pulses block to hear the difference between these two modes. Zoom in on the Time Scope
block to observe that the pulses are interleaved.

Adjusting for Noisy Environments

Noise presents a significant challenge to cochlear implant users. Select the Add noise parameter in
the Input Source block to simulate the effects of a noisy environment on the reconstructed signal.
Observe that the signal becomes difficult to hear. The Denoise block in the model uses a Soft
Threshold block to attempt to remove noise from the signal. When the Denoise parameter in the
Denoise block is selected, you can listen to the reconstructed signal and observe that not all the noise
is removed. There is no perfect solution to the noise problem, and the results afforded by any
denoising technology must be weighed against its cost.

Signal Processing Strategy
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The purpose of the Filter Bank Signal Processing block is to decompose the input speech signal into
eight overlapping subbands. More information is contained in the lower frequencies of speech signals
than in the higher frequencies. To get as much resolution as possible where the most information is
contained, the subbands are spaced such that the lower-frequency bands are more narrow than the
higher-frequency bands. In this example, the four low-frequency bands are equally spaced, while each
of the four remaining high-frequency bands is twice the bandwidth of its lower-frequency neighbor.
To examine the frequency contents of the eight filter banks, run the model using the Chirp Source
type in the Input Source block.

Two filter bank implementations are illustrated in this example: a parallel, single-rate, second-order-
section IIR filter bank and a cascaded, multirate, multistage FIR filter bank. Double click on the
Design Filter Banks button to examine their design and frequency specifications.

Parallel Single-Rate SOS IIR Filter Bank: In this bank, the sixth-order IIR filters are implemented as
second-order-sections (SOS). The eight filters are running in parallel at the input signal rate. You can
look at their frequency responses by double clicking the Plot IIR Filter Bank Response button.

Cascaded Multirate Multistage FIR Filter Bank: The design of this filter bank is based on the
principles of an approach that combines downsampling and filtering at each filter stage. The overall
filter response for each subband is obtained by cascading its components. Double click on the Design
Filter Banks button to examine how design functions from the Audio Toolbox are used in
constructing these filter banks.

Since downsampling is applied at each filter stage, the later stages are running at a fraction of the
input signal rate. For example, the last filter stages are running at one-eighth of the input signal rate.
Consequently, this design is very suitable for implementations on the low-power DSPs with limited
processing cycles that are used in cochlear implant speech processors. You can look at the frequency
responses for this filter bank by double clicking on the Plot FIR Filter Bank Response button.
Notice that this design produces sharper and flatter subband definition compared to the parallel
single-rate SOS IIR filter bank. This is another benefit of a multirate, multistage filter design
approach. For a related example see “Multistage Rate Conversion” in the DSP System Toolbox™ FIR
Filter Design examples.
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Acoustic Beamforming Using a Microphone Array

This example illustrates microphone array beamforming to extract desired speech signals in an
interference-dominant, noisy environment. Such operations are useful to enhance speech signal
quality for perception or further processing. For example, the noisy environment can be a trading
room, and the microphone array can be mounted on the monitor of a trading computer. If the trading
computer must accept speech commands from a trader, the beamformer operation is crucial to
enhance the received speech quality and achieve the designed speech recognition accuracy.

The example shows two types of time domain beamformers: the time delay beamformer and the Frost
beamformer. It also illustrates how you can use diagonal loading to improve the robustness of the
Frost beamformer. You can listen to the speech signals at each processing step.

This example requires Phased Array System Toolbox.

Define a Uniform Linear Array

First, define a uniform linear array (ULA) to receive the signal. The array contains 10 omnidirectional
elements (microphones) spaced 5 cm apart. Set the upper bound for frequency range of interest to 4
kHz because the signals used in this example are sampled at 8 kHz.

microphone = ...
    phased.OmnidirectionalMicrophoneElement('FrequencyRange',[20 4000]);

Nele = 10;
ula = phased.ULA(Nele,0.05,'Element',microphone);
c = 340;  % speed of sound, in m/s

Simulate the Received Signals

Next, simulate the multichannel signal received by the microphone array. Two speech signals are
used as audio of interest. A laughter audio segment is used as interference. The sampling frequency
of the audio signals is 8 kHz.

Because audio signals are usually large, it is often not practical to read the entire signal into the
memory. Therefore, in this example, you read and process the signal in a streaming fashion, i.e.,
break the signal into small blocks at the input, process each block, and then assemble them at the
output.

The incident direction of the first speech signal is -30 degrees in azimuth and 0 degrees in elevation.
The direction of the second speech signal is -10 degrees in azimuth and 10 degrees in elevation. The
interference comes from 20 degrees in azimuth and 0 degrees in elevation.

ang_dft = [-30; 0];
ang_cleanspeech = [-10; 10];
ang_laughter = [20; 0];

Now you can use a wideband collector to simulate a 3-second signal received by the array. Notice that
this approach assumes that each input single-channel signal is received at the origin of the array by a
single microphone.

fs = 8000;
collector = phased.WidebandCollector('Sensor',ula,'PropagationSpeed',c, ...
    'SampleRate',fs,'NumSubbands',1000,'ModulatedInput', false);
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t_duration = 3;  % 3 seconds
t = 0:1/fs:t_duration-1/fs;

Generate a white noise signal with a power of 1e-4 Watts to represent the thermal noise for each
sensor. A local random number stream ensures reproducible results.

prevS = rng(2008);
noisePwr = 1e-4;

Run the simulation. At the output, the received signal is stored in a 10-column matrix. Each column of
the matrix represents the signal collected by one microphone. Note that the audio is played back
during the simulation.

% preallocate
NSampPerFrame = 1000;
NTSample = t_duration*fs;
sigArray = zeros(NTSample,Nele);
voice_dft = zeros(NTSample,1);
voice_cleanspeech = zeros(NTSample,1);
voice_laugh = zeros(NTSample,1);

% set up audio device writer
player = audioDeviceWriter('SampleRate',fs);

dftFileReader = dsp.AudioFileReader('SpeechDFT-16-8-mono-5secs.wav', ...
    'SamplesPerFrame',NSampPerFrame);
speechFileReader = dsp.AudioFileReader('FemaleSpeech-16-8-mono-3secs.wav', ...
    'SamplesPerFrame',NSampPerFrame);
laughterFileReader = dsp.AudioFileReader('Laughter-16-8-mono-4secs.wav', ...
    'SamplesPerFrame',NSampPerFrame);

% simulate
for m = 1:NSampPerFrame:NTSample
    sig_idx = m:m+NSampPerFrame-1;
    x1 = dftFileReader();
    x2 = speechFileReader();
    x3 = 2*laughterFileReader();
    temp = collector([x1 x2 x3], ...
        [ang_dft ang_cleanspeech ang_laughter]) + ...
        sqrt(noisePwr)*randn(NSampPerFrame,Nele);
    player(0.5*temp(:,3));
    sigArray(sig_idx,:) = temp;
    voice_dft(sig_idx) = x1;
    voice_cleanspeech(sig_idx) = x2;
    voice_laugh(sig_idx) = x3;
end

Notice that the laughter masks the speech signals, rendering them unintelligible. Plot the signal in
channel 3.

plot(t,sigArray(:,3));
xlabel('Time (sec)'); ylabel ('Amplitude (V)');
title('Signal Received at Channel 3'); ylim([-3 3]);
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Process with a Time Delay Beamformer

The time delay beamformer compensates for the arrival time differences across the array for a signal
coming from a specific direction. The time aligned multichannel signals are coherently averaged to
improve the signal-to-noise ratio (SNR). Define a steering angle corresponding to the incident
direction of the first speech signal and construct a time delay beamformer.

angSteer = ang_dft;
beamformer = phased.TimeDelayBeamformer('SensorArray',ula, ...
    'SampleRate',fs,'Direction',angSteer,'PropagationSpeed',c)

beamformer = 

  phased.TimeDelayBeamformer with properties:

          SensorArray: [1x1 phased.ULA]
     PropagationSpeed: 340
           SampleRate: 8000
      DirectionSource: 'Property'
            Direction: [2x1 double]
    WeightsOutputPort: false

Process the synthesized signal, then plot and listen to the output of the conventional beamformer.

signalsource = dsp.SignalSource('Signal',sigArray, ...
    'SamplesPerFrame',NSampPerFrame);
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cbfOut = zeros(NTSample,1);

for m = 1:NSampPerFrame:NTSample
    temp = beamformer(signalsource());
    player(temp);
    cbfOut(m:m+NSampPerFrame-1,:) = temp;
end

plot(t,cbfOut);
xlabel('Time (s)'); ylabel ('Amplitude');
title('Time Delay Beamformer Output'); ylim([-3 3]);

You can measure the speech enhancement by the array gain, which is the ratio of the output signal-
to-interference-plus-noise ratio (SINR) to the input SINR.

agCbf = pow2db(mean((voice_cleanspeech+voice_laugh).^2+noisePwr)/ ...
    mean((cbfOut - voice_dft).^2))

agCbf =

    9.5022

Notice that the first speech signal begins to emerge in the time delay beamformer output. You obtain
an SINR improvement of 9.4 dB. However, the background laughter is still comparable to the speech.
To obtain better beamformer performance, use a Frost beamformer.
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Process with a Frost Beamformer

By attaching FIR filters to each sensor, the Frost beamformer has more beamforming weights to
suppress the interference. It is an adaptive algorithm that places nulls at learned interference
directions to better suppress the interference. In the steering direction, the Frost beamformer uses
distortionless constraints to ensure desired signals are not suppressed. Create a Frost beamformer
with a 20-tap FIR after each sensor.

frostbeamformer = ...
    phased.FrostBeamformer('SensorArray',ula,'SampleRate',fs, ...
    'PropagationSpeed',c,'FilterLength',20,'DirectionSource','Input port');

Process and play the synthesized signal using the Frost beamformer.

reset(signalsource);
FrostOut = zeros(NTSample,1);
for m = 1:NSampPerFrame:NTSample
    temp = frostbeamformer(signalsource(),ang_dft);
    player(temp);
    FrostOut(m:m+NSampPerFrame-1,:) = temp;
end

plot(t,FrostOut);
xlabel('Time (sec)'); ylabel ('Amplitude (V)');
title('Frost Beamformer Output'); ylim([-3 3]);

% Calculate the array gain
agFrost = pow2db(mean((voice_cleanspeech+voice_laugh).^2+noisePwr)/ ...
    mean((FrostOut - voice_dft).^2))

agFrost =

   14.4385
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Notice that the interference is now canceled. The Frost beamformer has an array gain of 14.5 dB,
which is about 5 dB higher than that of the time delay beamformer. The performance improvement is
impressive, but has a high computational cost. In the preceding example, an FIR filter of order 20 is
used for each microphone. With all 10 sensors, it needs to invert a 200-by-200 matrix, which may be
expensive in real-time processing.

Use Diagonal Loading to Improve Robustness of the Frost Beamformer

Next, steer the array in the direction of the second speech signal. Suppose you only know a rough
estimate of azimuth -5 degrees and elevation 5 degrees for the direction of the second speech signal.

release(frostbeamformer);
ang_cleanspeech_est = [-5; 5];  % Estimated steering direction

reset(signalsource);
FrostOut2 = zeros(NTSample,1);
for m = 1:NSampPerFrame:NTSample
    temp = frostbeamformer(signalsource(), ang_cleanspeech_est);
    player(temp);
    FrostOut2(m:m+NSampPerFrame-1,:) = temp;
end

plot(t,FrostOut2);
xlabel('Time (sec)'); ylabel ('Amplitude (V)');
title('Frost Beamformer Output');  ylim([-3 3]);

% Calculate the array gain
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agFrost2 = pow2db(mean((voice_dft+voice_laugh).^2+noisePwr)/ ...
    mean((FrostOut2 - voice_cleanspeech).^2))

agFrost2 =

    6.1927

The speech is barely audible. Despite the 6.1 dB gain from the beamformer, performance suffers from
the inaccurate steering direction. One way to improve the robustness of the Frost beamformer
against direction of arrival mismatch is to use diagonal loading. This approach adds a small quantity
to the diagonal elements of the estimated covariance matrix. The drawback of this method is that it is
difficult to estimate the correct loading factor. Here you try diagonal loading with a value of 1e-3.

% Specify diagonal loading value
release(frostbeamformer);
frostbeamformer.DiagonalLoadingFactor = 1e-3;

reset(signalsource);
FrostOut2_dl = zeros(NTSample,1);
for m = 1:NSampPerFrame:NTSample
    temp = frostbeamformer(signalsource(),ang_cleanspeech_est);
    player(temp);
    FrostOut2_dl(m:m+NSampPerFrame-1,:) = temp;
end
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plot(t,FrostOut2_dl);
xlabel('Time (sec)'); ylabel ('Amplitude (V)');
title('Frost Beamformer Output');  ylim([-3 3]);

% Calculate the array gain
agFrost2_dl = pow2db(mean((voice_dft+voice_laugh).^2+noisePwr)/ ...
    mean((FrostOut2_dl - voice_cleanspeech).^2))

agFrost2_dl =

    6.4788

The output speech signal is improved and you obtain a 0.3 dB gain improvement from the diagonal
loading technique.

release(frostbeamformer);
release(signalsource);
release(player);

rng(prevS);

Summary

This example shows how to use time domain beamformers to retrieve speech signals from noisy
microphone array measurements. The example also shows how to simulate an interference-dominant
signal received by a microphone array. The example used both time delay and the Frost beamformers
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and compared their performance. The Frost beamformer has a better interference suppression
capability. The example also illustrates the use of diagonal loading to improve the robustness of the
Frost beamformer.

Reference

[1] O. L. Frost III, An algorithm for linear constrained adaptive array processing, Proceedings of the
IEEE, Vol. 60, Number 8, Aug. 1972, pp. 925-935.
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Identification and Separation of Panned Audio Sources in a
Stereo Mix

This example shows how to extract an audio source from a stereo mix based on its panning
coefficient. This example illustrates MATLAB® and Simulink® implementations.

Introduction

Panning is a technique used to spread a mono or stereo sound signal into a new stereo or multi-
channel sound signal. Panning can simulate the spatial perspective of the listener by varying the
amplitude or power level of the original source across the new audio channels.

Panning is an essential component of sound engineering and stereo mixing. In studio stereo
recordings, different sources or tracks (corresponding to different musical instruments, voices, and
other sound sources) are often recorded separately and then mixed into a stereo signal. Panning is
usually controlled by a physical or virtual control knob that may be placed anywhere from the "hard-
left" position (usually referred to as 8 o'clock) to the hard-right position (4 o'clock). When a signal is
panned to the 8 o'clock position, the sound only appears in the left channel (or speaker). Conversely,
when a signal is panned to the 4 o'clock position, the sound only appears in the right speaker. At the
12 o'clock position, the sound is equally distributed across the two speakers. An artificial position or
direction relative to the listener may be generated by varying the level of panning.

Source separation consists of the identification and extraction of individual audio sources from a
stereo mix recording. Source separation has many applications, such as speech enhancement,
sampling of musical sounds for electronic music composition, and real-time speech separation. It also
plays a role in stereo-to-multichannel (e.g. 5.1 or 7.1) upmix, where the different extracted sources
may be distributed across the channels of the new mix.

This example showcases a source separation algorithm applied to an audio stereo signal. The stereo
signal is a mix of two independently panned audio sources: The first source is a man counting from
one to ten, and the second source is a toy train whistle.

The example uses a frequency-domain technique based on short-time FFT analysis to identify and
separate the sources based on their different panning coefficients.

Simulink Version

The model audiosourceseparation implements the panned audio source separation example.
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The stereo signal is mixed in the Panned Source subsystem. The stereo signal is formed of two
panned signals as shown below.

The train whistle source is panned with a constant panning coefficient of 0.2. You may vary the
panning coefficient of the speech source by double-clicking the Panned Source subsystem and
modifying the position of the 'Panning Index' knob.

The source separation algorithm is implemented in the 'Compute Panning Index Function' subsystem.
The algorithm is based on the comparison of the short-time Fourier Transforms of the right and left
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channels of the stereo mix. A frequency-domain, time-varying panning index function [1] is computed
based on the cross-correlations of the left and right short-time FFT pair. There is a one-to-one
relationship between the panning coefficient of the sources and the derived panning index. A
running-window histogram is implemented in the 'Panning Index Histogram' subsystem to identify the
dominant panning indices in the mix. The desired source is then unmixed by applying a masking
function modeled used a Gaussian window centered at the target panning index. Finally, the unmixed
extracted source is obtained by applying a short-time IFFT.

The mixed signal and the extracted speech signal are visualized using a scope. The estimated panning
coefficient is shown on a Display block. You can listen to either the mixed stereo or the unmixed
speech source by flipping the manual switch at the input of the Audio Device Writer block. The
streaming algorithm can adapt to a change in the value of the panning coefficient. For example, you
can modify the panning coefficient from 0.4 to 0.6 and observe that the displayed panning coefficient
value is updated with the correct value.

MATLAB Version

HelperAudioSourceSeparationSim is the MATLAB implementation of the panned source
separation example. It instantiates, initializes and steps through the objects forming the algorithm.

The audioSourceSeparationApp function wraps around HelperAudioSourceSeparationSim
and iteratively calls it. It plots the mixed audio and unmixed speech signals using a scope. It also
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opens a UI designed to interact with the simulation. The UI allows you to tune the panning coefficient
of the speech source. You can also toggle between listening to either the mixed signal (whistle +
speech) or the unmixed speech signal by changing the value of the 'Audio Output' drop-down box in
the UI. There are also three buttons on the UI - the 'Reset' button will reset the simulation internal
state to its initial condition and the 'Pause Simulation' button will hold the simulation until you press
on it again. The simulation may be terminated by either closing the UI or by clicking on the 'Stop
simulation' button.

Execute audioSourceSeparationApp to run the simulation and plot the results. Note that the
simulation runs until you explicitly stop it.

MATLAB Coder™ can be used to generate C code for the HelperAudioSourceSeparationSim
function. In order to generate a MEX-file for your platform, execute the command
HelperSourceSeparationCodeGeneration from a folder with write-permission.

By calling the wrapper function audioSourceSeparationApp with 'true' as an argument, the
generated MEX-file can be used instead of HelperAudioSourceSeparationSim for the simulation.
In this scenario, the UI is still running inside the MATLAB environment, but the main processing
algorithm is being performed by a MEX-file. Performance is improved in this mode without
compromising the ability to tune parameters.

References

[1] 'A Frequency-Domain Approach to Multichannel Upmix', Avendano, Carlos; Jot, Jean-Marc, JAES
Volume 52 Issue 7/8 pp. 740-749; July 2004
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Live Direction of Arrival Estimation with a Linear Microphone
Array

This example shows how to acquire and process live multichannel audio. It also presents a simple
algorithm for estimating the Direction Of Arrival (DOA) of a sound source using multiple microphone
pairs within a linear array.

Select and Configure the Source of Audio Samples

If a multichannel input audio interface is available, then modify this script to set sourceChoice to
'live'. In this mode the example uses live audio input signals. The example assumes all inputs (two
or more) are driven by microphones arranged on a linear array. If no microphone array or
multichannel audio card is available, then set sourceChoice to 'recorded'. In this mode the
example uses prerecorded audio samples acquired with a linear array. For sourceChoice =
'live', the following code uses audioDeviceReader to acquire 4 live audio channels through a
Microsoft® Kinect™ for Windows®. To use another microphone array setup, ensure the installed
audio device driver is one of the conventional types supported by MATLAB® and set the Device
property of audioDeviceReader accordingly. You can query valid Device assignments for your
computer by calling the getAudioDevices object function of audioDeviceReader. Note that even
when using Microsoft Kinect, the device name can vary across machines and may not match the one
used in this example. Use tab completion to get the correct name on your machine.

sourceChoice = ;

Set the duration of live processing. Set how many samples per channel to acquire and process each
iteration.

endTime = 20;
audioFrameLength = 3200;

Create the source.

switch sourceChoice
    case 'live'
        fs = 16000;
        audioInput = audioDeviceReader( ...
            'Device','Microphone Array (Microsoft Kinect USB Audio)', ...
            'SampleRate',fs, ...
            'NumChannels',4, ...
            'OutputDataType','double', ...
            'SamplesPerFrame',audioFrameLength);
    case 'recorded'    
        % This audio file holds a 20-second recording of 4 raw audio
        % channels acquired with a Microsoft Kinect(TM) for Windows(R) in
        % the presence of a noisy source moving in front of the array
        % roughly from -40 to about +40 degrees and then back to the
        % initial position.
        audioFileName = 'AudioArray-16-16-4channels-20secs.wav';
        audioInput = dsp.AudioFileReader( ...
            'OutputDataType','double', ...
            'Filename',audioFileName, ...
            'PlayCount',inf, ...
            'SamplesPerFrame',audioFrameLength);
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        fs = audioInput.SampleRate;
end

Define Array Geometry

The following values identify the approximate linear coordinates of the 4 built-in microphones of the
Microsoft Kinect™ relative to the position of the RGB camera (not used in this example). For 3D
coordinates use [[x1;y1;z1], [x2;y2;z2], ..., [xN;yN;zN]]

micPositions = [-0.088, 0.042, 0.078, 0.11];

Form Microphone Pairs

The algorithm used in this example works with pairs of microphones independently. It then combines
the individual DOA estimates to provide a single live DOA output. The more pairs available, the more
robust (yet computationally expensive) DOA estimation. The maximum number of pairs available can
be computed as nchoosek(length(micPositions),2). In this case, the 3 pairs with the largest
inter-microphone distances are selected. The larger the inter-microphone distance the more sensitive
the DOA estimate. Each column of the following matrix describes a choice of microphone pair within
the array. All values must be integers between 1 and length(micPositions).

micPairs = [1 4; 1 3; 1 2];
numPairs = size(micPairs, 1);

Initialize DOA Visualization

Create an instance of the helper plotting object DOADisplay. This displays the estimated DOA live
with an arrow on a polar plot.

DOAPointer = DOADisplay();

Create and Configure the Algorithmic Building Blocks

Use a helper object to rearrange the input samples according to how the microphone pairs are
selected.

bufferLength = 64;
preprocessor = PairArrayPreprocessor( ...
    'MicPositions',micPositions, ...
    'MicPairs',micPairs, ...
    'BufferLength',bufferLength);
micSeparations = getPairSeparations(preprocessor);

The main algorithmic building block of this example is a cross-correlator. That is used in conjunction
with an interpolator to ensure a finer DOA resolution. In this simple case it is sufficient to use the
same two objects across the different pairs available. In general, however, different channels may
need to independently save their internal states and hence to be handled by separate objects.

interpFactor = 8;
b = interpFactor * fir1((2*interpFactor*8-1),1/interpFactor);
groupDelay = median(grpdelay(b));
interpolator = dsp.FIRInterpolator('InterpolationFactor',interpFactor,'Numerator',b);

Acquire and Process Signals in a Loop

For each iteration of the following while loop: read audioFrameLength samples for each audio
channel, process the data to estimate a DOA value and display the result on a bespoke arrow-based
polar visualization.
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tic
for idx = 1:(endTime*fs/audioFrameLength)
    cycleStart = toc;
    % Read a multichannel frame from the audio source
    % The returned array is of size AudioFrameLength x size(micPositions,2)
    multichannelAudioFrame = audioInput();
    
    % Rearrange the acquired sample in 4-D array of size
    % bufferLength x numBuffers x 2 x numPairs where 2 is the number of
    % channels per microphone pair
    bufferedFrame = preprocessor(multichannelAudioFrame);
    
    % First, estimate the DOA for each pair, independently
    
    % Initialize arrays used across available pairs
    numBuffers = size(bufferedFrame, 2);
    delays = zeros(1,numPairs);
    anglesInRadians = zeros(1,numPairs);
    xcDense = zeros((2*bufferLength-1)*interpFactor, numPairs);
    
    % Loop through available pairs
    for kPair = 1:numPairs
        % Estimate inter-microphone delay for each 2-channel buffer 
        delayVector = zeros(numBuffers, 1);
        for kBuffer = 1:numBuffers
            % Cross-correlate pair channels to get a coarse
            % crosscorrelation
            xcCoarse = xcorr( ...
                bufferedFrame(:,kBuffer,1,kPair), ...
                bufferedFrame(:,kBuffer,2,kPair));

            % Interpolate to increase spatial resolution
            xcDense = interpolator(flipud(xcCoarse));

            % Extract position of maximum, equal to delay in sample time
            % units, including the group delay of the interpolation filter
            [~,idxloc] = max(xcDense);
            delayVector(kBuffer) = ...
                (idxloc - groupDelay)/interpFactor - bufferLength;
        end

        % Combine DOA estimation across pairs by selecting the median value
        delays(kPair) = median(delayVector);

        % Convert delay into angle using the microsoft pair spatial
        % separations provided
        anglesInRadians(kPair) = HelperDelayToAngle(delays(kPair), fs, ...
            micSeparations(kPair));
    end

    % Combine DOA estimation across pairs by keeping only the median value
    DOAInRadians = median(anglesInRadians);
    
    % Arrow display
    DOAPointer(DOAInRadians)
    
    % Delay cycle execution artificially if using recorded data
    if(strcmp(sourceChoice,'recorded'))
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        pause(audioFrameLength/fs - toc + cycleStart)
    end
end

release(audioInput)
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Positional Audio

This example shows several basic aspects of audio signal positioning. The listener occupies a location
in the center of a circle, and the position of the sound source is varied so that it remains within the
circle. In this example, the sound source is a monaural recording of a helicopter. The sound field is
represented by five discrete speaker locations on the circumference of the circle and a low-frequency
output that is presumed to be in the center of the circle.

Example Prerequisites

This example requires a 5.1-channel speaker configuration, and relies on the audio channels being
mapped to physical locations as follows:

1 Front left
2 Front right
3 Front center
4 Low frequency
5 Rear left
6 Rear right

This is the default Windows® speaker configuration for 5.1 channels. Depending on the type of sound
card used, this example may work reasonably well for other speaker configurations.

Example Basics

There are two source blocks of interest in the model. The first is the audio signal itself, and the
second is the spatial location of the helicopter. The spatial location of the helicopter is represented by
a pair of Cartesian coordinates that are constrained to lie within the unit circle. By default, this
location is determined by the block labeled "Set position randomly." This block supplies the input for
the MATLAB Function block labeled "Speaker volume computation," which determines a matrix of
speaker volumes. The outer product of the sound source is then taken with the speaker position
matrix, which is then supplied to the six speakers via the To Audio Device block.
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Manually Determining the Helicopter Position

You can also determine the helicopter position manually. To do this, select the switch in the model so
that the signal being supplied to the computeVol block is coming from the block labeled "Set position
visually." Then, double-click on the new source block. A GUI appears that enables you to move the
helicopter to different locations within the circle using the mouse, thereby changing the speaker
amplitudes.

Spatial Mixing Algorithm

The monaural audio source is mixed into six channels, each of which corresponds to a speaker. There
is one low-frequency channel in the center of the circle and five speakers that lie on the
circumference, as shown in the grey area of the GUI above. The listener is represented by a stick
figure in the center of the circle.

The following algorithm is used to determine the speaker amplitudes:
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1. At the center of the circle, all of the amplitudes are equal. The value for each speaker, including
the low-frequency speaker, is set to 1/sqrt(5).

2. On the perimeter of the circle, the amplitudes of the speakers are determined using Vector Base
Amplitude Panning (VBAP). This algorithm operates as follows:

a) Determine the two speakers on either side of the source or, in the degenerate case, the single
speaker.

b) Interpret the vectors determined by the speaker positions in (a) as basis vectors. Use these basis
vectors to represent the normalized source position vector. The coefficients in this new basis
represent the relative speaker amplitudes after normalization.

For this part of the algorithm, the amplitude of the low-frequency channel is set to zero.

3) As the source moves from the center to the periphery, there is a transition from algorithm (1) to
algorithm (2). This transition decays as a cubic function of the radial distance. The amplitude vectors
are normalized so the power is constant independent of source location.

4) Finally, the amplitudes decay as the distance from the center increases according to an inverse
square law, such that the amplitude at the perimeter of the circle is one-quarter of the amplitude in
the center.

For more details about Vector Base Amplitude Panning, please consult the references.

References

Pulki, Ville. "Virtual Sound Source Positioning Using Vector Base Amplitude Panning." Journal Audio
Engineering Society. Vol 45, No 6. June 1997.
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Surround Sound Matrix Encoding and Decoding

This example shows how to generate a stereo signal from a multichannel audio signal using matrix
encoding, and how to recover the original channels from the stereo mix using matrix decoding. This
example illustrates MATLAB® and Simulink® implementations. This example also shows how
performance can be improved by using dataflow execution domain.

Introduction

Matrix decoding is an audio technique that decodes an audio signal with M channels into an audio
signal with N channels (N > M) for play back on a system with N speakers. The original audio signal
is usually generated using a matrix encoder, which transforms N-channel signals to M-channel
signals.

Matrix encoding and decoding enables the same audio content to be played on different systems. For
example, a surround sound multichannel signal may be encoded into a stereo signal. The stereo
signal may be played back on a stereo system to accommodate settings where a surround sound
receiver does not exist, or it may be decoded and played as surround if surround equipment is
present [1].

In this example, we showcase a matrix encoder used to encode a four-channel signal (left, right,
center and surround) to a stereo signal. The four original signals are then regenerated using a matrix
decoder. This example is a simplified version of the encoding and decoding scheme used in the Dolby
Pro Logic system [2].

Simulink Version

The audiomatrixdecoding model implements the audio matrix encoding/decoding example.

The input to the matrix encoder consists of four separate audio channels (center, left, right and
surround).
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Double-click the Audio Channels subsystem to launch a tuning dialog. The dialog enables you to
control the relative power between the right channel and left channel inputs, as well as the power
level of the surround channel.

You can also toggle between listening to any of the original, encoded or decoded audio channels by
double-clicking the Audio Player Selector subsystem and selecting the channel of your choice
from the dialog drop down menu.

Matrix Encoder

The Matrix Encoder encodes the four input channels into a stereo signal.

Notice that since the input left and right channels only contribute to the output left and right
channels, respectively, the output stereo signal conserves the balance between left and right
channels.
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The surround input channel is passed through a Hilbert transformer, thereby creating a 180 degree
phase differential between the surround component feeding the left and right stereo outputs [2].

You may listen to the encoded left and right stereo signals by double-clicking the Audio Player
Selector subsystem and selecting either the 'Encoded Total Left' or 'Encoded Total Right' channels.

Matrix Decoder

The Matrix Decoder extracts the four original channels from the encoded stereo signal.

The lowpass frequencies are first separated using a Linkwitz-Riley cross-over filter. For more
information about the implementation of the Linkwitz-Riley filter, refer to “Multiband Dynamic Range
Compression” on page 1-148.

The left and right stereo channels are passed through to the left and right output channels,
respectively. Therefore, there is no loss of separation between left and right channels in the output.

The center output channel is equal to the sum of the stereo input signals, thereby cancelling the
phase-shifted surround left and right components.

The surround output channel is derived by first taking the difference of the stereo signals. Since the
original input center signal contributes equally to both stereo channels, the center channel does not
leak into the output surround signal. Moreover, note that the original left and right signals contribute
to the output surround channel. The surround signal is delayed by 10 msec to achieve a precedence
effect [3].

You may listen to the decoded surround signal by double-clicking the Audio Player Selector
subsystem and selecting one of the decoded signals.
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Improve Simulation Performance Using Dataflow Domain

This example can use dataflow execution domain in Simulink to make use of multiple cores on your
desktop to improve simulation performance. To learn more about dataflow and how to run Simulink
models using multiple threads, see “Multicore Execution using Dataflow Domain”.

Specify Dataflow Execution Domain

In Simulink, you specify dataflow as the execution domain for a subsystem by setting the Domain
parameter to Dataflow using Property Inspector. To access Property Inspector, in the Simulink
Toolstrip, on the Modeling tab, in the Design gallery select Property Inspector or on the Simulation
tab, Prepare gallery, select Property Inspector.

Dataflow domains automatically partition your model into multiple threads for better performance.
Once you set the Domain parameter to Dataflow, you can use the Multicore tab analysis to
analyze your model to get better performance. The Multicore tab is available in the toolstrip when
there is a dataflow domain in the model. To learn more about the Multicore tab, see “Perform
Multicore Analysis for Dataflow”.

Analyzing Concurrency in Dataflow Subsystem

For this example the Multicore tab mode is set to Simulation Profiling for simulation
performance analysis.
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It is recommended to optimize model settings for optimal simulation performance. To accept the
proposed model settings, on the Multicore tab, click Optimize. Alternatively, you can use the drop
menu below the Optimize button to change the settings individually.

On the Multicore tab, click the Run Analysis button to start the analysis of the dataflow domain for
simulation performance. Once the analysis is finished, the Analysis Report and Suggestions window
shows how many threads the dataflow subsystem uses during simulation.

After analyzing the model, the Analysis Report and Suggestions window shows one thread because
the data dependency between the blocks in the model prevents blocks from being executed
concurrently. By pipelining the data dependent blocks, the dataflow subsystem can increase
concurrency for higher data throughput. The Analysis Report and Suggestions window shows the
recommended number of pipeline delays as Suggested for Increasing Concurrency. The suggested
latency value is computed to give the best performance.

The following diagram shows the Analysis Report and Suggestions window where the suggested
latency is 2 for the dataflow subsystem.

Click the Accept button to use the recommended latency for the dataflow subsystem. This value can
also be entered directly in the Property Inspector for Latency parameter. Simulink shows the latency
parameter value using  tags at the output ports of the dataflow subsystem.

The Analysis Report and Suggestions window now shows the number of threads as 2 meaning that
the blocks inside the dataflow subsystem simulate in parallel using 2 threads. Highlight threads
highlights the blocks with colors based on their thread allocation as shown in the Thread
Highlighting Legend. Show pipeline delays shows where pipelining delays were inserted within
the dataflow subsystem using  tags.
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Compensate for Latency

When latency is increased in the dataflow execution domain to break data dependencies between
blocks and create concurrency, that delay needs to be accounted for in other parts of the model. For
example, signals that are compared or combined with the signals at the output ports of the dataflow
subsystem must be delayed to align in time with the signals at the output ports of the dataflow
subsystem. In this example, the audio signal from the Audio Channels block that goes to the Audio
Player Selector must be delayed to align with other signals going into the Audio Player Selector
block. To compensate for the latency specified on the dataflow subsystem, use a delay block to delay
this signal by two frames. For this signal, the frame length is 1024. A delay value of 2048 is set in the
delay block to align the signal from the Audio Channels block and the signal processed through the
dataflow subsystem.

Dataflow Simulation Performance

To measure performance improvement gained by using dataflow, compare execution time of the
model with and without dataflow. The Audio Device Writer block runs in real time and limits the
simulation speed of the model to real time. Comment out the Audio Device Writer block when
measuring execution time. On a Windows desktop computer with Intel® Xeon® CPU W-2133 @ 3.6
GHz 6 Cores 12 Threads processor this model using dataflow domain executes 2.3x times faster
compared to original model.
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MATLAB Version

HelperAudioMatrixDecoderSim is the MATLAB function containing the audio matrix decoder
example's implementation. It instantiates, initializes and steps through the objects forming the
algorithm.

The function audioMatrixDecoderApp wraps around HelperAudioMatrixDecoderSim and
iteratively calls it.

Execute audioMatrixDecoderApp to run the simulation. Note that the simulation runs until you
explicitly stop it.

audioMatrixDecoderApp launches a UI designed to interact with the simulation. Similar to the
Simulink version of the example, the UI allows you to tune the relative power between the right
channel and left channel inputs, as well as the power level of the surround channel. You can also
toggle between listening to any of the original, encoded or decoded audio channels by changing the
value of the 'Audio Output' drop-down box in the UI.

There are also three buttons on the UI - the 'Reset' button will reset the simulation internal state to
its initial condition and the 'Pause Simulation' button will hold the simulation until you press on it
again. The simulation may be terminated by either closing the UI or by clicking on the 'Stop
simulation' button.

MATLAB Coder can be used to generate C code for the function HelperAudioMatrixDecoderSim.
In order to generate a MEX-file for your platform, execute the command
HelperMatrixDecodingCodeGeneration from a folder with write permissions.

By calling the wrapper function audioMatrixDecoderApp with 'true' as an argument, the
generated MEX-file can be used instead of HelperAudioMatrixDecoderSim for the simulation. In
this scenario, the UI is still running inside the MATLAB environment, but the main processing
algorithm is being performed by a MEX-file. Performance is improved in this mode without
compromising the ability to tune parameters.

References

[1] https://en.wikipedia.org/wiki/Matrix_decoder

[2] Dolby Pro Logic Surround Decoder: Principles of Operation, Roger Dressler, Dolby Labs

[3] https://en.wikipedia.org/wiki/Precedence_effect
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Speaker Identification Using Pitch and MFCC

This example demonstrates a machine learning approach to identify people based on features
extracted from recorded speech. The features used to train the classifier are the pitch of the voiced
segments of the speech and the mel frequency cepstrum coefficients (MFCC). This is a closed-set
speaker identification: the audio of the speaker under test is compared against all the available
speaker models (a finite set) and the closest match is returned.

Introduction

The approach used in this example for speaker identification is shown in the diagram.

Pitch and MFCC are extracted from speech signals recorded for 10 speakers. These features are used
to train a K-nearest neighbor (KNN) classifier. Then, new speech signals that need to be classified go
through the same feature extraction. The trained KNN classifier predicts which one of the 10
speakers is the closest match.

Features Used for Classification

This section discusses pitch, zero-crossing rate, short-time energy, and MFCC. Pitch and MFCC are
the two features that are used to classify speakers. Zero-crossing rate and short-time energy are used
to determine when the pitch feature is used.
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Pitch

Speech can be broadly categorized as voiced and unvoiced. In the case of voiced speech, air from the
lungs is modulated by vocal cords and results in a quasi-periodic excitation. The resulting sound is
dominated by a relatively low-frequency oscillation, referred to as pitch. In the case of unvoiced
speech, air from the lungs passes through a constriction in the vocal tract and becomes a turbulent,
noise-like excitation. In the source-filter model of speech, the excitation is referred to as the source,
and the vocal tract is referred to as the filter. Characterizing the source is an important part of
characterizing the speech system.

As an example of voiced and unvoiced speech, consider a time-domain representation of the word
"two" (/T UW/). The consonant /T/ (unvoiced speech) looks like noise, while the vowel /UW/ (voiced
speech) is characterized by a strong fundamental frequency.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
twoStart = 110e3;
twoStop = 135e3;
audioIn = audioIn(twoStart:twoStop);
timeVector = linspace(twoStart/fs,twoStop/fs,numel(audioIn));

sound(audioIn,fs)

figure
plot(timeVector,audioIn)
axis([(twoStart/fs) (twoStop/fs) -1 1])
ylabel("Amplitude")
xlabel("Time (s)")
title("Utterance - Two")
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A speech signal is dynamic in nature and changes over time. It is assumed that speech signals are
stationary on short time scales, and their processing is done in windows of 20-40 ms. This example
uses a 30 ms window with a 25 ms overlap. Use the pitch function to see how the pitch changes
over time.

windowLength = round(0.03*fs);
overlapLength = round(0.025*fs);

f0 = pitch(audioIn,fs,WindowLength=windowLength,OverlapLength=overlapLength,Range=[50,250]);

figure
subplot(2,1,1)
plot(timeVector,audioIn)
axis([(110e3/fs) (135e3/fs) -1 1])
ylabel("Amplitude")
xlabel("Time (s)")
title("Utterance - Two")

subplot(2,1,2)
timeVectorPitch = linspace(twoStart/fs,twoStop/fs,numel(f0));
plot(timeVectorPitch,f0,"*")
axis([(110e3/fs) (135e3/fs) min(f0) max(f0)])
ylabel("Pitch (Hz)")

1 Audio Toolbox Examples

1-240



xlabel("Time (s)")
title("Pitch Contour")

The pitch function estimates a pitch value for every frame. However, pitch is only characteristic of a
source in regions of voiced speech. The simplest method to distinguish between silence and speech is
to analyze the short time energy. If the energy in a frame is above a given threshold, you declare the
frame as speech.

energyThreshold = 20;
[segments,~] = buffer(audioIn,windowLength,overlapLength,"nodelay");
ste = sum((segments.*hamming(windowLength,"periodic")).^2,1);
isSpeech = ste(:) > energyThreshold;

The simplest method to distinguish between voiced and unvoiced speech is to analyze the zero
crossing rate. A large number of zero crossings implies that there is no dominant low-frequency
oscillation. If the zero crossing rate for a frame is below a given threshold, you declare it as voiced.

zcrThreshold = 0.02;
zcr = zerocrossrate(audioIn,WindowLength=windowLength,OverlapLength=overlapLength);
isVoiced = zcr < zcrThreshold;

Combine isSpeech and isVoiced to determine whether a frame contains voiced speech.
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voicedSpeech = isSpeech & isVoiced;

Remove regions that do not correspond to voiced speech from the pitch estimate and plot.

f0(~voicedSpeech) = NaN;

figure
subplot(2,1,1)
plot(timeVector,audioIn)
axis([(110e3/fs) (135e3/fs) -1 1])
axis tight
ylabel("Amplitude")
xlabel("Time (s)")
title("Utterance - Two")

subplot(2,1,2)
plot(timeVectorPitch,f0,"*")
axis([(110e3/fs) (135e3/fs) min(f0) max(f0)])
ylabel("Pitch (Hz)")
xlabel("Time (s)")
title("Pitch Contour")

Mel-Frequency Cepstrum Coefficients (MFCC)
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MFCC are popular features extracted from speech signals for use in recognition tasks. In the source-
filter model of speech, MFCC are understood to represent the filter (vocal tract). The frequency
response of the vocal tract is relatively smooth, whereas the source of voiced speech can be modeled
as an impulse train. The result is that the vocal tract can be estimated by the spectral envelope of a
speech segment.

The motivating idea of MFCC is to compress information about the vocal tract (smoothed spectrum)
into a small number of coefficients based on an understanding of the cochlea.

Although there is no hard standard for calculating MFCC, the basic steps are outlined by the
diagram.

The mel filterbank linearly spaces the first 10 triangular filters and logarithmically spaces the
remaining filters. The individual bands are weighted for even energy. The graph represents a typical
mel filterbank.
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This example uses mfcc to calculate the MFCC for every file.

Data Set

This example uses a subset of the Common Voice dataset from Mozilla [1] on page 1-251. The dataset
contains 48 kHz recordings of subjects speaking short sentences. The helper function in this section
organizes the downloaded data and returns an audioDatastore object. The dataset uses 1.36 GB of
memory.

Download the dataset if it doesn't already exist and unzip it into tempdir.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","commonvoice.zip");
dataFolder = tempdir;
if ~datasetExists(string(dataFolder) + "commonvoice")
    unzip(downloadFolder,dataFolder);
end

Extract the speech files for 10 speakers (5 female and 5 male) and place them into an
audioDatastore using the commonVoiceHelper function. The datastore enables you to collect
necessary files of a file format and read them. The function is placed in your current folder when you
open this example.

ads = commonVoiceHelper

ads = 
  audioDatastore with properties:

                       Files: {
                              ' ...\AppData\Local\Temp\commonvoice\train\clips\common_voice_en_116626.wav';
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                              ' ...\AppData\Local\Temp\commonvoice\train\clips\common_voice_en_116631.wav';
                              ' ...\AppData\Local\Temp\commonvoice\train\clips\common_voice_en_116643.wav'
                               ... and 172 more
                              }
                     Folders: {
                              'C:\Users\jblock\AppData\Local\Temp\commonvoice\train\clips'
                              }
                      Labels: [3; 3; 3 ... and 172 more categorical]
    AlternateFileSystemRoots: {}
              OutputDataType: 'double'
      SupportedOutputFormats: ["wav"    "flac"    "ogg"    "opus"    "mp4"    "m4a"]
         DefaultOutputFormat: "wav"

The splitEachLabel function of audioDatastore splits the datastore into two or more datastores.
The resulting datastores have the specified proportion of the audio files from each label. In this
example, the datastore is split into two parts. 80% of the data for each label is used for training, and
the remaining 20% is used for testing. The countEachLabel method of audioDatastore is used to
count the number of audio files per label. In this example, the label identifies the speaker.

[adsTrain,adsTest] = splitEachLabel(ads,0.8);

Display the datastore and the number of speakers in the train datastore.

adsTrain

adsTrain = 
  audioDatastore with properties:

                       Files: {
                              ' ...\AppData\Local\Temp\commonvoice\train\clips\common_voice_en_116626.wav';
                              ' ...\AppData\Local\Temp\commonvoice\train\clips\common_voice_en_116631.wav';
                              ' ...\AppData\Local\Temp\commonvoice\train\clips\common_voice_en_116643.wav'
                               ... and 136 more
                              }
                     Folders: {
                              'C:\Users\jblock\AppData\Local\Temp\commonvoice\train\clips'
                              }
                      Labels: [3; 3; 3 ... and 136 more categorical]
    AlternateFileSystemRoots: {}
              OutputDataType: 'double'
      SupportedOutputFormats: ["wav"    "flac"    "ogg"    "opus"    "mp4"    "m4a"]
         DefaultOutputFormat: "wav"

trainDatastoreCount = countEachLabel(adsTrain)

trainDatastoreCount=10×2 table
    Label    Count
    _____    _____

     1        14  
     10       12  
     2        12  
     3        18  
     4        14  
     5        16  
     6        17  
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     7        11  
     8        11  
     9        14  

Display the datastore and the number of speakers in the test datastore.

adsTest

adsTest = 
  audioDatastore with properties:

                       Files: {
                              ' ...\AppData\Local\Temp\commonvoice\train\clips\common_voice_en_116761.wav';
                              ' ...\AppData\Local\Temp\commonvoice\train\clips\common_voice_en_116762.wav';
                              ' ...\AppData\Local\Temp\commonvoice\train\clips\common_voice_en_116769.wav'
                               ... and 33 more
                              }
                     Folders: {
                              'C:\Users\jblock\AppData\Local\Temp\commonvoice\train\clips'
                              }
                      Labels: [3; 3; 3 ... and 33 more categorical]
    AlternateFileSystemRoots: {}
              OutputDataType: 'double'
      SupportedOutputFormats: ["wav"    "flac"    "ogg"    "opus"    "mp4"    "m4a"]
         DefaultOutputFormat: "wav"

testDatastoreCount = countEachLabel(adsTest)

testDatastoreCount=10×2 table
    Label    Count
    _____    _____

     1         4  
     10        3  
     2         3  
     3         4  
     4         4  
     5         4  
     6         4  
     7         3  
     8         3  
     9         4  

To preview the content of your datastore, read a sample file and play it using your default audio
device.

[sampleTrain,dsInfo] = read(adsTrain);
sound(sampleTrain,dsInfo.SampleRate)

Reading from the train datastore pushes the read pointer so that you can iterate through the
database. Reset the train datastore to return the read pointer to the start for the following feature
extraction.

reset(adsTrain)
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Feature Extraction

Extract pitch and MFCC features from each frame that corresponds to voiced speech in the training
datastore. Audio Toolbox™ provides audioFeatureExtractor so that you can quickly and
efficiently extract multiple features. Configure an audioFeatureExtractor to extract pitch, short-
time energy, zcr, and MFCC.

fs = dsInfo.SampleRate;
windowLength = round(0.03*fs);
overlapLength = round(0.025*fs);
afe = audioFeatureExtractor(SampleRate=fs, ...
    Window=hamming(windowLength,"periodic"),OverlapLength=overlapLength, ...
    zerocrossrate=true,shortTimeEnergy=true,pitch=true,mfcc=true);

When you call the extract function of audioFeatureExtractor, all features are concatenated and
returned in a matrix. You can use the info function to determine which columns of the matrix
correspond to which features.

featureMap = info(afe)

featureMap = struct with fields:
               mfcc: [1 2 3 4 5 6 7 8 9 10 11 12 13]
              pitch: 14
      zerocrossrate: 15
    shortTimeEnergy: 16

Extract features from the data set.

features = [];
labels = [];
energyThreshold = 0.005;
zcrThreshold = 0.2;

keepLen = round(length(sampleTrain)/3);

while hasdata(adsTrain)
    [audioIn,dsInfo] = read(adsTrain);

    % Take the first portion of each recording to speed up code
    audioIn = audioIn(1:keepLen);

    feat = extract(afe,audioIn);
    isSpeech = feat(:,featureMap.shortTimeEnergy) > energyThreshold;
    isVoiced = feat(:,featureMap.zerocrossrate) < zcrThreshold;

    voicedSpeech = isSpeech & isVoiced;

    feat(~voicedSpeech,:) = [];
    feat(:,[featureMap.zerocrossrate,featureMap.shortTimeEnergy]) = [];
    label = repelem(dsInfo.Label,size(feat,1));
    
    features = [features;feat];
    labels = [labels,label];
end

Pitch and MFCC are not on the same scale. This will bias the classifier. Normalize the features by
subtracting the mean and dividing the standard deviation.
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M = mean(features,1);
S = std(features,[],1);
features = (features-M)./S;

Training a Classifier

Now that you have collected features for all 10 speakers, you can train a classifier based on them. In
this example, you use a K-nearest neighbor (KNN) classifier. KNN is a classification technique
naturally suited for multiclass classification. The hyperparameters for the nearest neighbor classifier
include the number of nearest neighbors, the distance metric used to compute distance to the
neighbors, and the weight of the distance metric. The hyperparameters are selected to optimize
validation accuracy and performance on the test set. In this example, the number of neighbors is set
to 5 and the metric for distance chosen is squared-inverse weighted Euclidean distance. For more
information about the classifier, refer to fitcknn (Statistics and Machine Learning Toolbox).

Train the classifier and print the cross-validation accuracy. crossval (Statistics and Machine
Learning Toolbox) and kfoldLoss (Statistics and Machine Learning Toolbox) are used to compute
the cross-validation accuracy for the KNN classifier.

Specify all the classifier options and train the classifier.

trainedClassifier = fitcknn(features,labels, ...
    Distance="euclidean", ...
    NumNeighbors=5, ...
    DistanceWeight="squaredinverse", ...
    Standardize=false, ...
    ClassNames=unique(labels));

Perform cross-validation.

k = 5;
group = labels;
c = cvpartition(group,KFold=k); % 5-fold stratified cross validation
partitionedModel = crossval(trainedClassifier,CVPartition=c);

Compute the validation accuracy.

validationAccuracy = 1 - kfoldLoss(partitionedModel,LossFun="ClassifError");
fprintf('\nValidation accuracy = %.2f%%\n', validationAccuracy*100);

Validation accuracy = 97.69%

Visualize the confusion chart.

validationPredictions = kfoldPredict(partitionedModel);
figure(Units="normalized",Position=[0.4 0.4 0.4 0.4])
confusionchart(labels,validationPredictions,title="Validation Accuracy", ...
    ColumnSummary="column-normalized",RowSummary="row-normalized");
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You can also use the Classification Learner (Statistics and Machine Learning Toolbox) app to try out
and compare various classifiers with your table of features.

Testing the Classifier

In this section, you test the trained KNN classifier with speech signals from each of the 10 speakers
to see how well it behaves with signals that were not used to train it.

Read files, extract features from the test set, and normalize them.

features = [];
labels = [];
numVectorsPerFile = [];
while hasdata(adsTest)
    [audioIn,dsInfo] = read(adsTest);
    
    % Take the same first portion of each recording to speed up code
    audioIn = audioIn(1:keepLen);

    feat = extract(afe,audioIn);

    isSpeech = feat(:,featureMap.shortTimeEnergy) > energyThreshold;
    isVoiced = feat(:,featureMap.zerocrossrate) < zcrThreshold;

    voicedSpeech = isSpeech & isVoiced;

    feat(~voicedSpeech,:) = [];
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    numVec = size(feat,1);
    feat(:,[featureMap.zerocrossrate,featureMap.shortTimeEnergy]) = [];
    
    label = repelem(dsInfo.Label,numVec);
    
    numVectorsPerFile = [numVectorsPerFile,numVec];
    features = [features;feat];
    labels = [labels,label];
end
features = (features-M)./S;

Predict the label (speaker) for each frame by calling predict on trainedClassifier.

prediction = predict(trainedClassifier,features);
prediction = categorical(string(prediction));

Visualize the confusion chart.

figure(Units="normalized",Position=[0.4 0.4 0.4 0.4])
confusionchart(labels(:),prediction,title="Test Accuracy (Per Frame)", ...
    ColumnSummary="column-normalized",RowSummary="row-normalized");

For a given file, predictions are made for every frame. Determine the mode of predictions for each file
and then plot the confusion chart.

r2 = prediction(1:numel(adsTest.Files));
idx = 1;
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for ii = 1:numel(adsTest.Files)
    r2(ii) = mode(prediction(idx:idx+numVectorsPerFile(ii)-1));
    idx = idx + numVectorsPerFile(ii);
end

figure(Units="normalized",Position=[0.4 0.4 0.4 0.4])
confusionchart(adsTest.Labels,r2,title="Test Accuracy (Per File)", ...
    ColumnSummary="column-normalized",RowSummary="row-normalized");

The predicted speakers match the expected speakers for all files under test.

References

[1] Mozilla Common Voice Dataset
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Measure Audio Latency

This example shows how to measure the latency of an audio device. The example uses
audioLatencyMeasurementExampleApp which in turn uses audioPlayerRecorder along with a test
signal and cross correlation to determine latency. To avoid disk access interference, the test signal is
loaded into a dsp.AsyncBuffer object first, and frames are streamed from that object through the
audio device.

Introduction

In general terms, latency is defined as the time from when the audio signal enters a system until it
exits. In a digital audio processing chain, there are multiple parameters that cause latency:

1 Hardware (including A/D and D/A conversion)
2 Audio drivers that communicate with the system's sound card
3 Sampling rate
4 Samples per frame (buffer size)
5 Algorithmic latency (e.g. delay introduced by a filter or audio effect)

This example shows how to measure round trip latency. That is, the latency incurred when playing
audio through a device, looping back the audio with a physical loopback cable, and recording the
loopback audio with the same audio device. In order to compute latency for your own audio device,
you need to connect the audio out and audio in ports using a loopback cable.

Roundtrip latency does not break down the measurement between output latency and input latency. It
measures only the combined effect of the two. Also, most practical applications will not use a
loopback setup. Typically the processing chain consists of recording audio, processing it, and playing
the processed audio. However, the latency involved should be the same either way provided the other
factors (frame size, sampling rate, algorithm latency) don't change.

Hardware Latency

Smaller frame sizes and higher sampling rates reduce the roundtrip latency. However, the tradeoff is
a higher chance of dropouts occurring (overruns/underruns).

In addition to potentially increasing latency, the amount of processing involved in the audio algorithm
can also cause dropouts.
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Measuring Latency with audioLatencyMeasurementExampleApp.m

The function audioLatencyMeasurementExampleApp computes roundtrip latency in milliseconds for a
given setup. Overruns and underruns are also presented. If the overruns/underruns are not zero, the
results are likely invalid. For example:

audioLatencyMeasurementExampleApp('SamplesPerFrame',64,'SampleRate',48e3)

% The measurements in this example were done on macOS. For most
% measurements, a Steinberg UR22 external USB device was used. For the
% measurements with custom I/O channels, an RME Fireface UFX+ device was
% used. This RME device has lower latency than the Steinberg device for a
% given sample rate/frame size combination. Measurements on Windows using
% ASIO drivers should result in similar values.

Trial(s) done for frameSize 64. 
ans =
  1×5 table
    SamplesPerFrame    SampleRate_kHz    Latency_ms    Overruns    Underruns
    _______________    ______________    __________    ________    _________
      64                 48                8.3125        0           0        

Some Tips When Measuring Latency

Real-time processing on a general purpose operating system is only possible if you minimize other
tasks being performed by the computer. It is recommended to:

1 Close all other programs
2 Ensure no underruns/overruns occur
3 Use a large enough buffer size (SamplesPerFrame) to ensure consistent dropout-free behavior
4 Ensure your hardware settings (buffer size, sampling rate) match the inputs to measureLatency

On Windows, you can use the asiosettings function to launch the dialog to control the hardware
settings. On macOS, you should launch the Audio MIDI Setup.

When using ASIO (or CoreAudio with Mac OS), the latency measurements are consistent as long as
no dropouts occur. For small buffer sizes, it is possible to get a clean measurement in one instance
and dropouts the next. The Ntrials option can be used to ensure consistent dropout behavior when
measuring latency. For example, to perform 3 measurements, use:

audioLatencyMeasurementExampleApp('SamplesPerFrame',96,...
    'SampleRate',48e3,'Ntrials',3)

Trial(s) done for frameSize 96. 
ans =
  3×5 table
    SamplesPerFrame    SampleRate_kHz    Latency_ms    Overruns    Underruns
    _______________    ______________    __________    ________    _________
      96                 48                10.312        0           0        
      96                 48                10.312        0           0        
      96                 48                10.312        0           0        

Measurements For Different Buffer Sizes

On macOS, it is also possible to try different frame sizes without changing the hardware settings. To
make this convenient, you can specify a vector of SamplesPerFrame:
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BufferSizes = [64;96;128];
t = audioLatencyMeasurementExampleApp('SamplesPerFrame',BufferSizes)

% Notice that for every sample increment in the buffer size, the additional
% latency is 3*SamplesPerFrameIncrement/SampleRate (macOS only).

Trial(s) done for frameSize 64. 
Trial(s) done for frameSize 96. 
Trial(s) done for frameSize 128. 
t =
  3×5 table
    SamplesPerFrame    SampleRate_kHz    Latency_ms    Overruns    Underruns
    _______________    ______________    __________    ________    _________
       64                48                8.3125        0           0        
       96                48                10.312        0           0        
      128                48                12.312        0           0        

Specifically, in the previous example, the increment is

3*[128-96, 96-64]/48e3

% In addition, notice that the actual buffering latency is also determined
% by 3*SamplesPerFrame/SampleRate. Subtracting this value from the measured
% latency gives a measure of the latency introduced by the device (combined
% effect of A/D conversion, D/A conversion, and drivers). The numbers above
% indicate about 4.3125 ms latency due to device-specific factors.

t.Latency_ms - 3*BufferSizes/48

ans =
    0.0020    0.0020
ans =
    4.3125
    4.3125
    4.3125

Specifying Custom Input/Output Channels

The measurements performed so far assume that channel #1 is used for both input and output. If
your device has a loopback cable connected to other channels, you can specify them using the
IOChannels option to measureLatency. This is specified as a 2-element vector, corresponding to the
input and output channels to be used (the measurement is always on a mono signal). For example for
an RME Fireface UFX+:

audioLatencyMeasurementExampleApp('SamplesPerFrame',[32 64 96],...
    'SampleRate',96e3,'Device','Fireface UFX+ (23767940)',...
    'IOChannels',[1 3])

Trial(s) done for frameSize 32. 
Trial(s) done for frameSize 64. 
Trial(s) done for frameSize 96. 
ans =
  3×5 table
    SamplesPerFrame    SampleRate_kHz    Latency_ms    Overruns     Underruns 
    _______________    ______________    __________    _________    __________
      32                 96                2.6458        0           32       
      64                 96                3.6458        0            0       
      96                 96                4.6458        0            0       
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Algorithmic Latency

The measurements so far have not included algorithm latency. Therefore, they represent the minimal
roundtrip latency that can be achieved for a given device, buffer size, and sampling rate. You can add
a linear phase FIR filter the processing chain to verify that the latency measurements are as
expected. Moreover, it provides a way of verifying robustness of the real-time audio processing under
a given workload. For example,

L  = 961;
Fs = 48e3;
audioLatencyMeasurementExampleApp('SamplesPerFrame',128,...
    'SampleRate',Fs,'FilterLength',L,'Ntrials',3)

% The latency introduced by the filter is given by the filter's
% group-delay.

GroupDelay = (L-1)/2/Fs

% The group delay accounts for the 10 ms of additional latency when using a
% 961-tap linear-phase FIR filter vs. the minimal achievable latency.

Trial(s) done for frameSize 128. 
ans =
  3×6 table
    SamplesPerFrame    SampleRate_kHz    FilterLength    Latency_ms    Overruns    Underruns
    _______________    ______________    ____________    __________    ________    _________
      128                48                961             22.312        0           0        
      128                48                961             22.312        0           0        
      128                48                961             22.312        0           0        
GroupDelay =
    0.0100

Plotting the Original and Recorded Signal

%The latency measurements are determined by cross-correlating a source
%audio signal with a delayed version of the signal that results after
%loopback through the audio device. You can use the Plot option in
%measureLatency to plot the original and delayed signal along with the
%cross correlation:
audioLatencyMeasurementExampleApp('SamplesPerFrame',128,'Plot',true)

% If the optional FIR filtering is used, the waveforms are not affected
% because the filter used has a broader bandwidth than the test audio
% signal.

Trial(s) done for frameSize 128. 
Plotting... 
ans =
  1×5 table
    SamplesPerFrame    SampleRate_kHz    Latency_ms    Overruns    Underruns
    _______________    ______________    __________    ________    _________
      128                48                12.312        0           0        
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Measure Performance of Streaming Real-Time Audio
Algorithms

This example presents a utility that can be used to analyze the timing performance of signal
processing algorithms designed for real-time streaming applications.

Introduction

The ability to prototype an audio signal processing algorithm in real time using MATLAB depends
primarily on its execution performance. Performance is affected by a number of factors, such as the
algorithm's complexity, the sampling frequency and the input frame size. Ultimately, the algorithm
must be fast enough to ensure it can always execute within the available time budget and not drop
any frames. Frames are dropped whenever the audio input queue is overrun with new samples (not
read fast enough) or the audio output queue is underrun (not written fast enough). Dropped frames
result in undesirable artifacts in the output audio signal.

This example presents a utility to profile the execution performance of an audio signal processing
algorithm within MATLAB and compare it to the available time budget.

Results in this example were obtained on a machine running an Intel (R) Xeon (R) CPU with a clock
speed of 3.50 GHz, and 64 GB of RAM. Results vary depending on system specifications.

Measure Performance of a Notch Filter Application

In this example, you measure performance of an eighth-order notch filter, implemented using
dsp.BiquadFilter.

helperAudioLoopTimerExample defines and instantiates the variables used in the algorithm. The
input is read from a file using a dsp.AudioFileReader object, and then streamed through the
notch filter in a processing loop.

audioexample.AudioLoopTimer is the utility object used to profile execution performance and display
a summary of the results. The utility uses simple tic/toc commands to log the timing of different
stages of the simulation. The initialization time (which is the time it takes to instantiate and set up
variables and objects before the simulation loop begins) is measured using the ticInit and
tocInit methods. The individual simulation loop times are measured using the ticLoop and
tocLoop methods. After the simulation loop is done, a performance report is generated using the
object's generateReport method.

Execute helperAudioLoopTimerExample to run the simulation and view the performance report:

helperAudioLoopTimerExample;
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The performance report figure displays a histogram of the loop execution times in the top plot. The
red line represents the maximum allowed loop execution time, or budget, above which samples will
be dropped. The budget per simulation loop is equal to L/Fs, where L is the input frame size, and Fs
is the sampling rate. In this example, L = 512, Fs = 44100 Hz, and the budget per loop is around 11.6
milliseconds. The performance report also displays the runtime of the individual simulation loops in
the bottom plot. Again, the red line represents the allowed budget per loop.

Notice that although the median loop time is well within the budget, the maximum loop time exceeds
the budget. From the bottom plot, it is evident that the budget is exceeded on the very first loop pass,
and that subsequent loop runs are within the budget. The relative slow performance of the first
simulation loop is due to the penalty incurred the first time the step method is called on the
dsp.BiquadFilter and dsp.AudioFileReader objects. The first call to step triggers the
execution of one-time tasks that do not depend on the inputs to step, such as hardware resource
allocation and state initialization. This problem can be alleviated by executing one-time tasks before
the simulation loop. You can perform the one-time tasks by calling the setup method on the
simulation objects in the initialization stage. Execute helperAudioLoopTimerExample(true) to
re-run the simulation with pre-loop setup enabled.

helperAudioLoopTimerExample(true);
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All loop runs are now within the budget. Notice that the maximum and total loop times have been
drastically reduced compared to the first performance report, at the expense of a higher initialization
time.
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THD+N Measurement with Tone-Tracking

This example shows how to measure total harmonic distortion and noise level of audio input and
output devices.

Introduction

Audio input and output devices are non-linear in nature. This causes harmonic distortion in the audio
signal. Apart from the unwanted signals that may be harmonically related to the signal, these devices
can also add uncorrelated noise to the audio signal.

Total Harmonic Distortion and Noise (THD+N) quantifies the sum of these two distortions. It is
defined as the root mean square (RMS) level of all harmonics and noise components over a specified
bandwidth. The signal level is also specified as a reference.

Measurement of THD+N

This example introduces a reference model that can be used for THD+N measurements of audio input
and output devices. The steps involved in measurement are:

1 Generate a pure sine wave of a specific frequency.
2 Play the signal through an audio output device and record it through an audio input device.
3 From the recorded signal, identify the sine wave peak. This will give the reference signal RMS

level.
4 Remove the identified sine wave from recorded signal. What remains is everything unwanted,

and its RMS will give THD+N value.

This example follows the AES17-1998(r2004) [1] standard for THD+N measurement. The standard
recommends a 997 Hz frequency sine wave. It also recommends a notch filter having Q between 1
and 5 for filtering out the sine wave from recorded signal. A Q value of 5 is used in this example.

The audioTHDNmeasurementexample model implements a reference system for measuring THD+N.
Following the AES17-1998(r2004) standard, the sine wave source Test Tone generates a frequency
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of 997 Hz. The subsystem System Under Test is a variant subsystem. By default, it selects a non-
linear model implemented in Simulink for measuring the THD+N. To perform the measurement on
your machine's audio input and output device, set the SUT variable in base workspace to
THDNDemoSUT.AudioHardware.

The measurement is done by the THD+N Measurement subsystem.

Dual-Bandpass Controller

The measurement system in the model uses a dual-peak tracking filter to locate the notch at the test
tone's fundamental. This accommodates signal generators that are not synchronized to the ADC
clock. The output of this block is the center frequency coefficient of the notch filter that will be used
to extract the test sine tone. The two peaking filters in the controller are implemented using
dsp.NotchPeakFilter System objects. When the model is run, the feedback loop works to adjust
the center frequencies of the two peaking filters in such a way that the output locks on to the peak
tone of the input.

Notch-Peak Filter

Once the frequency of the sine wave has been identified, pass it to a peaking filter to extract the test
tone signal. This will be used to determine the test signal's peak level. A notch filter will then use the
same center frequency to remove the sine wave. The remaining signal is the sum of the total
harmonic distortion and noise. Use a single dsp.NotchPeakFilter to get both - notch and peak
outputs. The Q-factor of this filter is chosen as 5, conforming to AES17-1998 standard.

THD+N Computer

The THD+N Computer subsystem mimics a signal level meter. It takes the notch and peak outputs
and smooths them using a lowpass filter. It then converts the level of the signals to dB.
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You can run the model and see the displays update with measured sine wave frequency, THD+N level
in dB, and reference signal level in dB.

References

[1] AES17-1998 "AES standard method for digital audio engineering - Measurement of digital audio
equipment", Audio Engineering Society (1998), r2004.
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Measure Impulse Response of an Audio System

The impulse response (IR) is an important tool for characterizing or representing a linear time-
invariant (LTI) system. The Impulse Response Measurer enables you to measure and capture the
impulse response of audio systems, including:

• Audio I/O hardware
• Rooms and halls
• Enclosed spaces like inside of a car or a recording studio

In this example, you use the Impulse Response Measurer to measure the impulse response of your
room. You then use the acquired impulse response with audiopluginexample.FastConvolver to
add reverberation to an audio signal.

This example requires that your machine has an audio device capable of full-duplex mode and an
appropriate audio driver. To learn more about how the app records and plays audio data, see
audioPlayerRecorder.

Description of IR Measurement Techniques

The Swept Sine measurement technique uses an exponential time-growing frequency sweep as an
output signal. The output signal is recorded and deconvolution is used to recover the impulse-
response from the swept sine tone. For more details, see [1].

The Maximum-Length-Sequence (MLS) technique is based upon the excitation of the acoustical space
by a periodic pseudo-random signal. The impulse response is obtained by circular cross-correlation
between the measured output and the test tone (MLS sequence). For more details, see [2].

In this example, you use the MLS measurement technique.

Acquire Impulse Response of Room

1. To open the app, at the MATLAB® command prompt, enter:

impulseResponseMeasurer
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2. Use the default settings of the app and click Capture. Make sure the device name and the channel
number match your system's configuration.

3. Once you capture the impulse response, click the Export button and select To Workspace.
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Use Impulse Response to Add Reverb to an Audio Signal

Time-domain convolution of an input frame with a long impulse response adds latency equal to the
length of the impulse response. The algorithm used by the audiopluginexample.FastConvolver
plugin uses frequency-domain partitioned convolution to reduce the latency to twice the partition size
[3]. audiopluginexample.FastConvolver is well-suited to impulse responses acquired using
impulseResponseMeasurer.

1. To create an audiopluginexample.FastConvolver object, at the MATLAB® command prompt, enter:

fastConvolver = audiopluginexample.FastConvolver

fastConvolver = 
  audiopluginexample.FastConvolver with properties:

    ImpulseResponse: [0 0 -3.0518e-05 3.0518e-05 0 0 0 3.0518e-05 0 0 0 3.0518e-05 0 0 0 0 0 0 0 0 0 0 0 0 3.0518e-05 0 0 0 -3.0518e-05 -3.0518e-05 0 0 -3.0518e-05 0 0 3.0518e-05 0 -3.0518e-05 0 0 0 3.0518e-05 0 0 0 -3.0518e-05 0 0 0 0 3.0518e-05 0 0 … ]
      PartitionSize: 1024

2. Set the impulse response property to your acquired impulse response measurement. You can clear
the impulse response for your workspace once it is saved to the fast convolver.
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load measuredImpulseResponse
irEstimate = measuredImpulseResponse.ImpulseResponse.Amplitude(:,1);
fastConvolver.ImpulseResponse = irEstimate;

3. Open the audio test bench and specify your fast convolver object.

audioTestBench(fastConvolver)

4. By default, the Audio Test Bench reads from an audio file and writes to your audio device. Click
Run to listen to an audio file convolved with your acquired impulse response.

Tips and Tricks

The excitation level slider on the impulseResponseMeasurer applies gain to the output test tone. A
higher output level is generally recommended to maximize signal-to-noise ratio (SNR). However, if
the output level is too high, undesired distortion may occur.

Export to filter visualizer (FVTool) through the Export button to look at other useful plots like phase
response, group delay, etc.

References

[1] Farina, Angelo. "Advancements in impulse response measurements by sine sweeps." Presented at
the Audio Engineering Society 122nd Convention, Vienna, Austria, 2007.

[2] Guy-Bart, Stan, Jean-Jacques Embrechts, and Dominique Archambeau. "Comparison of different
impulse response measurement techniques." Journal of Audio Engineering Society. Vol. 50, Issue 4,
pp. 249-262.

[3] Armelloni, Enrico, Christian Giottoli, and Angelo Farina. "Implementation of real-time partitioned
convolution on a DSP board." Applications of Signal Processing to Audio and Acoustics, 2003 IEEE
Workshop on., pp. 71-74. IEEE, 2003.

1 Audio Toolbox Examples

1-266



Measure Frequency Response of an Audio Device

The frequency response (FR) is an important tool for characterizing the fidelity of an audio device or
component.

This example requires an audio device capable of recording and playing audio and an appropriate
audio driver. To learn more about how the example records and plays audio data, see
audioDeviceReader and audioDeviceWriter.

Description of FR Measurement Techniques

An FR measurement compares the output levels of an audio device to known input levels. A basic FR
measurement consists of two or three test tones: mid, high, and low.

In this example you perform an audible range FR measurement by sweeping a sine wave from the
lowest frequency in the range to the highest. A flat response indicates an audio device that responds
equally to all frequencies.

Setup Experiment

In this example, you measure the FR by playing an audio signal through audioDeviceWriter and
then recording the signal through audioDeviceReader. A loopback cable is used to physically
connect the audio-out port of the sound card to its audio-in port.

Audio Device Reader and Writer

To start, use the audioDeviceReader System object™ and audioDeviceWriter System object to
connect to the audio device. This example uses a Focusrite Scarlett 2i2 audio device with a 48 kHz
sampling rate.

sampleRate = 48e3;
device = "Focusrite USB ASIO";

aDR = audioDeviceReader( ...
      SampleRate=sampleRate, ...
      Device=device, ...
      Driver="ASIO", ...
      BitDepth="16-bit integer", ...
      ChannelMappingSource="Property", ...
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      ChannelMapping=1);

aDW = audioDeviceWriter( ...
      SampleRate=sampleRate, ...
      Device=device, ...
      Driver="ASIO", ...
      BitDepth="16-bit integer", ...
      ChannelMappingSource="Property", ...
      ChannelMapping=1);

Test Signal

The test signal is a sine wave with 1024 samples per frame and an initial frequency of 0 Hz. The
frequency is increased in 50 Hz increments to sweep the audible range.

samplesPerFrame = 1024;
sineSource  = audioOscillator( ...
      Frequency=0, ...
      SignalType="sine", ...
      SampleRate=sampleRate, ...
      SamplesPerFrame=samplesPerFrame);

Spectrum Analyzer

Use the spectrumAnalyzer to visualize the FR of your audio I/O system. 20 averages of the
spectrum estimate are used throughout the experiment and the resolution bandwidth is set to 50 Hz.
The sampling frequency is set to 48 kHz.

RBW = 50;
Navg = 20;

scope = spectrumAnalyzer( ...
      SampleRate=sampleRate, ...
      RBWSource="property",RBW=RBW, ...
      AveragingMethod="exponential", ...
      ForgettingFactor=0, ...
      FrequencySpan="start-and-stop-frequencies",...
      StartFrequency=0, ...
      StopFrequency=sampleRate/2, ...
      PlotAsTwoSidedSpectrum=false, ...
      FrequencyScale="log", ...
      PlotMaxHoldTrace=true, ...
      ShowLegend=true, ...
      YLimits=[-110 20],...
      YLabel="Power", ...
      Title="Audio Device Frequency Response");

Frequency Response Measurement Loop

To avoid the impact of setup time on the FR measurement, prerun your audio loop for 5 seconds.

Once the actual FR measurement starts, sweep the test signal through the audible frequency range.
Use the spectrum analyzer to visualize the FR.

tic
while toc < 5
    x = sineSource();
    aDW(x);
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    y = aDR();
    scope(y);    
end
        
count = 1;
readerDrops = 0;
writerDrops = 0;

while true
    if count == Navg
        newFreq = sineSource.Frequency + RBW;
        if newFreq > sampleRate/2
            break
        end
        sineSource.Frequency = newFreq;
        count = 1;
    end
    x = sineSource();
    writerUnderruns = aDW(x);
    [y,readerOverruns] = aDR();
    readerDrops = readerDrops + readerOverruns;        
    writerDrops = writerDrops + writerUnderruns; 
    scope(y);        
    count = count + 1;
end

release(aDR)
release(aDW)
release(scope)
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Frequency Response Measurement Results

The spectrum analyzer shows two plots. The first plot is the spectrum estimate of the last recorded
data. The second plot is the maximum power the spectrum analyzer computed for each frequency bin,
as the sine wave swept over the spectrum. To get the maximum hold plot data and the frequency
vector, you can use the object function getSpectrumData and plot the maximum hold trace only.

data = getSpectrumData(scope);
freqVector = data.FrequencyVector{1};
freqResponse = data.MaxHoldTrace{1};

semilogx(freqVector,freqResponse);
xlabel("Frequency (Hz)");
ylabel("Power (dBm)");
title("Audio Device Frequency Response");
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The frequency response plot indicates that the audio device tested in this example has a flat
frequency response in the audible range.
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Generate Standalone Executable for Parametric Audio
Equalizer

This example shows how to generate a standalone executable for parametric equalization using
MATLAB Coder™ and use it on an audio file. multibandParametricEQ is used for the equalization
algorithm. The example allows you to dynamically adjust the coefficients of the filters using a user
interface (UI) that is running in MATLAB.

Introduction

multibandParametricEQ allows up to ten equalizer bands in cascade. In this example, you create
an equalizer with three bands. Each of the three biquad filters allows three parameters to be tuned:
center frequency, Q factor, and the peak (or dip) gain.

audioEqualizerEXEExampleApp creates a UI to tune filter parameters and plot the magnitude
response of the equalizer. HelperEqualizerEXEProcessing> iteratively reads audio from a file,
applies the 3-band parametric equalization algorithm on it, and plays the output of the equalization.
Anytime during the simulation, it can also respond to the changes in the sliders of the MATLAB UI.
This section goes into the standalone executable.

Generating Code and Building an Executable File

You can use MATLAB Coder to generate readable and standalone C-code from the parametric
equalizer algorithm code. Because the algorithm code uses System objects for reading and playing
audio files, there are additional dependencies for the generated code and executable file. These are
available in the /bin directory of your MATLAB installation.

Run HelperAudioEqualizerGenerateEXE to invoke MATLAB Coder to automatically generate C-
code and a standalone executable from the algorithm code present in
HelperEqualizerEXEProcessing.

Running the example

Once you have generated the executable, run audioEqualizerEXEExampleApp to launch the
executable and a user interface (UI) designed to interact with the simulation. The UI allows you to
tune parameters and the results are reflected in the simulation instantly. For example, moving the
slider for the 'Center Frequency1' to the right while the simulation is running increases the center
frequency of the first parametric equalizer biquad filter. You can verify this by noticing the change
immediately in the magnitude response plot.
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Deploy Audio Applications with MATLAB Compiler

This example shows how to use MATLAB Compiler™ to create a standalone application from a
MATLAB function. The function implements an audio processing algorithm and plays the result
through your audio output device.

Introduction

In this example, you generate and run an executable application that applies artificial reverberation
to an audio signal and plays it through your selected audio device. The benefit of such applications is
that they can be run on a machine that need not have MATLAB installed. You would only need an
installation of MATLAB Runtime to deploy the application created in this example.

Reverberation Algorithm

The reverberation algorithm is implemented using the System object reverberator. It allows you to
add a reverberation effect to mono or stereo channel audio input. The object provides six properties
that control the nature of reverberation. Each of them can be tuned while the simulation is running.

MATLAB Simulation

The function audioReverberationCompilerExampleApp is a wrapper around reverberator. To
verify the behavior of audioReverberationCompilerExampleApp, run the function in MATLAB. It
takes an optional input which is time, in seconds, for which you want to play the audio. The default
value is 60.

audioReverberationCompilerExampleApp

The function audioReverberationCompilerExampleApp uses the getAudioDevices method of
audioDeviceWriter to list the audio output devices available on the current machine so that you
can play reverberated audio through the sound card of your choice. This is particularly helpful in
deployed applications because function authors rarely know what device will be connected on the
target machine.

audioReverberationCompilerExampleApp also maps the tunable properties of reverberator
to a UI so that you can easily tune them while the simulation is running and observe its effect
instantly. For example, move the slider 'Diffusion' to the right while the simulation is running. You will
hear an effect of increase in the density of reflections. You can use the buttons on the UI to pause or
stop the simulation.
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Create a Temporary Directory for Compilation

Once you have verified the MATLAB simulation, you can compile the function. Before compiling,
create a temporary directory in which you have write permissions. Copy the main MATLAB function
and the associated helper files into this temporary directory.

compilerDir = fullfile(tempdir,'compilerDir'); %Name of temporary directory
if ~exist(compilerDir,'dir')
    mkdir(compilerDir); % Create temporary directory
end
curDir = cd(compilerDir);
copyfile(which('audioReverberationCompilerExampleApp'));
copyfile(which('HelperAudioReverberation'));
copyfile(which('FunkyDrums-44p1-stereo-25secs.mp3'))
copyfile(which('HelperCreateParamTuningUI'));
copyfile(which('HelperUnpackUIData'));

Compile the MATLAB Function into a Standalone Application

Use the mcc (MATLAB Compiler) function from MATLAB Compiler to compile
audioReverberationCompilerExampleApp into a standalone application. This will be saved in
the current directory. Specify the '-m' option to generate a standalone application, '-N' option to
include only the directories in the path specified using the '-p' option.
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mcc('-mN','audioReverberationCompilerExampleApp', ...
    '-p',fullfile(matlabroot,'toolbox','dsp'), ...
    '-p',fullfile(matlabroot,'toolbox','audio'));

This step takes a few minutes to complete.

Run the Generated Application

Use the system command to run the generated standalone application. Note that running the
standalone application using the system command uses the current MATLAB environment and any
library files needed from this installation of MATLAB. To deploy this application on a machine which
does not have MATLAB installed, refer to “About the MATLAB Runtime” (MATLAB Compiler).

if ismac
    status = system(fullfile('audioReverberationCompilerExampleApp.app', ...
        'Contents','MacOS','audioReverberationCompilerExampleApp'));
else
    status = system(fullfile(pwd,'audioReverberationCompilerExampleApp'));
end

Similar to the MATLAB simulation, running this deployed application will first ask you to choose the
audio device that you want to use to play audio. Then, it launches the user interface (UI) to interact
with the reverberation algorithm while the simulation is running.
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Clean up Generated Files

After generating and deploying the executable, you can clean up the temporary directory by running
the following in the MATLAB command prompt:

cd(curDir);
rmdir(compilerDir,'s');
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Parametric Audio Equalizer for Android Devices

This example shows how to use the Single-Band Parametric EQ block and the
multibandParametricEQ System object™ from the Audio Toolbox™ to implement a parametric
audio equalizer model. You can run the model on your host computer or deploy it to an Android
device.

Introduction

Parametric equalizers are used to adjust the frequency response of audio systems. For example, a
parametric equalizer can compensate for biases introduced by specific speakers. Equalization is a
primary tool in audio recording technologies.

In this example, you design a parametric audio equalizer in a Simulink® model. You can run your
model on the host computer or an Android device. The equalization algorithm is a cascade of three
filters with tunable center frequencies, bandwidths, and gains. You can visualize the frequency
response in real time while adjusting the parameters.

Required Hardware

To run this example on Android devices you need the following hardware:

• Android phone or tablet
• USB cable to connect the device to your development (host) computer
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Model Setup

The audioEqualizerAndroid model provides a choice of device (host computer or Android device), and
audio source (MATLAB workspace or microphone). You can choose the configuration by clicking the
Configuration UI button.

Configuration UI:
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Run Model on the Host Computer

When you choose to run the model on the host computer, a UI designed to interact with the
simulation is provided and can be opened by clicking Host Tuning UI.

Host Tuning UI:
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The UI allows you to tune the parameters of three filters individually, and view the frequency
response in real time. You can also check the Bypass check box to compare the modified sound with
the original sound.

Click the View Frequency Response button to visualize the frequency response of the filters.
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Run Model on an Android Device

To run the model on your Android device, you need to first ensure that you have installed Simulink
Support Package for Android Devices and that your Android device is provisioned.

Once your Android device is properly configured, use a USB cable to connect the device to your host
computer.

You can choose to make a standalone Android equalizer app by clicking the Deploy to hardware
button on the Simulink Editor toolbar. After deployment, the app can run on your Android device even
when it is disconnected from the host computer. The parameter tuning UI and the frequency response
display on your Android device screen, as shown below:
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Parametric Audio Equalizer for iOS Devices

This example shows how to use the Single-Band Parametric EQ block and the
multibandParametricEQ System object™ to implement a parametric audio equalizer model, that
can run on your host computer or an Apple iOS device.

Introduction

Parametric equalizers are used to adjust the frequency response of audio systems. For example, a
parametric equalizer can compensate for biases introduced by specific speakers. Equalization is a
primary tool in audio recording technologies.

In this example, you design a parametric audio equalizer in a Simulink® model. You can run your
model on the host computer or an iOS device. The equalization algorithm is a cascade of three filters
with tunable center frequencies, bandwidths, and gains. You can visualize the frequency response in
real time while adjusting the parameters.

Required Hardware

To run this example on iOS devices you need the following hardware:

• iPhone, iPod or an iPad
• Host computer with Mac OS X system
• USB cable to connect the iOS device to host computer
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Model Setup

The audioequalizeriOS model provides a choice of device (host computer or iOS device), and audio
source (MATLAB workspace or microphone). You can choose the configuration by clicking the
Configuration UI button.

Configuration UI:
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Run Model on the Host Computer

When you choose to run the model on the host computer, a UI designed to interact with the
simulation is provided and can be opened by clicking Host Tuning UI.

Host Tuning UI:
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The UI allows you to tune the parameters of three filters individually, and view the frequency
response in real time. You can also check the Bypass check box to compare the modified sound with
the original sound.

Click the View Frequency Response button to visualize the filters frequency response.
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Run Model on an Apple iOS Device

To run the model on your Apple iOS device, you need to first ensure that you have installed Simulink
Support Package for Apple iOS Devices and that your iOS device is provisioned.

Once your iOS device is properly configured, use a USB cable to connect the device to your host
computer.

You can choose to make an iOS standalone equalizer app by clicking the Deploy to hardware
button on the Simulink Editor toolbar. After deployment, the app can run on your iOS device even
when it is disconnected from the host computer. The parameter tuning UI displays on your iOS device
screen, as shown below:
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You can also run the model in External mode by clicking the Run button on the Simulink Editor
toolbar. To run in External mode, the iOS device must stay connected to the host computer. This
mode enables you to view the frequency response on the host computer while adjusting parameters
on your iOS device. Frequency response will display on the host screen as follows:
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Audio Effects for iOS Devices

This example shows how to use System objects™ from Audio Toolbox™ to implement echo and
reverberation effects in a Simulink® model. You can run the model on your host computer or deploy
it to an Apple iOS device.

Introduction

Echo and reverberation are two commonly-used audio effects in recording, movie making, and sound
design. Echo is a reflection of sound that arrives at the listener with a delay after the direct sound.
Echo can be produced by the bottom of a well or by the walls of a building. Reverberation is a large
number of sound reflections building up and then decaying. A common use of reverberation is to
simulate music played in a closed room. Most digital audio workstations (DAWs) have options to add
echo and reverberation effects to sound tracks.

In this example, you design and implement echo and reverberation audio effects in a Simulink model.
You can run your model on the host computer or an Apple iOS device.

Required Hardware

To run this example on iOS devices you will need the following hardware:

• iPhone, iPod or an iPad
• Host computer with Mac OS X system
• USB cable to connect the device to host computer
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Model Setup

The audioeffectsiOS model provides a choice of audio effect (echo or reverberation), device (host
computer or iOS device), and audio source (MATLAB workspace or microphone). You can choose the
configuration by clicking the Configuration UI button.

Configuration UI:
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Audio Effect: Echo

The echo effect has four tunable parameters that can be modified while the model is running:

• Delay - Delay applied to audio signal, in seconds
• Gain - Linear gain of the delayed audio
• FeedbackLevel - Feedback gain applied to delay line
• Wet/Dry Mix - Ratio of wet signal added to dry signal

Run Echo Effect on the Host Computer

If you choose to run the echo effect on your host computer, a UI designed to interact with the
simulation is provided and can be opened by clicking Host Tuning UI. The UI allows you to tune
echo parameters and hear the echo sound effect in real time.

Host tuning UI for echo effect:
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Run Echo Effect on an Apple iOS Device

When you choose to run the echo effect on your Apple iOS device, you need to first ensure that you
have installed Simulink Support Package for Apple iOS Devices and that your iOS device
is provisioned.

Once your iOS device is properly configured, use a USB cable to connect the device to your host
computer.

You can choose to make an iOS standalone echo effect app by clicking the Deploy to hardware
button on the Simulink Editor toolbar. After deployment, the app can run on your iOS device even
when it is disconnected from the host computer. You can also run the model in External mode by
clicking the Run button on the Simulink Editor toolbar. To run in External mode, the iOS device
must stay connected to the host computer.

The UI for the echo effect displays on your iOS device screen, as shown below:
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Audio Effect: Reverberation

The reverberation effect has six tunable parameters that can be modified while the model is running:

• Pre-delay - Time between hearing direct sound and the first early reflection
• Highcut frequency - Cutoff frequency for the lowpass filter at the front of the reverberator

structure
• Diffusion - Density of reverb tail
• Decay factor - Decay factor of reverb tail
• High Frequency Damping - Attenuation of high frequencies in the reverberation output
• Wet/Dry Mix - Ratio of wet signal added to dry signal

Run Reverberation Effect on the Host Computer

If you choose to run the reverberation effect on your host computer, a UI designed to interact with
the simulation is provided and can be opened by clicking Host Tuning UI. The UI allows you to
tune reverberation parameters and hear the reverberation sound effect in real time.

Host tuning UI for reverberation effect:
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Run Reverberation Effect on an Apple iOS Device

When you choose to run the reverberation effect on your Apple iOS device, you need to first ensure
that you have installed Simulink Support Package for Apple iOS Devices and that your iOS
device is provisioned.

Once your iOS device is properly configured, use a USB cable to connect the device to your host
computer.

You can choose to make an iOS standalone reverberation effect app by clicking the Deploy to
hardware button on the Simulink Editor toolbar. After deployment, the app can run on your iOS
device even when it is disconnected from the host computer. You can also run the model in External
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mode by clicking the Run button on the Simulink Editor toolbar. To run in External mode, the iOS
device must stay connected to the host computer.

The UI for the reverberation effect displays on your iOS device screen, as shown below:
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Multiband Dynamic Range Compression for iOS Devices

This example shows how to use the Crossover Filter block and compressor System object™ from the
Audio Toolbox™ to implement a multiband dynamic range compressor model. You can run the model
on your host computer or deploy it to an Apple iOS device.

Introduction

Dynamic range compression reduces the dynamic range of a signal by attenuating the level of strong
peaks, while leaving weaker peaks unchanged. Compression has applications in audio recording,
mixing, and broadcasting.

Multiband compression compresses different audio frequency bands separately, by first splitting the
audio signal into multiple bands and then passing each band through its own independently
adjustable compressor. Multiband compression is widely used in audio production and is often
included in digital audio workstations.

The multiband compressor in this example first splits an audio signal into different bands using a
multiband crossover filter. Linkwitz-Riley crossover filters are used to obtain an overall allpass
frequency response. Each band is then compressed using a separate dynamic range compressor. Key
compressor characteristics, such as the threshold, the compression ratio, the attack time and the
release time are independently tunable for each band. You can run the model either on the host
computer or an Apple iOS device.

Required Hardware

To run this example on iOS devices you need the following hardware:

• iPhone, iPod or an iPad
• Host computer with Mac OS X system
• USB cable to connect the iOS device to host computer
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Model Setup

The audiomultibandcompressoriOS model is a cascade of audio sources, a multiband crossover
filter, compressors, and a display subsystem. It provides a choice of model running device (host
computer or iOS device) and audio source (MATLAB workspace or microphone). You can choose the
configuration by clicking the Configuration UI button.

Configuration UI:
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Crossover Filter

A crossover filter can split an audio signal into two or more frequency bands. Its overall magnitude
frequency response is flat, which retains frequency domain properties of an input audio signal.

In this model, you use the Crossover Filter block from Audio Toolbox. You can open the block UI by
clicking Crossover Filter UI and modify the cut-off frequencies.

Crossover Filter UI:
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Note the Number of crossovers is set to 3 in this model to make a 4-band compressor. To make
sure the model works properly, please keep Number of crossovers to be 3 and do not change it to
other values.

Multiband Dynamic Range Compressor

In this example, the multiband dynamic range compressor is composed of four parallel single band
compressors. Each single band compressor controls one frequency band, whose frequency range is
set by the crossover filter.

There are four principal parameters for each single band compressor:

• Threshold - the level above which the input signal is compressed
• Ratio - the amount of compression
• Attack time - the time it takes the compressor gain to rise from 10% to 90% of its final value when

the input goes above the threshold
• Release time - the time it takes the compressor gain to drop from 90% to 10% of its final value

when the input goes below the threshold

In this example, you can modify the parameters for the four bands independently and view the static
compression characteristic plots in real time.

Run Model on the Host Computer

When you choose to run the model on the host computer, you can tune the compressor parameters by
clicking Compressor Host Tuning UI.

Compressor Host Tuning UI:
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The UI enables you to tune the parameters of four single-band compressors individually, and view the
static compression characteristics in real time. You can check the Bypass check box to compare the
modified sound with the original sound.

Click the View static characteristic button to visualize the static compression characteristic
plot.

To compare the dynamic range of the uncompressed and compressed signals, the dynamic range is
computed and displayed on the Simulink Model Display bar. The waveform of the uncompressed and
compressed signals is also plotted in real time.

Waveform of the uncompressed and compressed signals:
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Run Model on an Apple iOS Device

To run the model on your Apple iOS device, you need to first ensure that you have installed Simulink
Support Package for Apple iOS Devices and that your iOS device is provisioned.

Once your iOS device is properly configured, use a USB cable to connect the device to your host
computer.

You can choose to make an iOS standalone app by clicking the Deploy to hardware button on the
Simulink Editor toolbar. After deployment, the app can run on your iOS device even when it is
disconnected from the host computer. The compressor parameter tuning UI and the dynamic range
display are designed on your iOS device screen, as shown below:
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You can also run the model in External mode by clicking the Run button on the Simulink Editor
toolbar. To run in External mode, the iOS device must stay connected to the host computer. Besides
tuning compressor parameters on the iOS device screen, in this mode, you can open the Crossover
Filter UI on the host computer and modify the cut-off frequencies while the model is running. This
mode also enables you to view the dynamic range of the uncompressed and compressed signals in
real time on the host computer.
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Denoise Speech Using Deep Learning Networks

This example shows how to denoise speech signals using deep learning networks. The example
compares two types of networks applied to the same task: fully connected, and convolutional.

Introduction

The aim of speech denoising is to remove noise from speech signals while enhancing the quality and
intelligibility of speech. This example showcases the removal of washing machine noise from speech
signals using deep learning networks. The example compares two types of networks applied to the
same task: fully connected, and convolutional.

Problem Summary

Consider the following speech signal sampled at 8 kHz.

[cleanAudio,fs] = audioread("SpeechDFT-16-8-mono-5secs.wav");
sound(cleanAudio,fs)

Add washing machine noise to the speech signal. Set the noise power such that the signal-to-noise
ratio (SNR) is zero dB.

noise = audioread("WashingMachine-16-8-mono-1000secs.mp3");

% Extract a noise segment from a random location in the noise file
ind = randi(numel(noise) - numel(cleanAudio) + 1,1,1);
noiseSegment = noise(ind:ind + numel(cleanAudio) - 1);

speechPower = sum(cleanAudio.^2);
noisePower = sum(noiseSegment.^2);
noisyAudio = cleanAudio + sqrt(speechPower/noisePower)*noiseSegment;

Listen to the noisy speech signal.

sound(noisyAudio,fs)

Visualize the original and noisy signals.

t = (1/fs)*(0:numel(cleanAudio) - 1);

figure(1)
tiledlayout(2,1)

nexttile
plot(t,cleanAudio)
title("Clean Audio")
grid on

nexttile
plot(t,noisyAudio)
title("Noisy Audio")
xlabel("Time (s)")
grid on
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The objective of speech denoising is to remove the washing machine noise from the speech signal
while minimizing undesired artifacts in the output speech.

Examine the Dataset

This example uses a subset of the Mozilla Common Voice dataset [1 on page 1-331] to train and test
the deep learning networks. The data set contains 48 kHz recordings of subjects speaking short
sentences. Download the data set and unzip the downloaded file.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","commonvoice.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
dataset = fullfile(dataFolder,"commonvoice");

Use audioDatastore to create a datastore for the training set. To speed up the runtime of the
example at the cost of performance, set speedupExample to true.

adsTrain = audioDatastore(fullfile(dataset,"train"),IncludeSubfolders=true);

speedupExample = ;
if speedupExample
    adsTrain = shuffle(adsTrain);
    adsTrain = subset(adsTrain,1:1000);
end
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Use read to get the contents of the first file in the datastore.

[audio,adsTrainInfo] = read(adsTrain);

Listen to the speech signal.

sound(audio,adsTrainInfo.SampleRate)

Plot the speech signal.

figure(2)
t = (1/adsTrainInfo.SampleRate) * (0:numel(audio)-1);
plot(t,audio)
title("Example Speech Signal")
xlabel("Time (s)")
grid on

Deep Learning System Overview

The basic deep learning training scheme is shown below. Note that, since speech generally falls
below 4 kHz, you first downsample the clean and noisy audio signals to 8 kHz to reduce the
computational load of the network. The predictor and target network signals are the magnitude
spectra of the noisy and clean audio signals, respectively. The network's output is the magnitude
spectrum of the denoised signal. The regression network uses the predictor input to minimize the
mean square error between its output and the input target. The denoised audio is converted back to
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the time domain using the output magnitude spectrum and the phase of the noisy signal [2 on page 1-
331].

You transform the audio to the frequency domain using the Short-Time Fourier transform (STFT),
with a window length of 256 samples, an overlap of 75%, and a Hamming window. You reduce the size
of the spectral vector to 129 by dropping the frequency samples corresponding to negative
frequencies (because the time-domain speech signal is real, this does not lead to any information
loss). The predictor input consists of 8 consecutive noisy STFT vectors, so that each STFT output
estimate is computed based on the current noisy STFT and the 7 previous noisy STFT vectors.
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STFT Targets and Predictors

This section illustrates how to generate the target and predictor signals from one training file.

First, define system parameters:

windowLength = 256;
win = hamming(windowLength,"periodic");
overlap = round(0.75*windowLength);
fftLength = windowLength;
inputFs = 48e3;
fs = 8e3;
numFeatures = fftLength/2 + 1;
numSegments = 8;

Create a dsp.SampleRateConverter object to convert the 48 kHz audio to 8 kHz.

src = dsp.SampleRateConverter(InputSampleRate=inputFs,OutputSampleRate=fs,Bandwidth=7920);

Use read to get the contents of an audio file from the datastore.
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audio = read(adsTrain);

Make sure the audio length is a multiple of the sample rate converter decimation factor.

decimationFactor = inputFs/fs;
L = floor(numel(audio)/decimationFactor);
audio = audio(1:decimationFactor*L);

Convert the audio signal to 8 kHz.

audio = src(audio);
reset(src)

Create a random noise segment from the washing machine noise vector.

randind = randi(numel(noise) - numel(audio),[1 1]);
noiseSegment = noise(randind:randind + numel(audio) - 1);

Add noise to the speech signal such that the SNR is 0 dB.

noisePower = sum(noiseSegment.^2);
cleanPower = sum(audio.^2);
noiseSegment = noiseSegment.*sqrt(cleanPower/noisePower);
noisyAudio = audio + noiseSegment;

Use stft to generate magnitude STFT vectors from the original and noisy audio signals.

cleanSTFT = stft(audio,Window=win,OverlapLength=overlap,fftLength=fftLength);
cleanSTFT = abs(cleanSTFT(numFeatures-1:end,:));
noisySTFT = stft(noisyAudio,Window=win,OverlapLength=overlap,fftLength=fftLength);
noisySTFT = abs(noisySTFT(numFeatures-1:end,:));

Generate the 8-segment training predictor signals from the noisy STFT. The overlap between
consecutive predictors is 7 segments.

noisySTFT = [noisySTFT(:,1:numSegments - 1),noisySTFT];
stftSegments = zeros(numFeatures,numSegments,size(noisySTFT,2) - numSegments + 1);
for index = 1:size(noisySTFT,2) - numSegments + 1
    stftSegments(:,:,index) = noisySTFT(:,index:index + numSegments - 1); 
end

Set the targets and predictors. The last dimension of both variables corresponds to the number of
distinct predictor/target pairs generated by the audio file. Each predictor is 129-by-8, and each target
is 129-by-1.

targets = cleanSTFT;
size(targets)

ans = 1×2

   129   544

predictors = stftSegments;
size(predictors)

ans = 1×3

   129     8   544
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Extract Features Using Tall Arrays

To speed up processing, extract feature sequences from the speech segments of all audio files in the
datastore using tall arrays. Unlike in-memory arrays, tall arrays typically remain unevaluated until
you call the gather function. This deferred evaluation enables you to work quickly with large data
sets. When you eventually request output using gather, MATLAB combines the queued calculations
where possible and takes the minimum number of passes through the data. If you have Parallel
Computing Toolbox™, you can use tall arrays in your local MATLAB session, or on a local parallel
pool. You can also run tall array calculations on a cluster if you have MATLAB® Parallel Server™
installed.

First, convert the datastore to a tall array.

reset(adsTrain)
T = tall(adsTrain)

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).
T =

  M×1 tall cell array

    {234480×1 double}
    {210288×1 double}
    {282864×1 double}
    {292080×1 double}
    {410736×1 double}
    {303600×1 double}
    {326640×1 double}
    {233328×1 double}
        :        :
        :        :

The display indicates that the number of rows (corresponding to the number of files in the datastore),
M, is not yet known. M is a placeholder until the calculation completes.

Extract the target and predictor magnitude STFT from the tall table. This action creates new tall
array variables to use in subsequent calculations. The function
HelperGenerateSpeechDenoisingFeatures performs the steps already highlighted in the STFT
Targets and Predictors on page 1-316 section. The cellfun command applies
HelperGenerateSpeechDenoisingFeatures to the contents of each audio file in the datastore.

[targets,predictors] = cellfun(@(x)HelperGenerateSpeechDenoisingFeatures(x,noise,src),T,UniformOutput=false);

Use gather to evaluate the targets and predictors.

[targets,predictors] = gather(targets,predictors);

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 52 sec
Evaluation completed in 1 min 53 sec

It is good practice to normalize all features to zero mean and unity standard deviation.

Compute the mean and standard deviation of the predictors and targets, respectively, and use them to
normalize the data.
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predictors = cat(3,predictors{:});
noisyMean = mean(predictors(:));
noisyStd = std(predictors(:));
predictors(:) = (predictors(:) - noisyMean)/noisyStd;

targets = cat(2,targets{:});
cleanMean = mean(targets(:));
cleanStd = std(targets(:));
targets(:) = (targets(:) - cleanMean)/cleanStd;

Reshape predictors and targets to the dimensions expected by the deep learning networks.

predictors = reshape(predictors,size(predictors,1),size(predictors,2),1,size(predictors,3));
targets = reshape(targets,1,1,size(targets,1),size(targets,2));

You will use 1% of the data for validation during training. Validation is useful to detect scenarios
where the network is overfitting the training data.

Randomly split the data into training and validation sets.

inds = randperm(size(predictors,4));
L = round(0.99*size(predictors,4));

trainPredictors = predictors(:,:,:,inds(1:L));
trainTargets = targets(:,:,:,inds(1:L));

validatePredictors = predictors(:,:,:,inds(L+1:end));
validateTargets = targets(:,:,:,inds(L+1:end));

Speech Denoising with Fully Connected Layers

You first consider a denoising network comprised of fully connected layers. Each neuron in a fully
connected layer is connected to all activations from the previous layer. A fully connected layer
multiplies the input by a weight matrix and then adds a bias vector. The dimensions of the weight
matrix and bias vector are determined by the number of neurons in the layer and the number of
activations from the previous layer.

Define the layers of the network. Specify the input size to be images of size NumFeatures-by-
NumSegments (129-by-8 in this example). Define two hidden fully connected layers, each with 1024
neurons. Since purely linear systems, follow each hidden fully connected layer with a Rectified Linear
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Unit (ReLU) layer. The batch normalization layers normalize the means and standard deviations of the
outputs. Add a fully connected layer with 129 neurons, followed by a regression layer.

layers = [
    imageInputLayer([numFeatures,numSegments])
    fullyConnectedLayer(1024)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(1024)
    batchNormalizationLayer
    reluLayer
    fullyConnectedLayer(numFeatures)
    regressionLayer
    ];

Next, specify the training options for the network. Set MaxEpochs to 3 so that the network makes 3
passes through the training data. Set MiniBatchSize of 128 so that the network looks at 128
training signals at a time. Specify Plots as "training-progress" to generate plots that show the
training progress as the number of iterations increases. Set Verbose to false to disable printing the
table output that corresponds to the data shown in the plot into the command line window. Specify
Shuffle as "every-epoch" to shuffle the training sequences at the beginning of each epoch.
Specify LearnRateSchedule to "piecewise" to decrease the learning rate by a specified factor
(0.9) every time a certain number of epochs (1) has passed. Set ValidationData to the validation
predictors and targets. Set ValidationFrequency such that the validation mean square error is
computed once per epoch. This example uses the adaptive moment estimation (Adam) solver.

miniBatchSize = 128;
options = trainingOptions("adam", ...
    MaxEpochs=3, ...
    InitialLearnRate=1e-5,...
    MiniBatchSize=miniBatchSize, ...
    Shuffle="every-epoch", ...
    Plots="training-progress", ...
    Verbose=false, ...
    ValidationFrequency=floor(size(trainPredictors,4)/miniBatchSize), ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropFactor=0.9, ...
    LearnRateDropPeriod=1, ...
    ValidationData={validatePredictors,validateTargets});

Train the network with the specified training options and layer architecture using trainNetwork.
Because the training set is large, the training process can take several minutes. To download and load
a pre-trained network instead of training a network from scratch, set downloadPretrainedSystem
to true.

downloadPretrainedSystem = ;
if downloadPretrainedSystem
    downloadFolder = matlab.internal.examples.downloadSupportFile("audio","SpeechDenoising.zip");
    dataFolder = tempdir;
    unzip(downloadFolder,dataFolder)
    netFolder = fullfile(dataFolder,"SpeechDenoising");
    
    s = load(fullfile(netFolder,"denoisenet.mat"));

    denoiseNetFullyConnected = s.denoiseNetFullyConnected;
    cleanMean = s.cleanMean;
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    cleanStd = s.cleanStd;
    noisyMean = s.noisyMean;
    noisyStd = s.noisyStd;
else
    denoiseNetFullyConnected = trainNetwork(trainPredictors,trainTargets,layers,options);
end

Count the number of weights in the fully connected layers of the network.

numWeights = 0;
for index = 1:numel(denoiseNetFullyConnected.Layers)
    if isa(denoiseNetFullyConnected.Layers(index),"nnet.cnn.layer.FullyConnectedLayer")
        numWeights = numWeights + numel(denoiseNetFullyConnected.Layers(index).Weights);
    end
end
disp("Number of weights = " + numWeights);

Number of weights = 2237440

Speech Denoising with Convolutional Layers

Consider a network that uses convolutional layers instead of fully connected layers [3 on page 1-331].
A 2-D convolutional layer applies sliding filters to the input. The layer convolves the input by moving
the filters along the input vertically and horizontally and computing the dot product of the weights
and the input, and then adding a bias term. Convolutional layers typically consist of fewer parameters
than fully connected layers.

Define the layers of the fully convolutional network described in [3 on page 1-331], comprising 16
convolutional layers. The first 15 convolutional layers are groups of 3 layers, repeated 5 times, with
filter widths of 9, 5, and 9, and number of filters of 18, 30 and 8, respectively. The last convolutional
layer has a filter width of 129 and 1 filter. In this network, convolutions are performed in only one
direction (along the frequency dimension), and the filter width along the time dimension is set to 1 for
all layers except the first one. Similar to the fully connected network, convolutional layers are
followed by ReLu and batch normalization layers.

layers = [imageInputLayer([numFeatures,numSegments])
          convolution2dLayer([9 8],18,Stride=[1 100],Padding="same")
          batchNormalizationLayer
          reluLayer
          
          repmat( ...
          [convolution2dLayer([5 1],30,Stride=[1 100],Padding="same")
          batchNormalizationLayer
          reluLayer
          convolution2dLayer([9 1],8,Stride=[1 100],Padding="same")
          batchNormalizationLayer
          reluLayer
          convolution2dLayer([9 1],18,Stride=[1 100],Padding="same")
          batchNormalizationLayer
          reluLayer],4,1)
          
          convolution2dLayer([5 1],30,Stride=[1 100],Padding="same")
          batchNormalizationLayer
          reluLayer
          convolution2dLayer([9 1],8,Stride=[1 100],Padding="same")
          batchNormalizationLayer
          reluLayer
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          convolution2dLayer([129 1],1,Stride=[1 100],Padding="same")
          
          regressionLayer
          ];

The training options are identical to the options for the fully connected network, except that the
dimensions of the validation target signals are permuted to be consistent with the dimensions
expected by the regression layer.

options = trainingOptions("adam", ...
    MaxEpochs=3, ...
    InitialLearnRate=1e-5, ...
    MiniBatchSize=miniBatchSize, ...
    Shuffle="every-epoch", ...
    Plots="training-progress", ...
    Verbose=false, ...
    ValidationFrequency=floor(size(trainPredictors,4)/miniBatchSize), ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropFactor=0.9, ...
    LearnRateDropPeriod=1, ...
    ValidationData={validatePredictors,permute(validateTargets,[3 1 2 4])});

Train the network with the specified training options and layer architecture using trainNetwork.
Because the training set is large, the training process can take several minutes. To download and load
a pre-trained network instead of training a network from scratch, set downloadPretrainedSystem
to true.

downloadPretrainedSystem = ;
if downloadPretrainedSystem
    downloadFolder = matlab.internal.examples.downloadSupportFile("audio","SpeechDenoising.zip");
    dataFolder = tempdir;
    unzip(downloadFolder,dataFolder)
    netFolder = fullfile(dataFolder,"SpeechDenoising");

    s = load(fullfile(netFolder,"denoisenet.mat"));

    denoiseNetFullyConvolutional = s.denoiseNetFullyConvolutional;
    cleanMean = s.cleanMean;
    cleanStd = s.cleanStd;
    noisyMean = s.noisyMean;
    noisyStd = s.noisyStd;
else
    denoiseNetFullyConvolutional = trainNetwork(trainPredictors,permute(trainTargets,[3 1 2 4]),layers,options);
end

Count the number of weights in the fully connected layers of the network.

numWeights = 0;
for index = 1:numel(denoiseNetFullyConvolutional.Layers)
    if isa(denoiseNetFullyConvolutional.Layers(index),"nnet.cnn.layer.Convolution2DLayer")
        numWeights = numWeights + numel(denoiseNetFullyConvolutional.Layers(index).Weights);
    end
end
disp("Number of weights in convolutional layers = " + numWeights);

Number of weights in convolutional layers = 31812
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Test the Denoising Networks

Read in the test data set.

adsTest = audioDatastore(fullfile(dataset,"test"),IncludeSubfolders=true);

Read the contents of a file from the datastore.

[cleanAudio,adsTestInfo] = read(adsTest);

Make sure the audio length is a multiple of the sample rate converter decimation factor.

L = floor(numel(cleanAudio)/decimationFactor);
cleanAudio = cleanAudio(1:decimationFactor*L);

Convert the audio signal to 8 kHz.

cleanAudio = src(cleanAudio);
reset(src)

In this testing stage, you corrupt speech with washing machine noise not used in the training stage.

noise = audioread("WashingMachine-16-8-mono-200secs.mp3");

Create a random noise segment from the washing machine noise vector.

randind = randi(numel(noise) - numel(cleanAudio), [1 1]);
noiseSegment = noise(randind:randind + numel(cleanAudio) - 1);

Add noise to the speech signal such that the SNR is 0 dB.

noisePower = sum(noiseSegment.^2);
cleanPower = sum(cleanAudio.^2);
noiseSegment = noiseSegment.*sqrt(cleanPower/noisePower);
noisyAudio = cleanAudio + noiseSegment;

Use stft to generate magnitude STFT vectors from the noisy audio signals.

noisySTFT = stft(noisyAudio,Window=win,OverlapLength=overlap,fftLength=fftLength);
noisyPhase = angle(noisySTFT(numFeatures-1:end,:));
noisySTFT = abs(noisySTFT(numFeatures-1:end,:));

Generate the 8-segment training predictor signals from the noisy STFT. The overlap between
consecutive predictors is 7 segments.

noisySTFT = [noisySTFT(:,1:numSegments-1) noisySTFT];
predictors = zeros(numFeatures,numSegments,size(noisySTFT,2) - numSegments + 1);
for index = 1:(size(noisySTFT,2) - numSegments + 1)
    predictors(:,:,index) = noisySTFT(:,index:index + numSegments - 1); 
end

Normalize the predictors by the mean and standard deviation computed in the training stage.

predictors(:) = (predictors(:) - noisyMean)/noisyStd;

Compute the denoised magnitude STFT by using predict with the two trained networks.

predictors = reshape(predictors,[numFeatures,numSegments,1,size(predictors,3)]);
STFTFullyConnected = predict(denoiseNetFullyConnected,predictors);
STFTFullyConvolutional = predict(denoiseNetFullyConvolutional,predictors);
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Scale the outputs by the mean and standard deviation used in the training stage.

STFTFullyConnected(:) = cleanStd*STFTFullyConnected(:) + cleanMean;
STFTFullyConvolutional(:) = cleanStd*STFTFullyConvolutional(:) + cleanMean;

Convert the one-sided STFT to a centered STFT.

STFTFullyConnected = (STFTFullyConnected.').*exp(1j*noisyPhase);
STFTFullyConnected = [conj(STFTFullyConnected(end-1:-1:2,:));STFTFullyConnected];
STFTFullyConvolutional = squeeze(STFTFullyConvolutional).*exp(1j*noisyPhase);
STFTFullyConvolutional = [conj(STFTFullyConvolutional(end-1:-1:2,:));STFTFullyConvolutional];

Compute the denoised speech signals. istft performs the inverse STFT. Use the phase of the noisy
STFT vectors to reconstruct the time-domain signal.

denoisedAudioFullyConnected = istft(STFTFullyConnected,Window=win,OverlapLength=overlap,fftLength=fftLength,ConjugateSymmetric=true);                       
denoisedAudioFullyConvolutional = istft(STFTFullyConvolutional,Window=win,OverlapLength=overlap,fftLength=fftLength,ConjugateSymmetric=true);

Plot the clean, noisy and denoised audio signals.

t = (1/fs)*(0:numel(denoisedAudioFullyConnected)-1);

figure(3)
tiledlayout(4,1)

nexttile
plot(t,cleanAudio(1:numel(denoisedAudioFullyConnected)))
title("Clean Speech")
grid on

nexttile
plot(t,noisyAudio(1:numel(denoisedAudioFullyConnected)))
title("Noisy Speech")
grid on

nexttile
plot(t,denoisedAudioFullyConnected)
title("Denoised Speech (Fully Connected Layers)")
grid on

nexttile
plot(t,denoisedAudioFullyConvolutional)
title("Denoised Speech (Convolutional Layers)")
grid on
xlabel("Time (s)")
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Plot the clean, noisy, and denoised spectrograms.

h = figure(4);
tiledlayout(4,1)

nexttile
spectrogram(cleanAudio,win,overlap,fftLength,fs);
title("Clean Speech")
grid on

nexttile
spectrogram(noisyAudio,win,overlap,fftLength,fs);
title("Noisy Speech")
grid on

nexttile
spectrogram(denoisedAudioFullyConnected,win,overlap,fftLength,fs);
title("Denoised Speech (Fully Connected Layers)")
grid on

nexttile
spectrogram(denoisedAudioFullyConvolutional,win,overlap,fftLength,fs);
title("Denoised Speech (Convolutional Layers)")
grid on
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p = get(h,"Position");
set(h,"Position",[p(1) 65 p(3) 800]);
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Listen to the noisy speech.

sound(noisyAudio,fs)

Listen to the denoised speech from the network with fully connected layers.

sound(denoisedAudioFullyConnected,fs)

Listen to the denoised speech from the network with convolutional layers.

sound(denoisedAudioFullyConvolutional,fs)

Listen to clean speech.

sound(cleanAudio,fs)

You can test more files from the datastore by calling testDenoisingNets. The function produces
the time-domain and frequency-domain plots highlighted above, and also returns the clean, noisy, and
denoised audio signals.

[cleanAudio,noisyAudio,denoisedAudioFullyConnected,denoisedAudioFullyConvolutional] = testDenoisingNets(adsTest,denoiseNetFullyConnected,denoiseNetFullyConvolutional,noisyMean,noisyStd,cleanMean,cleanStd);
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Real-Time Application

The procedure in the previous section passes the entire spectrum of the noisy signal to predict.
This is not suitable for real-time applications where low latency is a requirement.

Run speechDenoisingRealtimeApp for an example of how to simulate a streaming, real-time
version of the denoising network. The app uses the network with fully connected layers. The audio
frame length is equal to the STFT hop size, which is 0.25 * 256 = 64 samples.

speechDenoisingRealtimeApp launches a User Interface (UI) designed to interact with the
simulation. The UI enables you to tune parameters and the results are reflected in the simulation
instantly. You can also enable/disable a noise gate that operates on the denoised output to further
reduce the noise, as well as tune the attack time, release time, and threshold of the noise gate. You
can listen to the noisy, clean or denoised audio from the UI.

The scope plots the clean, noisy and denoised signals, as well as the gain of the noise gate.
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Train Speech Command Recognition Model Using Deep
Learning

This example shows how to train a deep learning model that detects the presence of speech
commands in audio. The example uses the Speech Commands Dataset [1] on page 1-343 to train a
convolutional neural network to recognize a set of commands.

To use a pretrained speech command recognition system, see “Speech Command Recognition Using
Deep Learning” on page 1-924.

To run the example quickly, set speedupExample to true. To run the full example as published, set
speedupExample to false.

speedupExample = ;

Set the random seed for reproducibility.

rng default

Load Data

This example uses the Google Speech Commands Dataset [1] on page 1-343. Download and unzip the
data set.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","google_speech.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
dataset = fullfile(dataFolder,"google_speech");

Augment Data

The network should be able to not only recognize different spoken words but also to detect if the
audio input is silence or background noise.

The supporting function, augmentDataset on page 1-342, uses the long audio files in the
background folder of the Google Speech Commands Dataset to create one-second segments of
background noise. The function creates an equal number of background segments from each
background noise file and then splits the segments between the train and validation folders.

augmentDataset(dataset)
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Progress = 17 (%)
Progress = 33 (%)
Progress = 50 (%)
Progress = 67 (%)
Progress = 83 (%)
Progress = 100 (%)

Create Training Datastore

Create an audioDatastore that points to the training data set.

ads = audioDatastore(fullfile(dataset,"train"), ...
    IncludeSubfolders=true, ...
    FileExtensions=".wav", ...
    LabelSource="foldernames");

Specify the words that you want your model to recognize as commands. Label all files that are not
commands or background noise as unknown. Labeling words that are not commands as unknown
creates a group of words that approximates the distribution of all words other than the commands.
The network uses this group to learn the difference between commands and all other words.

To reduce the class imbalance between the known and unknown words and speed up processing, only
include a fraction of the unknown words in the training set.

Use subset to create a datastore that contains only the commands, the background noise, and the
subset of unknown words. Count the number of examples belonging to each category.

commands = categorical(["yes","no","up","down","left","right","on","off","stop","go"]);
background = categorical("background");

isCommand = ismember(ads.Labels,commands);
isBackground = ismember(ads.Labels,background);
isUnknown = ~(isCommand|isBackground);

includeFraction = 0.2; % Fraction of unknowns to include.
idx = find(isUnknown);
idx = idx(randperm(numel(idx),round((1-includeFraction)*sum(isUnknown))));
isUnknown(idx) = false;

ads.Labels(isUnknown) = categorical("unknown");

adsTrain = subset(ads,isCommand|isUnknown|isBackground);
adsTrain.Labels = removecats(adsTrain.Labels);

Create Validation Datastore

Create an audioDatastore that points to the validation data set. Follow the same steps used to
create the training datastore.

ads = audioDatastore(fullfile(dataset,"validation"), ...
    IncludeSubfolders=true, ...
    FileExtensions=".wav", ...
    LabelSource="foldernames");

isCommand = ismember(ads.Labels,commands);
isBackground = ismember(ads.Labels,background);
isUnknown = ~(isCommand|isBackground);
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includeFraction = 0.2; % Fraction of unknowns to include.
idx = find(isUnknown);
idx = idx(randperm(numel(idx),round((1-includeFraction)*sum(isUnknown))));
isUnknown(idx) = false;

ads.Labels(isUnknown) = categorical("unknown");

adsValidation = subset(ads,isCommand|isUnknown|isBackground);
adsValidation.Labels = removecats(adsValidation.Labels);

Visualize the training and validation label distributions.

figure(Units="normalized",Position=[0.2,0.2,0.5,0.5])

tiledlayout(2,1)

nexttile
histogram(adsTrain.Labels)
title("Training Label Distribution")
ylabel("Number of Observations")
grid on

nexttile
histogram(adsValidation.Labels)
title("Validation Label Distribution")
ylabel("Number of Observations")
grid on

Speed up the example by reducing the data set, if requested.
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if speedupExample
    numUniqueLabels = numel(unique(adsTrain.Labels)); %#ok<UNRCH> 
    % Reduce the dataset by a factor of 20
    adsTrain = splitEachLabel(adsTrain,round(numel(adsTrain.Files) / numUniqueLabels / 20));
    adsValidation = splitEachLabel(adsValidation,round(numel(adsValidation.Files) / numUniqueLabels / 20));
end

Prepare Data for Training

To prepare the data for efficient training of a convolutional neural network, convert the speech
waveforms to auditory-based spectrograms.

To speed up processing, you can distribute the feature extraction across multiple workers. Start a
parallel pool if you have access to Parallel Computing Toolbox™.

if canUseParallelPool && ~speedupExample
    useParallel = true;
    gcp;
else
    useParallel = false;
end

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

Extract Features

Define the parameters to extract auditory spectrograms from the audio input. segmentDuration is
the duration of each speech clip in seconds. frameDuration is the duration of each frame for
spectrum calculation. hopDuration is the time step between each spectrum. numBands is the
number of filters in the auditory spectrogram.

fs = 16e3; % Known sample rate of the data set.

segmentDuration = 1;
frameDuration = 0.025;
hopDuration = 0.010;

FFTLength = 512;
numBands = 50;

segmentSamples = round(segmentDuration*fs);
frameSamples = round(frameDuration*fs);
hopSamples = round(hopDuration*fs);
overlapSamples = frameSamples - hopSamples;

Create an audioFeatureExtractor object to perform the feature extraction.

afe = audioFeatureExtractor( ...
    SampleRate=fs, ...
    FFTLength=FFTLength, ...
    Window=hann(frameSamples,"periodic"), ...
    OverlapLength=overlapSamples, ...
    barkSpectrum=true);
setExtractorParameters(afe,"barkSpectrum",NumBands=numBands,WindowNormalization=false);

Define a series of transform on the audioDatastore to pad the audio to a consistent length,
extract the features, and then apply a logarithm.

 Train Speech Command Recognition Model Using Deep Learning

1-335



transform1 = transform(adsTrain,@(x)[zeros(floor((segmentSamples-size(x,1))/2),1);x;zeros(ceil((segmentSamples-size(x,1))/2),1)]);
transform2 = transform(transform1,@(x)extract(afe,x));
transform3 = transform(transform2,@(x){log10(x+1e-6)});

Use the readall function to read all data from the datastore. As each file is read, it is passed
through the transforms before the data is returned.

XTrain = readall(transform3,UseParallel=useParallel);

The output is a numFiles-by-1 cell array. Each element of the cell array corresponds to the auditory
spectrogram extracted from a file.

numFiles = numel(XTrain)

numFiles = 28463

[numHops,numBands,numChannels] = size(XTrain{1})

numHops = 98

numBands = 50

numChannels = 1
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Convert the cell array to a 4-dimensional array with auditory spectrograms along the fourth
dimension.

XTrain = cat(4,XTrain{:});

[numHops,numBands,numChannels,numFiles] = size(XTrain)

numHops = 98

numBands = 50

numChannels = 1

numFiles = 28463

Perform the feature extraction steps described above on the validation set.

transform1 = transform(adsValidation,@(x)[zeros(floor((segmentSamples-size(x,1))/2),1);x;zeros(ceil((segmentSamples-size(x,1))/2),1)]);
transform2 = transform(transform1,@(x)extract(afe,x));
transform3 = transform(transform2,@(x){log10(x+1e-6)});
XValidation = readall(transform3,UseParallel=useParallel);
XValidation = cat(4,XValidation{:});

For convenience, isolate the train and validation target labels.

TTrain = adsTrain.Labels;
TValidation = adsValidation.Labels;

Visualize Data

Plot the waveforms and auditory spectrograms of a few training samples. Play the corresponding
audio clips.

specMin = min(XTrain,[],"all");
specMax = max(XTrain,[],"all");
idx = randperm(numel(adsTrain.Files),3);
figure(Units="normalized",Position=[0.2,0.2,0.6,0.6]);

tiledlayout(2,3)
for ii = 1:3
    [x,fs] = audioread(adsTrain.Files{idx(ii)});

    nexttile(ii)
    plot(x)
    axis tight
    title(string(adsTrain.Labels(idx(ii))))
    
    nexttile(ii+3)
    spect = XTrain(:,:,1,idx(ii))';
    pcolor(spect)
    clim([specMin specMax])
    shading flat
    
    sound(x,fs)
    pause(2)
end
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Define Network Architecture

Create a simple network architecture as an array of layers. Use convolutional and batch
normalization layers, and downsample the feature maps "spatially" (that is, in time and frequency)
using max pooling layers. Add a final max pooling layer that pools the input feature map globally over
time. This enforces (approximate) time-translation invariance in the input spectrograms, allowing the
network to perform the same classification independent of the exact position of the speech in time.
Global pooling also significantly reduces the number of parameters in the final fully connected layer.
To reduce the possibility of the network memorizing specific features of the training data, add a small
amount of dropout to the input to the last fully connected layer.

The network is small, as it has only five convolutional layers with few filters. numF controls the
number of filters in the convolutional layers. To increase the accuracy of the network, try increasing
the network depth by adding identical blocks of convolutional, batch normalization, and ReLU layers.
You can also try increasing the number of convolutional filters by increasing numF.

To give each class equal total weight in the loss, use class weights that are inversely proportional to
the number of training examples in each class. When using the Adam optimizer to train the network,
the training algorithm is independent of the overall normalization of the class weights.
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classes = categories(TTrain);
classWeights = 1./countcats(TTrain);
classWeights = classWeights'/mean(classWeights);
numClasses = numel(classes);

timePoolSize = ceil(numHops/8);

dropoutProb = 0.2;
numF = 12;
layers = [
    imageInputLayer([numHops,afe.FeatureVectorLength])
    
    convolution2dLayer(3,numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(3,Stride=2,Padding="same")
    
    convolution2dLayer(3,2*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(3,Stride=2,Padding="same")
    
    convolution2dLayer(3,4*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(3,Stride=2,Padding="same")
    
    convolution2dLayer(3,4*numF,Padding="same")
    batchNormalizationLayer
    reluLayer

    convolution2dLayer(3,4*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer([timePoolSize,1])
    dropoutLayer(dropoutProb)

    fullyConnectedLayer(numClasses)
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    softmaxLayer
    classificationLayer(Classes=classes,ClassWeights=classWeights)];

Specify Training Options

To define parameters for training, use trainingOptions (Deep Learning Toolbox). Use the Adam
optimizer with a mini-batch size of 128.

miniBatchSize = 128;
validationFrequency = floor(numel(TTrain)/miniBatchSize);
options = trainingOptions("adam", ...
    InitialLearnRate=3e-4, ...
    MaxEpochs=15, ...
    MiniBatchSize=miniBatchSize, ...
    Shuffle="every-epoch", ...
    Plots="training-progress", ...
    Verbose=false, ...
    ValidationData={XValidation,TValidation}, ...
    ValidationFrequency=validationFrequency);

Train Network

To train the network, use trainNetwork (Deep Learning Toolbox). If you do not have a GPU, then
training the network can take time.

trainedNet = trainNetwork(XTrain,TTrain,layers,options);

Evaluate Trained Network

To calculate the final accuracy of the network on the training and validation sets, use classify
(Deep Learning Toolbox). The network is very accurate on this data set. However, the training,
validation, and test data all have similar distributions that do not necessarily reflect real-world
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environments. This limitation particularly applies to the unknown category, which contains utterances
of only a small number of words.

YValidation = classify(trainedNet,XValidation);
validationError = mean(YValidation ~= TValidation);
YTrain = classify(trainedNet,XTrain);
trainError = mean(YTrain ~= TTrain);

disp(["Training error: " + trainError*100 + "%";"Validation error: " + validationError*100 + "%"])

    "Training error: 2.7263%"
    "Validation error: 6.3968%"

To plot the confusion matrix for the validation set, use confusionchart (Deep Learning Toolbox).
Display the precision and recall for each class by using column and row summaries.

figure(Units="normalized",Position=[0.2,0.2,0.5,0.5]);
cm = confusionchart(TValidation,YValidation, ...
    Title="Confusion Matrix for Validation Data", ...
    ColumnSummary="column-normalized",RowSummary="row-normalized");
sortClasses(cm,[commands,"unknown","background"])

When working on applications with constrained hardware resources, such as mobile applications, it is
important to consider the limitations on available memory and computational resources. Compute the
total size of the network in kilobytes and test its prediction speed when using a CPU. The prediction
time is the time for classifying a single input image. If you input multiple images to the network,
these can be classified simultaneously, leading to shorter prediction times per image. When
classifying streaming audio, however, the single-image prediction time is the most relevant.
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for ii = 1:100
    x = randn([numHops,numBands]);
    predictionTimer = tic;
    [y,probs] = classify(trainedNet,x,ExecutionEnvironment="cpu");
    time(ii) = toc(predictionTimer);
end

disp(["Network size: " + whos("trainedNet").bytes/1024 + " kB"; ...
"Single-image prediction time on CPU: " + mean(time(11:end))*1000 + " ms"])

    "Network size: 292.2842 kB"
    "Single-image prediction time on CPU: 3.7237 ms"

Supporting Functions

Augment Dataset With Background Noise

function augmentDataset(datasetloc)
adsBkg = audioDatastore(fullfile(datasetloc,"background"));
fs = 16e3; % Known sample rate of the data set
segmentDuration = 1;
segmentSamples = round(segmentDuration*fs);

volumeRange = log10([1e-4,1]);

numBkgSegments = 4000;
numBkgFiles = numel(adsBkg.Files);
numSegmentsPerFile = floor(numBkgSegments/numBkgFiles);

fpTrain = fullfile(datasetloc,"train","background");
fpValidation = fullfile(datasetloc,"validation","background");

if ~datasetExists(fpTrain)

    % Create directories
    mkdir(fpTrain)
    mkdir(fpValidation)

    for backgroundFileIndex = 1:numel(adsBkg.Files)
        [bkgFile,fileInfo] = read(adsBkg);
        [~,fn] = fileparts(fileInfo.FileName);

        % Determine starting index of each segment
        segmentStart = randi(size(bkgFile,1)-segmentSamples,numSegmentsPerFile,1);

        % Determine gain of each clip
        gain = 10.^((volumeRange(2)-volumeRange(1))*rand(numSegmentsPerFile,1) + volumeRange(1));

        for segmentIdx = 1:numSegmentsPerFile

            % Isolate the randomly chosen segment of data.
            bkgSegment = bkgFile(segmentStart(segmentIdx):segmentStart(segmentIdx)+segmentSamples-1);

            % Scale the segment by the specified gain.
            bkgSegment = bkgSegment*gain(segmentIdx);

            % Clip the audio between -1 and 1.
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            bkgSegment = max(min(bkgSegment,1),-1);

            % Create a file name.
            afn = fn + "_segment" + segmentIdx + ".wav";

            % Randomly assign background segment to either the train or
            % validation set.
            if rand > 0.85 % Assign 15% to validation
                dirToWriteTo = fpValidation;
            else % Assign 85% to train set.
                dirToWriteTo = fpTrain;
            end

            % Write the audio to the file location.
            ffn = fullfile(dirToWriteTo,afn);
            audiowrite(ffn,bkgSegment,fs)

        end

        % Print progress
        fprintf('Progress = %d (%%)\n',round(100*progress(adsBkg)))

    end
end
end
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Ambisonic Plugin Generation

This examples shows how to create ambisonic plugins using MATLAB® higher order ambisonic
(HOA) demo functions. Ambisonics is a spatial audio technique which represents a three-dimensional
sound field using spherical harmonics. This example contains an encoder plugin, a function to
generate custom encoder plugins, a decoder plugin, and a function to generate custom decoder
plugins. The customization of plugin generation enables a user to specify various ambisonic orders
and various device lists for a given ambisonic configuration.

Background

Ambisonic encoding is the process of decomposing a sound field into spherical harmonics. The
encoding matrix is the amount of spherical harmonics present at a specific device position. In mode-
matching decoding, the decoding matrix is the pseudo-inverse of the encoding matrix. Ambisonic
decoding is the process of reconstructing spherical harmonics into a sound field.

This example involves higher order ambisonics, which include traditional first-order ambisonics. In
ambisonics, there is a relationship between the number of ambisonic channels and the ambisonic
order:

       ambisonic_channels = (ambisonic_order + 1)^2 

For example: First-order ambisonics requires four audio channels while fourth-order ambisonics
requires 25 audio channels.

Supported Conventions

• ACN channel sequencing
• SN3D normalization
• azimuth from 0 to 360 degrees
• elevation from -90 to 90 degrees

The ambisonic design examples support up to seventh-order ambisonics with pseudo-inverse
decoding.

Ambisonic Devices: Elements and Speakers

Ambisonic devices are divided into two groups: elements and speakers. Each device has an audio
signal and metadata describing its position and operation. Elements correspond to multi-element
microphone arrays, and speakers correspond to loudspeaker arrays for ambisonic playback.

The ambisonic encoder applies the ambisonic encoding matrix to raw audio from microphone
elements. The position (azimuth, elevation) and deviceType of the microphone elements along with
desired ambisonic order are needed to create the ambisonic encoding matrix.

The ambisonic decoder applies the ambisonic decoding matrix to ambisonic audio for playback on
speakers. The position (azimuth, elevation) and deviceType of the speakers along with desired
ambisonic order are needed to create the ambisonic decoding matrix.

Sound Field Representation

In order to capture, represent, or reproduce a sound field with ambisonics, the number of devices
(elements or speakers) must be greater than or equal to the number of ambisonic channels.
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For the encoding example, audio captured with a 32-channel spherical array microphone may be
encoded up to fourth-order ambisonics (25 channels). For the decoding example, a loudspeaker array
containing 64 speakers is configured for ambisonic playback up to seventh-order. If the playback
content is fourth order ambisonics, then even though the array is set up for seventh- order, only
fourth-order ambisonics is realized through the system.

       number_devices >= number_ambisonic_channels

For an encoder, if the number of devices (elements) is less than the number of ambisonic channels,
then audio from the device (elements) positions may be represented in ambisonics, but a sound field
is not represented. One or more audio channels may be encoded into ambisonics in an effort to
position sources in an ambisonic field. Each encoder represents the intensity of the sound field to be
encoded at a specified device (element) location.

For a decoder, if the number of devices (speakers) is less than the number of ambisonic channels, the
devices (speakers) do not fully reproduce a sound field at the specified ambisonic order. A sound field
may be reproduced at a lower ambisonic order. For example, third-order ambisonics played on a
speaker array with 10 speakers can be realized as a second-order (9 channel) system with an
additional speaker for playback. Each decoder represents an intensity of the ambisonic field at the
specified device (speaker) position.

Pseudoinverse Decoding Method

There are many decoding options. This example uses pseudoinverse decoding, also known as mode
matching. This decoding method favors regular-shaped device layouts. Other decoding methods may
favor irregular-shaped device layouts.

Device Type

The deviceType for encoders turns the device (element) encoding on or off for a particular element.
The deviceType for decoders turns the device (speaker) decoding on or off for a particular speaker. If
the deviceType vector is omitted, then the deviceTypes are set to 1 (on). The intention behind
deviceType is to provide flexibility of padding encoder inputs or decoder outputs with off channels to
fit an ambisonic encoder or decoder plugin into an environment with fixed channel counts such as an
8-, 16- or 32-channel audio bus.

For example: A second-order ambisonic encoder with 14 elements has 14 inputs and 9 outputs. If you
add two more devices (elements) with deviceType 0 (off) to the encoder, then the encoder has 16
inputs and 9 outputs. A fourth-order ambisonic decoder with 29 devices (speakers) has 25 inputs and
29 outputs. If you add three more devices (speakers) with deviceType 0 (off) to the decoder, then the
channel count becomes 25 inputs and 32 outputs.

When the deviceType is set to 0 (off), the azimuth and elevation for that channel are ignored;
however, a value is still needed. It is recommended to set the azimuth and elevation to 0 degrees
when the device types are set to 0 (off).

Ambisonic Encoder Plugin

audiopluginexample.AmbiEncoderPlugin is built around the
audioexample.ambisonics.ambiencodemtrx and audioexample.ambisonics.ambiencode
functions. The number of devices (elements to be encoded) is the number of input channels of the
encoder plugin. The ambisonic order determines the number of output channels of the encoder
plugin.
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audioexample.ambisonics.ambiencodemtrx generates the ambisonic encoder matrix from a
given ambisonic order and a given device list. audioexample.ambisonics.ambiencode applies
the ambisonic encoder matrix to raw audio resulting in ambisonic encoded audio. The formatting of
the ambisonic audio may be specified with the audioexample.ambisonics.ambiencode function.
The number of raw audio channels must equal the number of devices in the ambisonic encoder
matrix.

The encoder plugin inherits directly from the audioPlugin base class. The plugin constructor calls
audioexample.ambisonics.ambiencodemtrx to build the initial encoder matrix. The process
function calls audioexample.ambisonics.ambiencode to apply the encoder matrix to the audio
input. The output of the plugin is ambisonic encoded audio. The encoder matrix is recalculated only
when a plugin property is modified which minimizes computations inside the process loop.

The plugin interface populates azimuth and elevation but not device type. The idea behind device
type is to add off-channels to an encoder matrix to fit the matrix into a 8x-channel frame. For
example: second-order has 9 channels, create a 16 channel encoder matrix, with the first 9 channels
having device type of 1 (on) and the remaining 7 channels having device type of 0 (off).

audioTestBench(audiopluginexample.AmbiEncoderPlugin)

audioTestBench('-close')

Inspect Code | Run Plugin | Generate Plugin

Generate Custom Ambisonic Encoder Plugin

Generating ambisonic plugins can be an involved process. The ambiGenerateEncoderPlugin function
streamlines the process of generating ambisonic encoder plugins. This function supports up to
seventh-order ambisonics. Supported formats are 'acn-sn3d', 'acn-n3d', 'acn-fuma', 'acn-maxn', 'fuma-
sn3d', 'fuma-n3d', 'fuma-fuma', 'fuma-maxn'. The function requires the following inputs:

1 Audio Toolbox Examples

1-346



1 name of the audioPlugin class
2 device list of encoder positions
3 ambisonic order
4 ambisonic format

% Provide a name for the audioPlugin class
name = 'myEncoderPlugin';

% Include a device list of element positions
device = [45 135 225 315 45 135 225 315; -45 -45 -45 -45 45 45 45 45];

% Specify the ambisonic order
order = 3;

% Specify the ambisonic format
format = 'acn-sn3d';

Run the function.

audioexample.ambisonics.ambiGenerateEncoderPlugin(name, device, order, format)

Once designed, the audio plugin can be validated, generated, and deployed to a third-party digital
audio workstation (DAW).

Ambisonic Decoder Plugin

audiopluginexample.AmbiDecoderPlugin is built around the
audioexample.ambisonics.ambidecodemtrx and audioexample.ambisonics.ambidecode
functions. The ambisonic order determines the number of input channels of the decoder plugin. The
number of devices (speakers locations) is the number of output channels of the decoder plugin.

audioexample.ambisonics.ambidecodemtrx generates the ambisonic decoder matrix from a
given ambisonic order and a given device list. audioexample.ambisonics.ambidecode applies
the ambisonic decoder matrix to ambisonic audio resulting in decoded audio. The formatting of the
ambisonic audio may be specified with the audioexample.ambisonics.ambidecode function.
audioexample.ambisonics.ambidecode determines the ambisonic order from the minimum of
the ambisonic order of the input audio and the ambisonic order of the decoder matrix.

The decoder plugin inherits directly from the audioPlugin base class. The plugin constructor calls
audioexample.ambisonics.ambidecodemtrx to build the initial decoder matrix. The process
function calls audioexample.ambisonics.ambidecode to apply the decoder matrix to the audio
input. The output of the plugin is decoded audio. The decoder matrix is recalculated only when a
plugin property is modified which minimizes computations inside the process loop.

The plugin interface populates azimuth and elevation but not device type. The idea behind device
type is to add off-channels to an encoder matrix to fit the matrix into a 8x-channel frame. For
example: second-order has 9 channels, create a 16 channel encoder matrix, with the first 9 channels
having device type of 1 (on) and the remaining 7 channels having device type of 0 (off).

audioTestBench(audiopluginexample.AmbiDecoderPlugin)
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audioTestBench('-close')

Inspect Code | Run Plugin | Generate Plugin

Generate Custom Ambisonic Decoder Plugin

Generating ambisonic plugins can be an involved process. The ambiGenerateDecoderPlugin function
streamlines the process of generating ambisonic decoder plugins. This function supports up to
seventh-order ambisonics. Supported formats are 'acn-sn3d', 'acn-n3d', 'acn-fuma', 'acn-maxn', 'fuma-
sn3d', 'fuma-n3d', 'fuma-fuma', 'fuma-maxn'. The function requires the following inputs:

1 name of the audioPlugin class
2 device list of decoder positions
3 ambisonic order
4 ambisonic format

% Provide a name for the audioPlugin class
name = 'myDecoderPlugin';

% Include a device list of speaker positions
device = [45 135 225 315 45 135 225 315; -45 -45 -45 -45 45 45 45 45];

% Specify the ambisonic order
order = 3;

% Specify the ambisonic format
format = 'acn-sn3d';

Run the function.

audioexample.ambisonics.ambiGenerateDecoderPlugin(name,device,order,format)
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Once designed, the audio plugin can be validated, generated, and deployed to a third-party digital
audio workstation (DAW).

See Also

“Ambisonic Binaural Decoding” on page 1-350

Related Topics

• “Audio Plugins in MATLAB”
• “Audio Plugin Example Gallery” on page 12-2
• “Develop, Analyze, and Debug Plugins In Audio Test Bench” on page 11-2
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Ambisonic Binaural Decoding

This example shows how to decode ambisonic audio into binaural audio using virtual loudspeakers. A
virtual loudspeaker is a sound source positioned on the surface of a sphere, with the listener located
at the center of the sphere. Each virtual loudspeaker has a pair of Head-Related Transfer Functions
(HRTF) associated with it: one for the left ear and one for the right ear. The virtual loudspeaker
locations along with the ambisonic order are used to calculate the ambisonic decoder matrix. The
output of the decoder is filtered by the HRTFs corresponding to the virtual loudspeaker position. The
signals from the left HRTFs are summed together and fed to the left ear. The signals from the right
HRTFs are summed together and fed to the right ear. A block diagram of the audio signal flow is
shown here.

Load the ARI HRTF Dataset
ARIDataset = load('ReferenceHRTF.mat');

Get the HRTF data in the required dimension of: [NumOfSourceMeasurements x 2 x
LengthOfSamples]

hrtfData = ARIDataset.hrtfData;
sourcePosition = ARIDataset.sourcePosition(:,[1,2]);

The ARI HRTF Databases used in this example is based on the work by Acoustics Research Institute.
The HRTF data and source position in ReferenceHRTF.mat are from ARI NH2 subject.

The HRTF Databases by Acoustics Research Institute, Austrian Academy of Sciences are licensed
under a Creative Commons Attribution-ShareAlike 3.0 Unported License: https://
creativecommons.org/licenses/by-sa/3.0/.

Select Points from ARI HRTF Dataset

Now that the HRTF Dataset is loaded, determine which points to pick for virtual loudspeakers. This
example picks random points distributed on the surface of a sphere and selects the points of the
HRTF dataset closest to the picked points.

1 Pick random points from a spherical distribution
2 Compare sphere to points from the HRTF dataset
3 Pick the points with the shortest distance between them

% Create a sphere with a distribution of points
nPoints = 24;   % number of points to pick
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rng(0);         % seed randcom number generator
sphereAZ = 360*rand(1,nPoints);
sphereEL = rad2deg(acos(2*rand(1,nPoints)-1))-90;
pickedSphere = [sphereAZ' sphereEL'];

% Compare distributed points on the sphere to points from the HRTF dataset
pick = zeros(1, nPoints);
d = zeros(size(pickedSphere,1), size(sourcePosition,1));
for ii = 1:size(pickedSphere,1)
    for jj = 1:size(sourcePosition,1)
        % Calculate arc length
        d(ii,jj) = acos( ...
            sind(pickedSphere(ii,2))*sind(sourcePosition(jj,2)) + ...
            cosd(pickedSphere(ii,2))*cosd(sourcePosition(jj,2)) * ... 
            cosd(pickedSphere(ii,1) - sourcePosition(jj,1)));
    end
    [~,Idx] = sort(d(ii,:)); % Sort points
    pick(ii) = Idx(1);       % Pick the closest point
end

Create Ambisonic Decoder

Specify a desired ambisonic order and desired virtual loudspeaker source positions as inputs to the
audioexample.ambisonics.ambidecodemtrx helper function. The function returns an
ambisonics decoder matrix.

order = 7;
devices = sourcePosition(pick,:)';
dmtrx = audioexample.ambisonics.ambidecodemtrx(order, devices);

Create HRTF Filters

Create an array of FIR filters to perform binaural HRTF filtering based on the position of the virtual
loudspeakers.

FIR = cell(size(pickedSphere));
for ii = 1:length(pick)
    FIR{ii,1} = dsp.FrequencyDomainFIRFilter(hrtfData(:,pick(ii),1)');
    FIR{ii,2} = dsp.FrequencyDomainFIRFilter(hrtfData(:,pick(ii),2)');
end

Create Audio Input and Output Objects

Load the ambisonic audio file of helicopter sound and convert it to 48 kHz for compatibility with the
HRTF dataset. Specify the ambisonic format of the audio file.

Create an audio file sampled at 48 kHz for compatibility with the HRTF dataset.

desiredFs = 48e3;
[audio,fs] = audioread('Heli_16ch_ACN_SN3D.wav');
audio = resample(audio,desiredFs,fs);
audiowrite('Heli_16ch_ACN_SN3D_48.wav',audio,desiredFs);

Specify the ambisonic format of the audio file. Set up the audio input and audio output objects.

format = 'acn-sn3d';
samplesPerFrame = 2048;
fileReader = dsp.AudioFileReader('Heli_16ch_ACN_SN3D_48.wav', ...
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                    'SamplesPerFrame',samplesPerFrame);
deviceWriter = audioDeviceWriter('SampleRate',desiredFs);
audioFiltered = zeros(samplesPerFrame,size(FIR,1),2);

Process Audio

while ~isDone(fileReader)
    audioAmbi = fileReader();
    audioDecoded = audioexample.ambisonics.ambidecode(audioAmbi, dmtrx, format);
    for ii = 1:size(FIR,1)
        audioFiltered(:,ii,1) = step(FIR{ii,1}, audioDecoded(:,ii)); % Left
        audioFiltered(:,ii,2) = step(FIR{ii,2}, audioDecoded(:,ii)); % Right
    end
    audioOut = 10*squeeze(sum(audioFiltered,2));   % Sum at each ear 
    numUnderrun = deviceWriter(audioOut); 
end

% Release resources
release(fileReader)
release(deviceWriter)

See Also

Ambisonic Plugin Generation Example
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Multicore Simulation of Acoustic Beamforming Using a
Microphone Array

This example shows how to beamform signals received by an array of microphones to extract a
desired speech signal in a noisy environment. It uses the dataflow domain in Simulink® to partition
the data-driven portions of the system into multiple threads and thereby improving the performance
of the simulation by executing it on your desktop's multiple cores.

Introduction

The model simulates receiving three audio signals from different directions on a 10-element uniformly
linear microphone array (ULA). After the addition of thermal noise at the receiver, beamforming is
applied and the result played on a sound device.

Received Audio Simulation

The Audio Sources subsystem reads from audio files and specifies the direction for each audio source.
The Wideband Rx Array block simulates receiving audio signals at the ULA. The first input to the
Wideband Rx Array block is a 1000x3 matrix, where the three columns of the input correspond to the
three audio sources. The second input (Ang) specifies the incident direction of the signals. The first
row of Ang specifies the azimuth angle in degrees for each signal and the second row specifies the
elevation angle in degrees for each signal. The output of this block is a 1000x10 matrix. Each column
of the output corresponds to the audio recorded at each element of the microphone array. The
microphone array's configuration is specified in the Sensor Array tab of the block dialog panel. The
Receiver Preamp block adds white noise to the received signals.
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Beamforming

There are three Frost Beamformer blocks that perform beamforming on the matrix passed via the
input port X along the direction specified by the input port Ang. Each of the three beamformers
steers their beam towards one of the three sources. The output of the beamformer is played in the
Audio Device Writer block. Different sources can be selected using the Select Source block.
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Improve Simulation Performance Using Multithreading

This example can use the dataflow domain in Simulink to automatically partition the data-driven
portions of the system into multiple threads and thereby improving the performance of the simulation
by executing it on your desktop's multiple cores. To learn more about dataflow and how to run
Simulink models using multiple threads, see “Multicore Execution using Dataflow Domain”.

Setting up Dataflow Subsystem

This example uses dataflow domain in Simulink to make use of multiple cores on your desktop to
improve simulation performance. The Domain parameter of the dataflow subsystem in this model is
set as Dataflow. You can view this by selecting the subsystem and then accessing Property
Inspector. To access Property Inspector, in the Simulink Toolstrip, on the Modeling tab, in the Design
gallery select Property Inspector or on the Simulation tab, Prepare gallery, select Property Inspector.

Dataflow domains automatically partition your model into multiple threads for better performance.
Once you set the Domain parameter to Dataflow, you can use the Multicore tab analysis to
analyze your model to get better performance. The Multicore tab is available in the toolstrip when
there is a dataflow domain in the model. To learn more about the Multicore tab, see “Perform
Multicore Analysis for Dataflow”.

Analyzing Concurrency in Dataflow Subsystem

For this example the Multicore tab mode is set to Simulation Profiling for simulation
performance analysis.

It is recommended to optimize model settings for optimal simulation performance. To accept the
proposed model settings, on the Multicore tab, click Optimize. Alternatively, you can use the drop
menu below the Optimize button to change the settings individually. In this example the model
settings are already optimal.

On the Multicore tab, click the Run Analysis button to start the analysis of the dataflow domain for
simulation performance. Once the analysis is finished, the Analysis Report and Suggestions window
shows how many threads the dataflow subsystem uses during simulation.
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After analyzing the model, the Analysis Report and Suggestions window shows 3 threads. This is
because the three Frost beamformer blocks are computationally intensive and can run in parallel. The
three Frost beamformer blocks however, depend on the Microphone Array and the Receiver blocks.
Pipeline delays can be used to break this dependency and increase concurrency. The Analysis Report
and Suggestions window shows the recommended number of pipeline delays as Suggested for
Increasing Concurrency. The suggested latency value is computed to give the best performance.

The following diagram shows the Analysis Report and Suggestions window where the suggested
latency is 1 for the dataflow subsystem.

Click the Accept button to use the recommended latency for the dataflow subsystem. This value can
also be entered directly in the Property Inspector for Latency parameter. Simulink shows the latency
parameter value using  tags at the output ports of the dataflow subsystem.

The Analysis Report and Suggestions window now shows the number of threads as 4 meaning that
the blocks inside the dataflow subsystem simulate in parallel using 4 threads. Highlight threads
highlights the blocks with colors based on their thread allocation as shown in the Thread
Highlighting Legend. Show pipeline delays shows where pipelining delays were inserted within
the dataflow subsystem using  tags.

Multicore Simulation Performance

To measure performance improvement gained by using dataflow, compare execution time of the
model with and without dataflow. The Audio Device Writer runs in real time and limits the simulation
speed of the model to real time. Comment out the Audio Device Writer block when measuring
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execution time. On a Windows desktop computer with Intel® Xeon® CPU W-2133 @ 3.6 GHz 6 Cores
12 Threads processor this model using dataflow domain executes 1.8x times faster compared to
original model.

Summary

This example showed how to beamform signals received by an array of microphones to extract a
desired speech signal in a noisy environment. It also shows how to use the dataflow domain to
automatically partition the data-driven part of the model into concurrent execution threads and run
the model using multiple threads.
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Convert MIDI Files into MIDI Messages

This example shows how to convert ordinary MIDI files into MIDI message representation using
Audio Toolbox™. In this example, you:

1 Read a binary MIDI file into the MATLAB® workspace.
2 Convert the MIDI file data into midimsg objects.
3 Play the MIDI messages to your sound card using a simple synthesizer.

For more information about interacting with MIDI devices using MATLAB, see “MIDI Device
Interface” on page 7-2. To learn more about MIDI in general, consult The MIDI Manufacturers
Association.

Introduction

MIDI files contain MIDI messages, timing information, and metadata about the encoded music. This
example shows how to extract MIDI messages and timing information. To simplify the code, this
example ignores metadata. Because metadata includes information like time signature and tempo,
this example assumes the MIDI file is in 4/4 time at 120 beats per minute (BPM).

Read MIDI File

Read a MIDI file using the fread function. The fread function returns a vector of bytes, represented
as integers.

readme = fopen('CmajorScale.mid');
[readOut, byteCount] = fread(readme);
fclose(readme);

Convert MIDI Data into midimsg Objects

MIDI files have header chunks and track chunks. Header chunks provide basic information required
to interpret the rest of the file. MIDI files always start with a header chunk. Track chunks come after
the header chunk. Track chunks provide the MIDI messages, timing information, and metadata of the
file. Each track chunk has a track chunk header that includes the length of the track chunk. The track
chunk contains MIDI events after the track chunk header. Every MIDI event has a delta-time and a
MIDI message.
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Parse MIDI Header Chunk

The MIDI header chunk includes the timing division of the file. The timing division determines how to
interpret the resolution of ticks in the MIDI file. Ticks are the unit of time used to set timestamps for
MIDI files. A MIDI file with more ticks per unit time has MIDI messages with more granular time
stamps. Timing division does not determine tempo. MIDI files specify timing division either by ticks
per quarter note or frames per second. This example assumes the MIDI timing division is in ticks per
quarter note.

The fread function reads binary files byte-by-byte, but the timing division is stored as a 16-bit (2-
byte) value. To evaluate multiple bytes as one value, use the polyval function. A vector of bytes can
be evaluated as a polynomial where x is set at 256. For example, the vector of bytes [1 2 3] can be
evaluated as:

1 • 2562 + 2 • 2561 + 3 • 2560

% Concatenate ticksPerQNote from 2 bytes
ticksPerQNote = polyval(readOut(13:14),256);
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Parse MIDI Track Chunk

The MIDI track chunk contains a header and MIDI events. The track chunk header contains the
length of the track chunk. The rest of the track chunk contains one or more MIDI events.

All MIDI events have two main components:

• A delta-time value—The time difference in ticks between the previous MIDI track event and the
current one

• A MIDI message—The raw data of the MIDI track event

To parse MIDI track events sequentially, construct a loop within a loop. In the outer loop, parse track
chunks, iterating by chunkIndex. In the inner loop, parse MIDI events, iterating by a pointer ptr.

To parse MIDI track events:

• Read the delta-time value at a pointer.
• Increment the pointer to the beginning of the MIDI message.
• Read the MIDI message and extract the relevant data.
• Add the MIDI message to a MIDI message array.

Display the MIDI message array when complete.

% Initialize values
chunkIndex = 14;     % Header chunk is always 14 bytes
ts = 0;              % Timestamp - Starts at zero
BPM = 120;                  
msgArray = [];              

% Parse track chunks in outer loop
while chunkIndex < byteCount
    
    % Read header of track chunk, find chunk length   
    % Add 8 to chunk length to account for track chunk header length
    chunkLength = polyval(readOut(chunkIndex+(5:8)),256)+8;
    
    ptr = 8+chunkIndex;             % Determine start for MIDI event parsing
    statusByte = -1;                % Initialize statusByte. Used for running status support
    
    % Parse MIDI track events in inner loop
    while ptr < chunkIndex+chunkLength
        % Read delta-time
        [deltaTime,deltaLen] = findVariableLength(ptr,readOut);  
        % Push pointer to beginning of MIDI message
        ptr = ptr+deltaLen;
        
        % Read MIDI message
        [statusByte,messageLen,message] = interpretMessage(statusByte,ptr,readOut);
        % Extract relevant data - Create midimsg object
        [ts,msg] = createMessage(message,ts,deltaTime,ticksPerQNote,BPM);
        
        % Add midimsg to msgArray
        msgArray = [msgArray;msg];
        % Push pointer to next MIDI message
        ptr = ptr+messageLen;
    end
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    % Push chunkIndex to next track chunk
    chunkIndex = chunkIndex+chunkLength;
end
disp(msgArray)

  MIDI message:
    NoteOn          Channel: 1  Note: 60  Velocity: 127 Timestamp: 0  [ 90 3C 7F ]
    NoteOff         Channel: 1  Note: 60  Velocity: 0   Timestamp: 0.5  [ 80 3C 00 ]
    NoteOn          Channel: 1  Note: 62  Velocity: 127 Timestamp: 0.5  [ 90 3E 7F ]
    NoteOff         Channel: 1  Note: 62  Velocity: 0   Timestamp: 1  [ 80 3E 00 ]
    NoteOn          Channel: 1  Note: 64  Velocity: 127 Timestamp: 1  [ 90 40 7F ]
    NoteOff         Channel: 1  Note: 64  Velocity: 0   Timestamp: 1.5  [ 80 40 00 ]
    NoteOn          Channel: 1  Note: 65  Velocity: 127 Timestamp: 1.5  [ 90 41 7F ]
    NoteOff         Channel: 1  Note: 65  Velocity: 0   Timestamp: 1.75  [ 80 41 00 ]
    NoteOn          Channel: 1  Note: 67  Velocity: 127 Timestamp: 2  [ 90 43 7F ]
    NoteOff         Channel: 1  Note: 67  Velocity: 0   Timestamp: 2.5  [ 80 43 00 ]
    NoteOn          Channel: 1  Note: 69  Velocity: 127 Timestamp: 2.5  [ 90 45 7F ]
    NoteOff         Channel: 1  Note: 69  Velocity: 0   Timestamp: 3  [ 80 45 00 ]
    NoteOn          Channel: 1  Note: 71  Velocity: 127 Timestamp: 3  [ 90 47 7F ]
    NoteOff         Channel: 1  Note: 71  Velocity: 0   Timestamp: 3.5  [ 80 47 00 ]
    NoteOn          Channel: 1  Note: 72  Velocity: 127 Timestamp: 3.5  [ 90 48 7F ]
    NoteOff         Channel: 1  Note: 72  Velocity: 0   Timestamp: 3.75  [ 80 48 00 ]
    NoteOn          Channel: 1  Note: 72  Velocity: 127 Timestamp: 4  [ 90 48 7F ]
    NoteOff         Channel: 1  Note: 72  Velocity: 0   Timestamp: 4.5  [ 80 48 00 ]
    NoteOn          Channel: 1  Note: 71  Velocity: 127 Timestamp: 4.5  [ 90 47 7F ]
    NoteOff         Channel: 1  Note: 71  Velocity: 0   Timestamp: 5  [ 80 47 00 ]
    NoteOn          Channel: 1  Note: 69  Velocity: 127 Timestamp: 5  [ 90 45 7F ]
    NoteOff         Channel: 1  Note: 69  Velocity: 0   Timestamp: 5.5  [ 80 45 00 ]
    NoteOn          Channel: 1  Note: 67  Velocity: 127 Timestamp: 5.5  [ 90 43 7F ]
    NoteOff         Channel: 1  Note: 67  Velocity: 0   Timestamp: 5.75  [ 80 43 00 ]
    NoteOn          Channel: 1  Note: 65  Velocity: 127 Timestamp: 6  [ 90 41 7F ]
    NoteOff         Channel: 1  Note: 65  Velocity: 0   Timestamp: 6.5  [ 80 41 00 ]
    NoteOn          Channel: 1  Note: 64  Velocity: 127 Timestamp: 6.5  [ 90 40 7F ]
    NoteOff         Channel: 1  Note: 64  Velocity: 0   Timestamp: 7  [ 80 40 00 ]
    NoteOn          Channel: 1  Note: 62  Velocity: 127 Timestamp: 7  [ 90 3E 7F ]
    NoteOff         Channel: 1  Note: 62  Velocity: 0   Timestamp: 7.5  [ 80 3E 00 ]
    NoteOn          Channel: 1  Note: 60  Velocity: 127 Timestamp: 7.5  [ 90 3C 7F ]
    NoteOff         Channel: 1  Note: 60  Velocity: 0   Timestamp: 7.75  [ 80 3C 00 ]
    AllNotesOff     Channel: 1  Timestamp: 8  [ B0 7B 00 ]

Synthesize MIDI Messages

This example plays parsed MIDI messages using a simple monophonic synthesizer. To see a
demonstration of this synthesizer, see “Design and Play a MIDI Synthesizer” on page 6-2.

% Initialize System objects for playing MIDI messages
osc = audioOscillator('square', 'Amplitude', 0,'DutyCycle',0.75);
deviceWriter = audioDeviceWriter;

simplesynth(msgArray,osc,deviceWriter);

You can also send parsed MIDI messages to a MIDI device using midisend. For more information
about interacting with MIDI devices using MATLAB, see “MIDI Device Interface” on page 7-2.
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Helper Functions

Read Delta-Times

The delta-times of MIDI track events are stored as variable-length values. These values are 1 to 4
bytes long, with the most significant bit of each byte serving as a flag. The most significant bit of the
final byte is set to 0, and the most significant bit of every other byte is set to 1.

In a MIDI track event, the delta-time is always placed before the MIDI message. There is no gap
between a delta-time and the end of the previous MIDI event.

The findVariableLength function reads variable-length values like delta-times. It returns the
length of the input value and the value itself. First, the function creates a 4-byte vector byteStream,
which is set to all zeros. Then, it pushes a pointer to the beginning of the MIDI event. The function
checks the four bytes after the pointer in a loop. For each byte, it checks the most significant bit
(MSB). If the MSB is zero, findVariableLength adds the byte to byteStream and exits the loop.
Otherwise, it adds the byte to byteStream and continues to the next byte.
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Once the findVariableLength function reaches the final byte of the variable-length value, it
evaluates the bytes collected in byteStream using the polyval function.

function [valueOut,byteLength] = findVariableLength(lengthIndex,readOut)

byteStream = zeros(4,1);

for i = 1:4
    valCheck = readOut(lengthIndex+i);
    byteStream(i) = bitand(valCheck,127);   % Mask MSB for value
    if ~bitand(valCheck,uint32(128))        % If MSB is 0, no need to append further
        break
    end
end

valueOut = polyval(byteStream(1:i),128);    % Base is 128 because 7 bits are used for value
byteLength = i;

end

Interpret MIDI Messages

There are three main types of messages in MIDI files:

• Sysex messages — System-exclusive messages ignored by this example.
• Meta-events — Can occur in place of MIDI messages to provide metadata for MIDI files, including

song title and tempo. The midimsg object does not support meta-events. This example ignores
meta-events.

• MIDI messages — Parsed by this example.

To interpret a MIDI message, read the status byte. The status byte is the first byte of a MIDI message.

Even though this example ignores Sysex messages and meta-events, it is important to identify these
messages and determine their lengths. The lengths of Sysex messages and meta-events are key to
determining where the next message starts. Sysex messages have 'F0' or 'F7' as the status byte,
and meta-events have 'FF' as the status byte. Sysex messages and meta-events can be of varying
lengths. After the status byte, Sysex messages and meta-events specify event lengths. The event
length values are variable-length values like delta-time values. The length of the event can be
determined using the findVariableLength function.

For MIDI messages, the message length can be determined by the value of the status byte. However,
MIDI files support running status. If a MIDI message has the same status byte as the previous MIDI
message, the status byte can be omitted. If the first byte of an incoming message is not a valid status
byte, use the status byte of the previous MIDI message.

The interpretMessage function returns a status byte, a length, and a vector of bytes. The status
byte is returned to the inner loop in case the next message is a running status message. The length is
returned to the inner loop, where it specifies how far to push the inner loop pointer. Finally, the
vector of bytes carries the raw binary data of a MIDI message. interpretMessage requires an
output even if the function ignores a given message. For Sysex messages and meta-events,
interpretMessage returns -1 instead of a vector of bytes.

function [statusOut,lenOut,message] = interpretMessage(statusIn,eventIn,readOut)

% Check if running status
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introValue = readOut(eventIn+1);
if isStatusByte(introValue)
    statusOut = introValue;         % New status
    running = false;
else
    statusOut = statusIn;           % Running status—Keep old status
    running = true;
end

switch statusOut
    case 255     % Meta-event (FF)—IGNORE
        [eventLength, lengthLen] = findVariableLength(eventIn+2, ...
            readOut);   % Meta-events have an extra byte for type of meta-event
        lenOut = 2+lengthLen+eventLength;
        message = -1;
    case 240     % Sysex message (F0)—IGNORE
        [eventLength, lengthLen] = findVariableLength(eventIn+1, ...
            readOut);
        lenOut = 1+lengthLen+eventLength;
        message = -1;
        
    case 247     % Sysex message (F7)—IGNORE
        [eventLength, lengthLen] = findVariableLength(eventIn+1, ...
            readOut);
        lenOut = 1+lengthLen+eventLength;
        message = -1;
    otherwise    % MIDI message—READ
        eventLength = msgnbytes(statusOut);
        if running  
            % Running msgs don't retransmit status—Drop a bit
            lenOut = eventLength-1;
            message = uint8([statusOut;readOut(eventIn+(1:lenOut))]);
            
        else
            lenOut = eventLength;
            message = uint8(readOut(eventIn+(1:lenOut)));
        end
end

end

% ----

function n = msgnbytes(statusByte)

if statusByte <= 191        % hex2dec('BF')
    n = 3;
elseif statusByte <= 223    % hex2dec('DF')
    n = 2;
elseif statusByte <= 239    % hex2dec('EF')
    n = 3;
elseif statusByte == 240    % hex2dec('F0')
    n = 1;
elseif statusByte == 241    % hex2dec('F1')
    n = 2;
elseif statusByte == 242    % hex2dec('F2')
    n = 3;
elseif statusByte <= 243    % hex2dec('F3')
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    n = 2;
else
    n = 1;
end

end

% ----

function yes = isStatusByte(b)
yes = b > 127;
end

Create MIDI Messages

The midimsg object can generate a MIDI message from a struct using the format:

midistruct = struct('RawBytes', [144 65 127 0 0 0 0 0], 'Timestamp',1);
msg = midimsg.fromStruct(midiStruct)

This returns:

msg = 
  MIDI message:
    NoteOn          Channel: 1  Note: 65  Velocity: 127 Timestamp: 1  [ 90 41 7F ]

The createMessage function returns a midimsg object and a timestamp. The midimsg object
requires its input struct to have two fields:

• RawBytes—A 1-by-8 vector of bytes
• Timestamp—A time in seconds

To set the RawBytes field, take the vector of bytes created by interpretMessage and append
enough zeros to create a 1-by-8 vector of bytes.

To set the Timestamp field, create a timestamp variable ts. Set ts to 0 before parsing any track
chunks. For every MIDI message sent, convert the delta-time value from ticks to seconds. Then, add
that value to ts. To convert MIDI ticks to seconds, use:

timeAdd = numTicks • tempo
ticksPerQuarterNote • 1e6

Where tempo is in microseconds (μs) per quarter note. To convert beats per minute (BPM) to μs per
quarter note, use:

tempo = 6e7
BPM

Once you fill both fields of the struct, create a midimsg object. Return the midimsg object and the
modified value of ts.

The createMessage function ignores Sysex messages and meta-events. When interpretMessage
handles Sysex messages and meta-events, it returns -1 instead of a vector of bytes. The
createMessage function then checks for that value. If createMessage identifies a Sysex message
or meta-event, it returns the ts value it was given and an empty midimsg object.

function [tsOut,msgOut] = createMessage(messageIn,tsIn,deltaTimeIn,ticksPerQNoteIn,bpmIn)
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if messageIn < 0     % Ignore Sysex message/meta-event data
    tsOut = tsIn;
    msgOut = midimsg(0);
    return
end

% Create RawBytes field
messageLength = length(messageIn);
zeroAppend = zeros(8-messageLength,1);
bytesIn = transpose([messageIn;zeroAppend]);

% deltaTimeIn and ticksPerQNoteIn are both uints
% Recast both values as doubles
d = double(deltaTimeIn);
t = double(ticksPerQNoteIn);

% Create Timestamp field and tsOut
msPerQNote = 6e7/bpmIn;
timeAdd = d*(msPerQNote/t)/1e6;
tsOut = tsIn+timeAdd;

% Create midimsg object
midiStruct = struct('RawBytes',bytesIn,'Timestamp',tsOut);
msgOut = midimsg.fromStruct(midiStruct);

end

Play MIDI Messages Using a Synthesizer

This example plays parsed MIDI messages using a simple monophonic synthesizer. To see a
demonstration of this synthesizer, see “Design and Play a MIDI Synthesizer” on page 6-2.

You can also send parsed MIDI messages to a MIDI device using midisend. For more information
about interacting with MIDI devices using MATLAB, see “MIDI Device Interface” on page 7-2.

function simplesynth(msgArray,osc,deviceWriter)

i = 1;
tic
endTime = msgArray(length(msgArray)).Timestamp;

while toc < endTime
    if toc >= msgArray(i).Timestamp     % At new note, update deviceWriter
        msg = msgArray(i);      
        i = i+1;
        if isNoteOn(msg)
            osc.Frequency = note2freq(msg.Note);
            osc.Amplitude = msg.Velocity/127;
        elseif isNoteOff(msg)
            if msg.Note == msg.Note
                osc.Amplitude = 0;
            end
        end
    end
    deviceWriter(osc());    % Keep calling deviceWriter as it is updated
end

end
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% ----

function yes = isNoteOn(msg)
yes = strcmp(msg.Type,'NoteOn') ...
    && msg.Velocity > 0;
end

% ----

function yes = isNoteOff(msg)
yes = strcmp(msg.Type,'NoteOff') ...
    || (strcmp(msg.Type,'NoteOn') && msg.Velocity == 0);
end

% ----

function freq = note2freq(note)
freqA = 440;
noteA = 69;
freq = freqA * 2.^((note-noteA)/12);
end
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Cocktail Party Source Separation Using Deep Learning
Networks

This example shows how to isolate a speech signal using a deep learning network.

Introduction

The cocktail party effect refers to the ability of the brain to focus on a single speaker while filtering
out other voices and background noise. Humans perform very well at the cocktail party problem. This
example shows how to use a deep learning network to separate individual speakers from a speech
mix where one male and one female are speaking simultaneously.

Download Required Files

Before going into the example in detail, you will download a pre-trained network and 4 audio files.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","CocktailPartySourceSeparation.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
dataset = fullfile(dataFolder,"CocktailPartySourceSeparation");

Problem Summary

Load audio files containing male and female speech sampled at 4 kHz. Listen to the audio files
individually for reference.

[mSpeech,Fs] = audioread(fullfile(dataset,"MaleSpeech-16-4-mono-20secs.wav"));
sound(mSpeech,Fs)

[fSpeech] = audioread(fullfile(dataset,"FemaleSpeech-16-4-mono-20secs.wav"));
sound(fSpeech,Fs)

Combine the two speech sources. Ensure the sources have equal power in the mix. Scale the mix so
that its max amplitude is one.

mSpeech = mSpeech/norm(mSpeech);
fSpeech = fSpeech/norm(fSpeech);

ampAdj = max(abs([mSpeech;fSpeech]));
mSpeech = mSpeech/ampAdj;
fSpeech = fSpeech/ampAdj;

mix = mSpeech + fSpeech;
mix = mix./max(abs(mix));

Visualize the original and mix signals. Listen to the mixed speech signal. This example shows a source
separation scheme that extracts the male and female sources from the speech mix.

t = (0:numel(mix)-1)*(1/Fs);

figure(1)
tiledlayout(3,1)

nexttile
plot(t,mSpeech)
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title("Male Speech")
grid on

nexttile
plot(t,fSpeech)
title("Female Speech")
grid on

nexttile
plot(t,mix)
title("Speech Mix")
xlabel("Time (s)")
grid on

Listen to the mix audio.

sound(mix,Fs)

Time-Frequency Representation

Use stft to visualize the time-frequency (TF) representation of the male, female, and mix speech
signals. Use a Hann window of length 128, an FFT length of 128, and an overlap length of 96.

windowLength = 128;
fftLength = 128;
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overlapLength = 96;
win = hann(windowLength,"periodic");

figure(2)
tiledlayout(3,1)

nexttile
stft(mSpeech,Fs,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided");
title("Male Speech")

nexttile
stft(fSpeech,Fs,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided");
title("Female Speech")

nexttile
stft(mix,Fs,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided");
title("Mix Speech")

Source Separation Using Ideal Time-Frequency Masks

The application of a TF mask has been shown to be an effective method for separating desired audio
signals from competing sounds. A TF mask is a matrix of the same size as the underlying STFT. The
mask is multiplied element-by-element with the underlying STFT to isolate the desired source. The TF
mask can be binary or soft.
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Source Separation Using Ideal Binary Masks

In an ideal binary mask, the mask cell values are either 0 or 1. If the power of the desired source is
greater than the combined power of other sources at a particular TF cell, then that cell is set to 1.
Otherwise, the cell is set to 0.

Compute the ideal binary mask for the male speaker and then visualize it.

P_M = stft(mSpeech,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided");
P_F = stft(fSpeech,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided");
[P_mix,F] = stft(mix,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided");

binaryMask = abs(P_M) >= abs(P_F);

figure(3)
plotMask(binaryMask,windowLength - overlapLength,F,Fs)

Estimate the male speech STFT by multiplying the mix STFT by the male speaker's binary mask.
Estimate the female speech STFT by multiplying the mix STFT by the inverse of the male speaker's
binary mask.

P_M_Hard = P_mix.*binaryMask;
P_F_Hard = P_mix.*(1-binaryMask);
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Estimate the male and female audio signals using the inverse short-time FFT (ISTFT). Visualize the
estimated and original signals. Listen to the estimated male and female speech signals.

mSpeech_Hard = istft(P_M_Hard,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided");
fSpeech_Hard = istft(P_F_Hard,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided");

figure(4)
tiledlayout(2,2)

nexttile
plot(t,mSpeech)
axis([t(1) t(end) -1 1])
title("Original Male Speech")
grid on

nexttile
plot(t,mSpeech_Hard)
axis([t(1) t(end) -1 1])
xlabel("Time (s)")
title("Estimated Male Speech")
grid on

nexttile
plot(t,fSpeech)
axis([t(1) t(end) -1 1])
title("Original Female Speech")
grid on

nexttile
plot(t,fSpeech_Hard)
axis([t(1) t(end) -1 1])
title("Estimated Female Speech")
xlabel("Time (s)")
grid on
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sound(mSpeech_Hard,Fs)

sound(fSpeech_Hard,Fs)

Source Separation Using Ideal Soft Masks

In a soft mask, the TF mask cell value is equal to the ratio of the desired source power to the total
mix power. TF cells have values in the range [0,1].

Compute the soft mask for the male speaker. Estimate the STFT of the male speaker by multiplying
the mix STFT by the male speaker's soft mask. Estimate the STFT of the female speaker by
multiplying the mix STFT by the female speaker's soft mask.

Estimate the male and female audio signals using the ISTFT.

softMask = abs(P_M)./(abs(P_F) + abs(P_M) + eps);

P_M_Soft = P_mix.*softMask;
P_F_Soft = P_mix.*(1-softMask);

mSpeech_Soft = istft(P_M_Soft,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided");
fSpeech_Soft = istft(P_F_Soft,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided");
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Visualize the estimated and original signals. Listen to the estimated male and female speech signals.
Note that the results are very good because the mask is created with full knowledge of the separated
male and female signals.

figure(5)
tiledlayout(2,2)

nexttile
plot(t,mSpeech)
axis([t(1) t(end) -1 1])
title("Original Male Speech")
grid on

nexttile
plot(t,mSpeech_Soft)
axis([t(1) t(end) -1 1])
title("Estimated Male Speech")
grid on

nexttile
plot(t,fSpeech)
axis([t(1) t(end) -1 1])
xlabel("Time (s)")
title("Original Female Speech")
grid on

nexttile
plot(t,fSpeech_Soft)
axis([t(1) t(end) -1 1])
xlabel("Time (s)")
title("Estimated Female Speech")
grid on
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sound(mSpeech_Soft,Fs)

sound(fSpeech_Soft,Fs)

Mask Estimation Using Deep Learning

The goal of the deep learning network in this example is to estimate the ideal soft mask described
above. The network estimates the mask corresponding to the male speaker. The female speaker mask
is derived directly from the male mask.

The basic deep learning training scheme is shown below. The predictor is the magnitude spectra of
the mixed (male + female) audio. The target is the ideal soft masks corresponding to the male
speaker. The regression network uses the predictor input to minimize the mean square error between
its output and the input target. At the output, the audio STFT is converted back to the time domain
using the output magnitude spectrum and the phase of the mix signal.
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You transform the audio to the frequency domain using the Short-Time Fourier transform (STFT),
with a window length of 128 samples, an overlap of 127, and a Hann window. You reduce the size of
the spectral vector to 65 by dropping the frequency samples corresponding to negative frequencies
(because the time-domain speech signal is real, this does not lead to any information loss). The
predictor input consists of 20 consecutive STFT vectors. The output is a 65-by-20 soft mask.

You use the trained network to estimate the male speech. The input to the trained network is the
mixture (male + female) speech audio.

STFT Targets and Predictors

This section illustrates how to generate the target and predictor signals from the training dataset.

Read in training signals consisting of around 400 seconds of speech from male and female speakers,
respectively, sampled at 4 kHz. The low sample rate is used to speed up training. Trim the training
signals so that they are the same length.

mSpeechTrain = audioread(fullfile(dataset,"MaleSpeech-16-4-mono-405secs.wav"));
fSpeechTrain = audioread(fullfile(dataset,"FemaleSpeech-16-4-mono-405secs.wav"));

L = min(length(mSpeechTrain),length(fSpeechTrain));  
mSpeechTrain = mSpeechTrain(1:L);
fSpeechTrain = fSpeechTrain(1:L);

Read in validation signals consisting of around 20 seconds of speech from male and female speakers,
respectively, sampled at 4 kHz. Trim the validation signals so that they are the same length.

mSpeechValidate = audioread(fullfile(dataset,"MaleSpeech-16-4-mono-20secs.wav"));
fSpeechValidate = audioread(fullfile(dataset,"FemaleSpeech-16-4-mono-20secs.wav"));
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L = min(length(mSpeechValidate),length(fSpeechValidate));  
mSpeechValidate = mSpeechValidate(1:L);
fSpeechValidate = fSpeechValidate(1:L);

Scale the training signals to the same power. Scale the validation signals to the same power.

mSpeechTrain = mSpeechTrain/norm(mSpeechTrain);
fSpeechTrain = fSpeechTrain/norm(fSpeechTrain);
ampAdj = max(abs([mSpeechTrain;fSpeechTrain]));

mSpeechTrain = mSpeechTrain/ampAdj;
fSpeechTrain = fSpeechTrain/ampAdj;

mSpeechValidate = mSpeechValidate/norm(mSpeechValidate);
fSpeechValidate = fSpeechValidate/norm(fSpeechValidate);
ampAdj = max(abs([mSpeechValidate;fSpeechValidate]));

mSpeechValidate = mSpeechValidate/ampAdj;
fSpeechValidate = fSpeechValidate/ampAdj;

Create the training and validation "cocktail party" mixes.

mixTrain = mSpeechTrain + fSpeechTrain;
mixTrain = mixTrain/max(mixTrain);

mixValidate = mSpeechValidate + fSpeechValidate;
mixValidate = mixValidate/max(mixValidate);

Generate training STFTs.

windowLength = 128;
fftLength = 128;
overlapLength = 128-1;
Fs = 4000;
win = hann(windowLength,"periodic");

P_mix0 = abs(stft(mixTrain,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided"));
P_M = abs(stft(mSpeechTrain,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided"));
P_F = abs(stft(fSpeechTrain,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided"));

Take the log of the mix STFT. Normalize the values by their mean and standard deviation.

P_mix = log(P_mix0 + eps);
MP = mean(P_mix(:));
SP = std(P_mix(:));
P_mix = (P_mix - MP)/SP;

Generate validation STFTs. Take the log of the mix STFT. Normalize the values by their mean and
standard deviation.

P_Val_mix0 = stft(mixValidate,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided");
P_Val_M = abs(stft(mSpeechValidate,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided"));
P_Val_F = abs(stft(fSpeechValidate,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided"));

P_Val_mix = log(abs(P_Val_mix0) + eps);
MP = mean(P_Val_mix(:));
SP = std(P_Val_mix(:));
P_Val_mix = (P_Val_mix - MP) / SP;
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Training neural networks is easiest when the inputs to the network have a reasonably smooth
distribution and are normalized. To check that the data distribution is smooth, plot a histogram of the
STFT values of the training data.

figure(6)
histogram(P_mix,EdgeColor="none",Normalization="pdf")
xlabel("Input Value")
ylabel("Probability Density")

Compute the training soft mask. Use this mask as the target signal while training the network.

maskTrain = P_M./(P_M + P_F + eps);

Compute the validation soft mask. Use this mask to evaluate the mask emitted by the trained
network.

maskValidate = P_Val_M./(P_Val_M + P_Val_F + eps);

To check that the target data distribution is smooth, plot a histogram of the mask values of the
training data.

figure(7)

histogram(maskTrain,EdgeColor="none",Normalization="pdf")
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xlabel("Input Value")
ylabel("Probability Density")

Create chunks of size (65, 20) from the predictor and target signals. In order to get more training
samples, use an overlap of 10 segments between consecutive chunks.

seqLen = 20;
seqOverlap = 10;
mixSequences = zeros(1 + fftLength/2,seqLen,1,0);
maskSequences = zeros(1 + fftLength/2,seqLen,1,0);

loc = 1;
while loc < size(P_mix,2) - seqLen
    mixSequences(:,:,:,end+1) = P_mix(:,loc:loc+seqLen-1);
    maskSequences(:,:,:,end+1) = maskTrain(:,loc:loc+seqLen-1);
    loc = loc + seqOverlap;
end

Create chunks of size (65,20) from the validation predictor and target signals.

mixValSequences = zeros(1 + fftLength/2,seqLen,1,0);
maskValSequences = zeros(1 + fftLength/2,seqLen,1,0);
seqOverlap = seqLen;

loc = 1;
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while loc < size(P_Val_mix,2) - seqLen
    mixValSequences(:,:,:,end+1) = P_Val_mix(:,loc:loc+seqLen-1);
    maskValSequences(:,:,:,end+1) = maskValidate(:,loc:loc+seqLen-1);
    loc = loc + seqOverlap;
end

Reshape the training and validation signals.

mixSequencesT = reshape(mixSequences,[1 1 (1 + fftLength/2)*seqLen size(mixSequences,4)]);
mixSequencesV = reshape(mixValSequences,[1 1 (1 + fftLength/2)*seqLen size(mixValSequences,4)]);
maskSequencesT = reshape(maskSequences,[1 1 (1 + fftLength/2)*seqLen size(maskSequences,4)]);
maskSequencesV = reshape(maskValSequences,[1 1 (1 + fftLength/2)*seqLen size(maskValSequences,4)]);

Define Deep Learning Network

Define the layers of the network. Specify the input size to be images of size 1-by-1-by-1300. Define
two hidden fully connected layers, each with 1300 neurons. Follow each hidden fully connected layer
with a sigmoid layer. The batch normalization layers normalize the means and standard deviations of
the outputs. Add a fully connected layer with 1300 neurons, followed by a regression layer.

numNodes = (1 + fftLength/2)*seqLen;

layers = [ ...
    
    imageInputLayer([1 1 (1 + fftLength/2)*seqLen],Normalization="None")
    
    fullyConnectedLayer(numNodes)
    BiasedSigmoidLayer(6)
    batchNormalizationLayer
    dropoutLayer(0.1)

    fullyConnectedLayer(numNodes)
    BiasedSigmoidLayer(6)
    batchNormalizationLayer
    dropoutLayer(0.1)

    fullyConnectedLayer(numNodes)
    BiasedSigmoidLayer(0)

    regressionLayer
    
    ];

Specify the training options for the network. Set MaxEpochs to 3 so that the network makes three
passes through the training data. Set MiniBatchSize to 64 so that the network looks at 64 training
signals at a time. Set Plots to training-progress to generate plots that show the training
progress as the number of iterations increases. Set Verbose to false to disable printing the table
output that corresponds to the data shown in the plot into the command line window. Set Shuffle to
every-epoch to shuffle the training sequences at the beginning of each epoch. Set
LearnRateSchedule to piecewise to decrease the learning rate by a specified factor (0.1) every
time a certain number of epochs (1) has passed. Set ValidationData to the validation predictors
and targets. Set ValidationFrequency such that the validation mean square error is computed
once per epoch. This example uses the adaptive moment estimation (ADAM) solver.

maxEpochs = 3;
miniBatchSize = 64;
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options = trainingOptions("adam", ...
    MaxEpochs=maxEpochs, ...
    MiniBatchSize=miniBatchSize, ...
    SequenceLength="longest", ...
    Shuffle="every-epoch", ...
    Verbose=0, ...
    Plots="training-progress", ...
    ValidationFrequency=floor(size(mixSequencesT,4)/miniBatchSize), ...
    ValidationData={mixSequencesV,maskSequencesV}, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropFactor=0.9, ...
    LearnRateDropPeriod=1);

Train Deep Learning Network

Train the network with the specified training options and layer architecture using trainNetwork.
Because the training set is large, the training process can take several minutes. To load a pre-trained
network, set speedupExample to true.

speedupExample = ;
if speedupExample
    CocktailPartyNet = trainNetwork(mixSequencesT,maskSequencesT,layers,options);
else
    s = load(fullfile(dataset,"CocktailPartyNet.mat"));
    CocktailPartyNet = s.CocktailPartyNet;
end

Pass the validation predictors to the network. The output is the estimated mask. Reshape the
estimated mask.

estimatedMasks0 = predict(CocktailPartyNet,mixSequencesV);

estimatedMasks0 = estimatedMasks0.';
estimatedMasks0 = reshape(estimatedMasks0,1 + fftLength/2,numel(estimatedMasks0)/(1 + fftLength/2));

Evaluate Deep Learning Network

Plot a histogram of the error between the actual and expected mask.

figure(8)
histogram(maskValSequences(:) - estimatedMasks0(:),EdgeColor="none",Normalization="pdf")
xlabel("Mask Error")
ylabel("Probability Density")
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Evaluate Soft Mask Estimation

Estimate male and female soft masks. Estimate male and female binary masks by thresholding the
soft masks.

SoftMaleMask = estimatedMasks0; 
SoftFemaleMask = 1 - SoftMaleMask;

Shorten the mix STFT to match the size of the estimated mask.

P_Val_mix0 = P_Val_mix0(:,1:size(SoftMaleMask,2));

Multiply the mix STFT by the male soft mask to get the estimated male speech STFT.

P_Male = P_Val_mix0.*SoftMaleMask;

Use the ISTFT to get the estimated male audio signal. Scale the audio.

maleSpeech_est_soft = istft(P_Male,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided",ConjugateSymmetric=true);
maleSpeech_est_soft = maleSpeech_est_soft/max(abs(maleSpeech_est_soft));

Determine a range to analyze and the associated time vector.

range = windowLength:numel(maleSpeech_est_soft)-windowLength;
t = range*(1/Fs);
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Visualize the estimated and original male speech signals. Listen to the estimated soft mask male
speech.

sound(maleSpeech_est_soft(range),Fs)

figure(9)
tiledlayout(2,1)

nexttile
plot(t,mSpeechValidate(range))
title("Original Male Speech")
xlabel("Time (s)")
grid on

nexttile
plot(t,maleSpeech_est_soft(range))
xlabel("Time (s)")
title("Estimated Male Speech (Soft Mask)")
grid on

Multiply the mix STFT by the female soft mask to get the estimated female speech STFT. Use the
ISTFT to get the estimated male audio signal. Scale the audio.

P_Female = P_Val_mix0.*SoftFemaleMask;
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femaleSpeech_est_soft = istft(P_Female,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided",ConjugateSymmetric=true);
femaleSpeech_est_soft = femaleSpeech_est_soft/max(femaleSpeech_est_soft);

Visualize the estimated and original female signals. Listen to the estimated female speech.

sound(femaleSpeech_est_soft(range),Fs)

figure(10)
tiledlayout(2,1)

nexttile
plot(t,fSpeechValidate(range))
title("Original Female Speech")
grid on

nexttile
plot(t,femaleSpeech_est_soft(range))
xlabel("Time (s)")
title("Estimated Female Speech (Soft Mask)")
grid on

Evaluate Binary Mask Estimation

Estimate male and female binary masks by thresholding the soft masks.
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HardMaleMask = SoftMaleMask >= 0.5;
HardFemaleMask = SoftMaleMask < 0.5;

Multiply the mix STFT by the male binary mask to get the estimated male speech STFT. Use the
ISTFT to get the estimated male audio signal. Scale the audio.

P_Male = P_Val_mix0.*HardMaleMask;

maleSpeech_est_hard = istft(P_Male,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided",ConjugateSymmetric=true);
maleSpeech_est_hard = maleSpeech_est_hard/max(maleSpeech_est_hard);

Visualize the estimated and original male speech signals. Listen to the estimated binary mask male
speech.

sound(maleSpeech_est_hard(range),Fs)

figure(11)
tiledlayout(2,1)

nexttile
plot(t,mSpeechValidate(range))
title("Original Male Speech")
grid on

nexttile
plot(t,maleSpeech_est_hard(range))
xlabel("Time (s)")
title("Estimated Male Speech (Binary Mask)")
grid on
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Multiply the mix STFT by the female binary mask to get the estimated male speech STFT. Use the
ISTFT to get the estimated male audio signal. Scale the audio.

P_Female = P_Val_mix0.*HardFemaleMask;

femaleSpeech_est_hard = istft(P_Female,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided",ConjugateSymmetric=true);
femaleSpeech_est_hard = femaleSpeech_est_hard/max(femaleSpeech_est_hard);

Visualize the estimated and original female speech signals. Listen to the estimated female speech.

sound(femaleSpeech_est_hard(range),Fs)

figure(12)
tiledlayout(2,1)

nexttile
plot(t,fSpeechValidate(range))
title("Original Female Speech")
grid on

nexttile
plot(t,femaleSpeech_est_hard(range))
title("Estimated Female Speech (Binary Mask)")
grid on
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Compare STFTs of a one-second segment for mix, original female and male, and estimated female and
male, respectively.

range = 7e4:7.4e4;

figure(13)
stft(mixValidate(range),Fs,Window=win,OverlapLength=64,FFTLength=fftLength,FrequencyRange="onesided");
title("Mix STFT")
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figure(14)
tiledlayout(3,1)

nexttile
stft(mSpeechValidate(range),Fs,Window=win,OverlapLength=64,FFTLength=fftLength,FrequencyRange="onesided");
title("Male STFT (Actual)")

nexttile
stft(maleSpeech_est_soft(range),Fs,Window=win,OverlapLength=64,FFTLength=fftLength,FrequencyRange="onesided");
title("Male STFT (Estimated - Soft Mask)")

nexttile
stft(maleSpeech_est_hard(range),Fs,Window=win,OverlapLength=64,FFTLength=fftLength,FrequencyRange="onesided");
title("Male STFT (Estimated - Binary Mask)");
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figure(15)
tiledlayout(3,1)

nexttile
stft(fSpeechValidate(range),Fs,Window=win,OverlapLength=64,FFTLength=fftLength,FrequencyRange="onesided");
title("Female STFT (Actual)")

nexttile
stft(femaleSpeech_est_soft(range),Fs,Window=win,OverlapLength=64,FFTLength=fftLength,FrequencyRange="onesided");
title("Female STFT (Estimated - Soft Mask)")

nexttile
stft(femaleSpeech_est_hard(range),Fs,Window=win,OverlapLength=64,FFTLength=fftLength,FrequencyRange="onesided");
title("Female STFT (Estimated - Binary Mask)")
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Parametric Equalizer Design

This example shows how to design parametric equalizer filters. Parametric equalizers are digital
filters used in audio for adjusting the frequency content of a sound signal. Parametric equalizers
provide capabilities beyond those of graphic equalizers by allowing the adjustment of gain, center
frequency, and bandwidth of each filter. In contrast, graphic equalizers only allow for the adjustment
of the gain of each filter.

Typically, parametric equalizers are designed as second-order IIR filters. These filters have the
drawback that because of their low order, they can present relatively large ripple or transition
regions and may overlap with each other when several of them are connected in cascade. Audio
Toolbox™ provides the capability to design high-order IIR parametric equalizers. Such high-order
designs provide much more control over the shape of each filter. In addition, the designs special-case
to traditional second-order parametric equalizers if the order of the filter is set to two.

This example uses designParamEQ. It is a simple function that provides support for the most
common designs. It also supports C code generation which is needed if there is a desire to tune the
filter at run-time with generated code.

Some Basic Designs

Consider the following two designs of parametric equalizers. The design specifications are the same
except for the filter order. The first design is a typical second-order parametric equalizer that boosts
the signal around 10 kHz by 5 dB. The second design does the same with a sixth-order filter. Notice
how the sixth-order filter is closer to an ideal brickwall filter when compared to the second-order
design. Obviously the approximation can be improved by increasing the filter order even further. The
price to pay for such improved approximation is increased implementation cost as more multipliers
are required.

Fs = 48e3;
N1 = 2;
N2 = 6;
G  = 5; % 5 dB
Wo = 10000/(Fs/2);
BW = 4000/(Fs/2);
[B1,A1] = designParamEQ(N1,G,Wo,BW,'Orientation','row');
[B2,A2] = designParamEQ(N2,G,Wo,BW,'Orientation','row');
BQ1 = dsp.SOSFilter('Numerator',B1,'Denominator',A1);
BQ2 = dsp.SOSFilter('Numerator',B2,'Denominator',A2);
hfvt = fvtool(BQ1,BQ2,'Fs',Fs,'Color','white');
legend(hfvt,'2nd-Order Design','6th-Order Design');
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One of the design parameters is the filter bandwidth, BW. In the previous example, the bandwidth
was specified as 4 kHz. The 4 kHz bandwidth occurs at half the gain (2.5 dB).

Designs Based on Quality Factor

Another common design parameter is the quality factor, Q. The Q of the filter is defined as Wo/BW
(center frequency/bandwidth). It provides a measure of the sharpness of the filter, i.e., how sharply
the filter transitions between the reference value (0 dB) and the gain G. Consider two designs with
same G and Wo, but different Q values.

Fs  = 48e3;
N   = 2;
Q1  = 1.5;
Q2  = 10;
G   = 15; % 15 dB
Wo  = 6000/(Fs/2);
BW1 = Wo/Q1;
BW2 = Wo/Q2;
[B1,A1] = designParamEQ(N,G,Wo,BW1,'Orientation','row');
[B2,A2] = designParamEQ(N,G,Wo,BW2,'Orientation','row');
BQ1 = dsp.SOSFilter('Numerator',B1,'Denominator',A1);
BQ2 = dsp.SOSFilter('Numerator',B2,'Denominator',A2);
hfvt = fvtool(BQ1,BQ2,'Fs',Fs,'Color','white');
legend(hfvt,'Q = 1.5','Q = 10');
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Although a higher Q factor corresponds to a sharper filter, it must also be noted that for a given
bandwidth, the Q factor increases simply by increasing the center frequency. This might seem
unintuitive. For example, the following two filters have the same Q factor, but one clearly occupies a
larger bandwidth than the other.

Fs  = 48e3;
N   = 2;
Q   = 10;
G   = 9; % 9 dB
Wo1 = 2000/(Fs/2);
Wo2 = 12000/(Fs/2);
BW1 = Wo1/Q;
BW2 = Wo2/Q;
[B1,A1] = designParamEQ(N,G,Wo1,BW1,'Orientation','row');
[B2,A2] = designParamEQ(N,G,Wo2,BW2,'Orientation','row');
BQ1 = dsp.SOSFilter('Numerator',B1,'Denominator',A1);
BQ2 = dsp.SOSFilter('Numerator',B2,'Denominator',A2);
hfvt = fvtool(BQ1,BQ2,'Fs',Fs,'Color','white');
legend(hfvt,'BW1 = 200 Hz; Q = 10','BW2 = 1200 Hz; Q = 10');
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When viewed on a log-frequency scale though, the "octave bandwidth" of the two filters is the same.

hfvt = fvtool(BQ1,BQ2,'FrequencyScale','log','Fs',Fs,'Color','white');
legend(hfvt,'Fo1 = 2 kHz','Fo2 = 12 kHz');

Low Shelf and High Shelf Filters

The filter's bandwidth BW is only perfectly centered around the center frequency Wo when such
frequency is set to 0.5*pi (half the Nyquist rate). When Wo is closer to 0 or to pi, there is a warping
effect that makes a larger portion of the bandwidth to occur at one side of the center frequency. In
the edge cases, if the center frequency is set to 0 (pi), the entire bandwidth of the filter occurs to the
right (left) of the center frequency. The result is a so-called shelving low (high) filter.

Fs  = 48e3;
N   = 4;
G   = 10; % 10 dB
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Wo1 = 0;
Wo2 = 1; % Corresponds to Fs/2 (Hz) or pi (rad/sample)
BW = 1000/(Fs/2); % Bandwidth occurs at 7.4 dB in this case
[B1,A1] = designParamEQ(N,G,Wo1,BW,'Orientation','row');
[B2,A2] = designParamEQ(N,G,Wo2,BW,'Orientation','row');
BQ1 = dsp.SOSFilter('Numerator',B1,'Denominator',A1);
BQ2 = dsp.SOSFilter('Numerator',B2,'Denominator',A2);
hfvt = fvtool(BQ1,BQ2,'Fs',Fs,'Color','white');
legend(hfvt,'Low Shelf Filter','High Shelf Filter');

A Parametric Equalizer That Cuts

All previous designs are examples of a parametric equalizer that boosts the signal over a certain
frequency band. You can also design equalizers that cut (attenuate) the signal in a given region.

Fs = 48e3;
N  = 2;
G  = -5; % -5 dB
Wo = 6000/(Fs/2);
BW = 2000/(Fs/2);
[B,A] = designParamEQ(N,G,Wo,BW,'Orientation','row');
BQ = dsp.SOSFilter('Numerator',B,'Denominator',A);
hfvt = fvtool(BQ,'Fs',Fs,'Color','white');
legend(hfvt,'G = -5 dB');
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At the limit, the filter can be designed to have a gain of zero (-Inf dB) at the frequency specified. This
allows to design 2nd order or higher order notch filters.

Fs  = 44.1e3;
N   = 8;
G   = -inf;
Q   = 1.8;
Wo  = 60/(Fs/2); % Notch at 60 Hz
BW  = Wo/Q; % Bandwidth will occur at -3 dB for this special case
[B1,A1] = designParamEQ(N,G,Wo,BW,'Orientation','row');
[NUM,DEN]  = iirnotch(Wo,BW); % or [NUM,DEN] = designParamEQ(2,G,Wo,BW);
BQ1 = dsp.SOSFilter('Numerator',B1,'Denominator',A1);
BQ2 = dsp.SOSFilter('Numerator',NUM,'Denominator',DEN);
hfvt = fvtool(BQ1,BQ2,'Fs',Fs,'FrequencyScale','Log','Color','white');
legend(hfvt,'8th order notch filter','2nd order notch filter');
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Cascading Parametric Equalizers

Parametric equalizers are usually connected in cascade (in series) so that several are used
simultaneously to equalize an audio signal. To connect several equalizers in this way, use the
dsp.FilterCascade.

Fs  = 48e3;
N   = 2;
G1  = 3;  % 3 dB
G2  = -2; % -2 dB
Wo1 = 400/(Fs/2);
Wo2 = 1000/(Fs/2); 
BW = 500/(Fs/2); % Bandwidth occurs at 7.4 dB in this case
[B1,A1] = designParamEQ(N,G1,Wo1,BW,'Orientation','row');
[B2,A2] = designParamEQ(N,G2,Wo2,BW,'Orientation','row');
BQ1 = dsp.SOSFilter('Numerator',B1,'Denominator',A1);
BQ2 = dsp.SOSFilter('Numerator',B2,'Denominator',A2);
FC  = dsp.FilterCascade(BQ1,BQ2);
hfvt = fvtool(FC,'Fs',Fs,'Color','white','FrequencyScale','Log');
legend(hfvt,'Cascade of 2nd order filters');

Low-order designs such as the second-order filters above can interfere with each other if their center
frequencies are closely spaced. In the example above, the filter centered at 1 kHz was supposed to
have a gain of -2 dB. Due to the interference from the other filter, the actual gain is more like -1 dB.
Higher-order designs are less prone to such interference.

Fs  = 48e3;
N   = 8;
G1  = 3;  % 3 dB
G2  = -2; % -2 dB
Wo1 = 400/(Fs/2);
Wo2 = 1000/(Fs/2); 
BW = 500/(Fs/2); % Bandwidth occurs at 7.4 dB in this case
[B1,A1] = designParamEQ(N,G1,Wo1,BW,'Orientation','row');
[B2,A2] = designParamEQ(N,G2,Wo2,BW,'Orientation','row');
BQ1a = dsp.SOSFilter('Numerator',B1,'Denominator',A1);
BQ2a = dsp.SOSFilter('Numerator',B2,'Denominator',A2);
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FC2  = dsp.FilterCascade(BQ1a,BQ2a);
hfvt = fvtool(FC,FC2,'Fs',Fs,'Color','white','FrequencyScale','Log');
legend(hfvt,'Cascade of 2nd order filters','Cascade of 8th order filters');
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Octave-Band and Fractional Octave-Band Filters

This example shows how to design octave-band and fractional octave-band filters, including filter
banks and octave SPL meters. Octave-band and fractional-octave-band filters are commonly used in
acoustics. For example, octave filters are used to perform spectral analysis for noise control.
Acousticians work with octave or fractional (often 1/3) octave filter banks because it provides a
meaningful measure of the noise power in different frequency bands.

Octave-Band Filter

An octave is the interval between two frequencies having a ratio of 2:1 (or 103/10 ≈ 1 . 995 for base-10
octave ratios). An octave-band or fractional-octave-band filter is a bandpass filter determined by its
center frequency, order, and bandwidth. The magnitude attenuation limits are defined in the ANSI®
S1.11-2004 standard for three classes of filters: class 0, class 1 and class 2. Class 0 allows only
+/-0.15 dB of ripple in the passband, while class 1 allows +/-0.3 dB and class 2 allows +/-0.5 dB.
Levels of stopband attenuation vary from 60 to 75 dB, depending on the class of the filter.

Design a full octave-band filter using octaveFilter.

BW = "1 octave";  % Bandwidth
N  = 8;           % Filter order
F0 = 1000;        % Center frequency (Hz)
Fs = 48000;       % Sampling frequency (Hz)
of = octaveFilter(FilterOrder=N,CenterFrequency=F0,  ...
                  Bandwidth=BW,SampleRate=Fs);

Visualize the magnitude response of the filter.

visualize(of,"class 1")
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The visualizer plot is synchronized to the object, so you can see the magnitude response update as
you change the filter parameters. The mask around the magnitude response is green if the filter
complies with the ANSI S1.11-2004 standard (including being centered at a valid frequency), and red
otherwise. To change the specifications of the filter with a graphical user interface, use
parameterTuner. You can also use the Audio Test Bench app to quickly set up a test bench for the
octave filter you designed. For example, run audioTestBench(of) to launch a test bench with
octave filter.

Open a parameter tuner that enables you to modify the filter in real time.

parameterTuner(of)

Open a spectrum analyzer to display white noise filtered by the octave filter. You can modify the filter
settings with the parameter tuner while the loop runs.

Nx = 100000;
scope1 = spectrumAnalyzer(SampleRate=Fs,Method="filter-bank", ...
    AveragingMethod="exponential",PlotAsTwoSidedSpectrum=false, ...
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    FrequencyScale="log",FrequencySpan="start-and-stop-frequencies", ...
    StartFrequency=1,StopFrequency=Fs/2,YLimits=[-60 10], ...
    RBWSource="property",RBW=1);
tic
while toc < 20
    % Run for 20 seconds
    x1 = randn(Nx,1);
    y1 = of(x1);
    scope1(y1)
end

Octave-Band Filter Bank

Many applications require a complete set of octave filters to form a filter bank. To design each filter
manually, you would use getANSICenterFrequencies(of) to get a list of center frequencies for
each individual filter. However, it is usually much simpler to use the octaveFilterBank object.

Create an octaveFilterBank object and plot its magnitude response.

ofb = octaveFilterBank("1/3 octave",Fs,FilterOrder=N);
freqz(ofb,NFFT=2^16)   % Increase FFT length for better low-frequency resolution
set(gca,XScale="log")
axis([20 Fs/2 -50 5])
title("1/3-Octave Filter Bank Magnitude Response")
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Filter the output of a pink noise generator with the 1/3-octave filter bank and compute the total
power at the output of each filter.

pinkNoise = dsp.ColoredNoise(Color="pink", ...
                             SamplesPerFrame=Nx, ...
                             NumChannels=1);

scope2 = spectrumAnalyzer(SampleRate=Fs,Method="filter-bank", ...
    AveragingMethod="exponential",PlotAsTwoSidedSpectrum=false, ...
    FrequencyScale="log",FrequencySpan="start-and-stop-frequencies", ...
    StartFrequency=20,StopFrequency=Fs/2,YLimits=[-40 30], ...
    RBWSource="property",RBW=10);

centerOct = getCenterFrequencies(ofb);
nbOct = numel(centerOct);
bandPower = zeros(1,nbOct);
nbSamples = 0;

tic
while toc < 10
    xp = pinkNoise();
    yp = ofb(xp);
    bandPower = bandPower + sum(yp.^2,1);
    nbSamples = nbSamples + Nx;
    scope2(yp)    
end
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Pink noise has the same total power in each octave band, so the power between 5 Hz and 10 Hz is the
same as between 5,000 Hz and 10,000 Hz. Consequently, in the spectrum analyzer, you can observe
the 10 dB/decade fall-off that is characteristic of pink noise on a log-log scale, and how that signal is
split into the 30 1/3-octave bands. The higher frequency bands have less power density, but the log
scale means that they are also wider, so that their total power is constant.

Plot the power spectrum to show that pink noise has a flat octave spectrum.

b = 10^(3/10); % base-10 octave ratio
% Compute power (including pressure reference)
octPower = 10*log10(bandPower/nbSamples/4e-10);

bar(log(centerOct)/log(b),octPower);
set(gca,Xticklabel=round(b.^get(gca,"Xtick"),2,"significant"));
title("1/3-Octave Power Spectrum")
xlabel("Octave Frequency Band (Hz)")
ylabel("Power (dB)")
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Octave SPL

The SPL Meter object (splMeter) also supports octave-band measurements. Reproduce the same
power spectrum measurement in real time. Use a dsp.ArrayPlot object to visualize the power per
band. Use the Z-weighting option to omit the frequency weighting filter.

spl = splMeter(Bandwidth="1/3 octave", ...
               OctaveFilterOrder=N, ...
               SampleRate=Fs, ...
               FrequencyWeighting="z-weighting");

scope3 = dsp.ArrayPlot(Title="Pink Noise SPL", ...
                       XLabel="Octave Frequency Band Number", ...
                       YLabel="Power (dB)",YLimits=[0 100]);
tic
while toc < 10
    xp = pinkNoise();
    yp = spl(xp);
    ypm = mean(yp,1).';
    scope3(ypm)
end

1 Audio Toolbox Examples

1-404



 Octave-Band and Fractional Octave-Band Filters

1-405



Pitch Tracking Using Multiple Pitch Estimations and HMM

This example shows how to perform pitch tracking using multiple pitch estimations, octave and
median smoothing, and a hidden Markov model (HMM).

Introduction

Pitch detection is a fundamental building block in speech processing, speech coding, and music
information retrieval (MIR). In speech and speaker recognition, pitch is used as a feature in a
machine learning system. For call centers, pitch is used to indicate the emotional state and gender of
customers. In speech therapy, pitch is used to indicate and analyze pathologies and diagnose physical
defects. In MIR, pitch is used to categorize music, for query-by-humming systems, and as a primary
feature in song identification systems.

Pitch detection for clean speech is mostly considered a solved problem. Pitch detection with noise
and multi-pitch tracking remain difficult problems. There are many algorithms that have been
extensively reported on in the literature with known trade-offs between computational cost and
robustness to different types of noise.

Usually, a pitch detection algorithm (PDA) estimates the pitch for a given time instant. The pitch
estimate is then validated or corrected within a pitch tracking system. Pitch tracking systems enforce
continuity of pitch estimates over time.

This example provides an example function, HelperPitchTracker, which implements a pitch
tracking system. The example walks through the algorithm implemented by the
HelperPitchTracker function.

Problem Summary

Load an audio file and corresponding reference pitch for the audio file. The reference pitch is
reported every 10 ms and was determined as an average of several third-party algorithms on the
clean speech file. Regions without voiced speech are represented as nan.

[x,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
load TruePitch.mat truePitch

Use the pitch function to estimate the pitch of the audio over time.

[f0,locs] = pitch(x,fs);

Two metrics are commonly reported when defining pitch error: gross pitch error (GPE) and voicing
decision error (VDE). Because the pitch algorithms in this example do not provide a voicing decision,
only GPE is reported. In this example, GPE is calculated as the percent of pitch estimates outside
±10 % of the reference pitch over the span of the voiced segments.

Calculate the GPE for regions of speech and plot the results. Listen to the clean audio signal.

isVoiced = ~isnan(truePitch);
f0(~isVoiced) = nan;

p = 0.1;
GPE = mean(abs(f0(isVoiced)-truePitch(isVoiced)) > truePitch(isVoiced).*p).*100;

t = (0:length(x)-1)/fs;
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t0 = (locs-1)/fs;
sound(x,fs)

figure(1)
tiledlayout(2,1)
nexttile
plot(t,x)
ylabel("Amplitude")
title("Pitch Estimation of Clean Signal")

nexttile
plot(t0,[truePitch,f0])
legend("Reference","Estimate",Location="northwest")
ylabel("F0 (Hz)")
xlabel("Time (s)")
title("GPE = " + round(GPE,2) + " (%)")

Mix the speech signal with noise at −5 dB SNR.

Use the pitch function on the noisy audio to estimate the pitch over time. Calculate the GPE for
regions of voiced speech and plot the results. Listen to the noisy audio signal.

desiredSNR = -5;
x = mixSNR(x,rand(size(x)),desiredSNR);
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[f0,locs] = pitch(x,fs);
f0(~isVoiced) = nan;
GPE = mean(abs(f0(isVoiced) - truePitch(isVoiced)) > truePitch(isVoiced).*p).*100;

sound(x,fs)

figure(2)
tiledlayout(2,1)

nexttile
plot(t,x)
ylabel("Amplitude")
title("Pitch Estimation of Noisy Signal")

nexttile
plot(t0,[truePitch,f0])
legend("Reference","Estimate",Location="northwest")
ylabel("F0 (Hz)")
xlabel("Time (s)")
title("GPE = " + GPE + " (%)")

This example shows how to improve the pitch estimation of noisy speech signals using multiple pitch
candidate generation, octave-smoothing, median-smoothing, and an HMM.
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The algorithm described in this example is implemented in the example function
HelperPitchTracker. To learn about the HelperPitchTracker function, enter help
HelperPitchTracker at the command line.

help HelperPitchTracker

 HelperPitchTracker Track the fundamental frequency of audio signal
    f0 = HelperPitchTracker(audioIn,fs) returns an estimate of the
    fundamental frequency contour for the audio input. Columns of the
    input are treated as individual channels. The HelperPitchTracker
    function uses multiple pitch detection algorithms to generate pitch
    candidates, and uses octave smoothing and a Hidden Markov Model to
    return an estimate of the fundamental frequency.
 
    f0 = HelperPitchTracker(...,'HopLength',HOPLENGTH) specifies the number
    of samples in each hop. The pitch estimate is updated every hop.
    Specify HOPLENGTH as a scalar integer. If unspecified, HOPLENGTH
    defaults to round(0.01*fs).
 
    f0 = HelperPitchTracker(...,'OctaveSmoothing',TF) specifies whether or
    not to apply octave smoothing. Specify as true or false. If
    unspecified, TF defaults to true.
 
    f0 = HelperPitchTracker(...,'EmissionMatrix',EMISSIONMATRIX) specifies
    the emission matrix used for the HMM during the forward pass. The
    default emission matrix was trained on the Pitch Tracking Database from
    Graz University of Technology. The database consists of 4720 speech
    segments with corresponding pitch trajectories derived from
    laryngograph signals. The emission matrix corresponds to the
    probability that a speaker leaves one pitch state to another, in the
    range [50, 400] Hz. Specify the emission matrix such that rows
    correspond to the current state, columns correspond to the possible
    future state, and the values of the matrix correspond to the
    probability of moving from the current state to the future state. If
    you specify your own emission matrix, specify its corresponding
    EMISSIONMATRIXRANGE. EMISSIONMATRIX must be a real N-by-N matrix of
    integers.
 
    f0 = HelperPitchTracker(...,'EmissionMatrixRange',EMISSIONMATRIXRANGE)
    specifies how the EMISSIONMATRIX corresponds to Hz. If unspecified,
    EMISSIONMATRIXRANGE defaults to 50:400.
 
    [f0,loc] = HelperPitchTracker(...) returns the locations associated
    with each pitch decision. The locations correspond to the ceiling of
    the center of the analysis frames.
 
    [f0,loc,hr] = HelperPitchTracker(...) returns the harmonic ratio
    associated with each pitch decision.
 
  See also pitch, voiceActivityDetector

Description of Pitch Tracking System

The graphic provides an overview of the pitch tracking system implemented in the example function.
The following code walks through the internal workings of the HelperPitchTracker example
function.
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1. Generate Multiple Pitch Candidates

In the first stage of the pitch tracking system, you generate multiple pitch candidates using multiple
pitch detection algorithms. The primary pitch candidates, which are generally more accurate, are
generated using algorithms based on the Summation of Residual Harmonics (SRH) [2 on page 1-428]
algorithm and the Pitch Estimation Filter with Amplitude Compression (PEFAC) [3 on page 1-428]
algorithm.

Buffer the noisy input signal into overlapped frames, and then use audio.internal.pitch.SRH to
generate 5 pitch candidates for each hop. Also return the relative confidence of each pitch candidate.
Plot the results.

RANGE = [50,400];
HOPLENGTH = round(fs.*0.01);

% Buffer into required sizes
xBuff_SRH = buffer(x,round(0.025*fs),round(0.02*fs),"nodelay");

% Define pitch parameters
params_SRH = struct(Method="SRH", ...
    Range=RANGE, ...
    WindowLength=round(fs*0.06), ...
    OverlapLength=round(fs*0.06-HOPLENGTH), ...
    SampleRate=fs, ...
    NumChannels=size(x,2), ...
    SamplesPerChannel=size(x,1));
multiCandidate_params_SRH = struct(NumCandidates=5,MinPeakDistance=1);

% Get pitch estimate and confidence
[f0_SRH,conf_SRH] = audio.internal.pitch.SRH(xBuff_SRH,x, ...
                                             params_SRH, ...
                                             multiCandidate_params_SRH);

figure(3)
tiledlayout(2,1)
nexttile
plot(t0,f0_SRH)
ylabel("F0 Candidates (Hz)")
title("Multiple Candidates from SRH Pitch Estimation")
nexttile
plot(t0,conf_SRH)
ylabel("Relative Confidence")
xlabel("Time (s)")

1 Audio Toolbox Examples

1-410



Generate an additional set of primary pitch candidates and associated confidence using the PEF
algorithm. Generate backup candidates and associated confidences using the normalized correlation
function (NCF) algorithm and cepstrum pitch determination (CEP) algorithm. Log only the most
confident estimate from the backup candidates.

xBuff_PEF = buffer(x,round(0.06*fs),round(0.05*fs),"nodelay");
params_PEF = struct(Method="PEF", ...
    Range=RANGE, ...
    WindowLength=round(fs*0.06), ...
    OverlapLength=round(fs*0.06-HOPLENGTH), ...
    SampleRate=fs, ...
    NumChannels=size(x,2), ...
    SamplesPerChannel=size(x,1));
multiCandidate_params_PEF = struct(NumCandidates=5,MinPeakDistance=5);
[f0_PEF,conf_PEF] = audio.internal.pitch.PEF(xBuff_PEF, ...
                                             params_PEF, ...
                                             multiCandidate_params_PEF);

xBuff_NCF = buffer(x,round(0.04*fs),round(0.03*fs),"nodelay");
xBuff_NCF = xBuff_NCF(:,2:end-1);
params_NCF = struct(Method="NCF", ...
    Range=RANGE, ...
    WindowLength=round(fs*0.04), ...
    OverlapLength=round(fs*0.04-HOPLENGTH), ...
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    SampleRate=fs, ...
    NumChannels=size(x,2), ...
    SamplesPerChannel=size(x,1));
multiCandidate_params_NCF = struct(NumCandidates=5,MinPeakDistance=1);
f0_NCF = audio.internal.pitch.NCF(xBuff_NCF, ...
                                  params_NCF, ...
                                  multiCandidate_params_NCF);

xBuff_CEP = buffer(x,round(0.04*fs),round(0.03*fs),"nodelay");
xBuff_CEP = xBuff_CEP(:,2:end-1);
params_CEP = struct(Method="CEP", ...
    Range=RANGE, ...
    WindowLength=round(fs*0.04), ...
    OverlapLength=round(fs*0.04-HOPLENGTH), ...
    SampleRate=fs, ...
    NumChannels=size(x,2), ...
    SamplesPerChannel=size(x,1));
multiCandidate_params_CEP = struct(NumCandidates=5,MinPeakDistance=1);
f0_CEP = audio.internal.pitch.CEP(xBuff_CEP, ...
                                  params_CEP, ...
                                  multiCandidate_params_CEP);

BackupCandidates = [f0_NCF(:,1),f0_CEP(:,1)];

2. Determine Long-Term Median

The long-term median of the pitch candidates is used to reduce the number of pitch candidates. To
calculate the long-term median pitch, first calculate the harmonic ratio. Pitch estimates are only valid
in regions of voiced speech, where the harmonic ratio is high.

hr = harmonicRatio(xBuff_PEF,fs, ...
                  Window=hamming(size(xBuff_NCF,1),"periodic"), ...
                  OverlapLength=0);

figure(4)
tiledlayout(2,1)
nexttile
plot(t,x)
ylabel("Amplitude")
nexttile
plot(t0,hr)
ylabel("Harmonic Ratio")
xlabel("Time (s)")
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Use the harmonic ratio to threshold out regions that do not include voiced speech in the long-term
median calculation. After determining the long-term median, calculate lower and upper bounds for
pitch candidates. In this example, the lower and upper bounds were determined empirically as 2/3
and 4/3 the median pitch. Candidates outside of these bounds are penalized in the following stage.

idxToKeep = logical(movmedian(hr>((3/4)*max(hr)),3));
longTermMedian = median([f0_PEF(idxToKeep,1);f0_SRH(idxToKeep,1)]);
lower = max((2/3)*longTermMedian,RANGE(1));
upper = min((4/3)*longTermMedian,RANGE(2));

figure(5)
tiledlayout(1,1)
nexttile
plot(t0,[f0_PEF,f0_SRH])
hold on
plot(t0,longTermMedian.*ones(size(f0_PEF,1)),"r:",LineWidth=3)
plot(t0,upper.*ones(size(f0_PEF,1)),"r",LineWidth=2)
plot(t0,lower.*ones(size(f0_PEF,1)),"r",LineWidth=2)
hold off
xlabel("Time (s)")
ylabel("Frequency (Hz)")
title("Long Term Median")
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3. Candidate Reduction

By default, candidates returned by the pitch detection algorithm are sorted in descending order of
confidence. Decrease the confidence of any primary candidate outside the lower and upper bounds.
Decrease the confidence by a factor of 10. Re-sort the candidates for both the PEF and SRH
algorithms so they are in descending order of confidence. Concatenate the candidates, keeping only
the two most confident candidates from each algorithm.

Plot the reduced candidates.

invalid = f0_PEF>lower | f0_PEF>upper;
conf_PEF(invalid) = conf_PEF(invalid)/10;
[conf_PEF,order] = sort(conf_PEF,2,"descend");
for i = 1:size(f0_PEF,1)
    f0_PEF(i,:) = f0_PEF(i,order(i,:));
end

invalid = f0_SRH>lower | f0_SRH>upper;
conf_SRH(invalid) = conf_SRH(invalid)/10;
[conf_SRH,order] = sort(conf_SRH,2,"descend");
for i = 1:size(f0_SRH,1)
    f0_SRH(i,:) = f0_SRH(i,order(i,:));
end
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candidates = [f0_PEF(:,1:2),f0_SRH(:,1:2)];
confidence = [conf_PEF(:,1:2),conf_SRH(:,1:2)];

figure(6)
plot(t0,candidates)
xlabel("Time (s)")
ylabel("Frequency (Hz)")
title("Reduced Candidates")

4. Make Distinctive

If two or more candidates are within a given 5 Hz span, set the candidates to their mean and sum
their confidence.

span = 5;
confidenceFactor = 1;
for r = 1:size(candidates,1)
    for c = 1:size(candidates,2)
        tf = abs(candidates(r,c)-candidates(r,:)) < span;
        candidates(r,c) = mean(candidates(r,tf));
        confidence(r,c) = sum(confidence(r,tf))*confidenceFactor;
    end
end
candidates = max(min(candidates,400),50);
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5. Forward Iteration of HMM with Octave Smoothing

Now that the candidates have been reduced, you can feed them into an HMM to enforce continuity
constraints. Pitch contours are generally continuous for speech signals when analyzed in 10 ms hops.
The probability of a pitch moving from one state to another across time is referred to as the emission
probability. Emission probabilities can be encapsulated into a matrix which describes the probability
of going from any pitch value in a set range to any other in a set range. The emission matrix used in
this example was created using the Graz database. [1 on page 1-428]

Load the emission matrix and associated range. Plot the probability density function (PDF) of a pitch
in 150 Hz state.

load EmissionMatrix.mat emissionMatrix emissionMatrixRange

currentState = ;

figure(7)
plot(emissionMatrixRange(1):emissionMatrixRange(2),emissionMatrix(currentState - emissionMatrixRange(1)-1,:))
title("Emission PDF for " + currentState + " Hz")
xlabel("Next Pitch Value (Hz)")
ylabel("Probability")
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The HMM used in this example combines the emission probabilities, which enforce continuity, and the
relative confidence of the pitch. At each hop, the emission probabilities are combined with the
relative confidence to create a confidence matrix. A best choice for each path is determined as the
max of the confidence matrix. The HMM used in this example also assumes that only one path can be
assigned to a given state (an assumption of the Viterbi algorithm).

In addition to the HMM, this example monitors for octave jumps relative to the short-term median of
the pitch paths. If an octave jump is detected, then the backup pitch candidates are added as options
for the HMM.

% Preallocation
numPaths = 4;
numHops = size(candidates,1);
logbook = zeros(numHops,3,numPaths);
suspectHops = zeros(numHops,1);

% Forward iteration with octave-smoothing
for hopNumber = 1:numHops
    nowCandidates = candidates(hopNumber,:);
    nowConfidence = confidence(hopNumber,:);
    
    % Remove octave jumps
    if hopNumber > 100
        numCandidates = numel(nowCandidates);
        
        % Weighted short term median
        medianWindowLength = 50;
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        aTemp = logbook(max(hopNumber-min(hopNumber,medianWindowLength),1):hopNumber-1,1,:);
        shortTermMedian = median(aTemp(:));
        previousM = mean([longTermMedian,shortTermMedian]);
        lowerTight = max((4/3)*previousM,emissionMatrixRange(1));
        upperTight = min((2/3)*previousM,emissionMatrixRange(2));
        numCandidateOutside = sum([nowCandidates < lowerTight, nowCandidates > upperTight]);
        
        % If at least 1 candidate is outside the octave centered on the
        % short-term median, add the backup pitch candidates that were
        % generated by the normalized correlation function and cepstrum
        % pitch determination algorithms as potential candidates.
        if numCandidateOutside > 0
            % Apply the backup pitch estimators
            nowCandidates = [nowCandidates,BackupCandidates(hopNumber,:)];%#ok<AGROW>
            nowConfidence = [nowConfidence,repmat(mean(nowConfidence),1,2)];%#ok<AGROW>
            
            % Make distinctive
            span = 10;
            confidenceFactor = 1.2;
            for r = 1:size(nowCandidates,1)
                for c = 1:size(nowCandidates,2)
                    tf = abs(nowCandidates(r,c)-nowCandidates(r,:)) < span;
                    nowCandidates(r,c) = mean(nowCandidates(r,tf));
                    nowConfidence(r,c) = sum(nowConfidence(r,tf))*confidenceFactor;
                end
            end
        end
    end
    
    % Create confidence matrix
    confidenceMatrix = zeros(numel(nowCandidates),size(logbook,3));
    for pageIdx = 1:size(logbook,3)
        if hopNumber ~= 1
            pastPitch = floor(logbook(hopNumber-1,1,pageIdx)) - emissionMatrixRange(1) + 1;
        else
            pastPitch = nan;
        end
        for candidateNumber = 1:numel(nowCandidates)
            if hopNumber ~= 1
                % Get the current pitch and convert to an index in the range
                currentPitch = floor(nowCandidates(candidateNumber)) - emissionMatrixRange(1) + 1;
                confidenceMatrix(candidateNumber,pageIdx) = ...
                    emissionMatrix(currentPitch,pastPitch)*logbook(hopNumber-1,2,pageIdx)*nowConfidence(candidateNumber);
            else
                confidenceMatrix(candidateNumber,pageIdx) = 1;
            end
        end
    end
    
    % Assign an estimate for each path
    for pageIdx = 1:size(logbook,3)
        % Determine most confident transition from past to current pitch
        [~,idx] = max(confidenceMatrix(:));
        
        % Convert confidence matrix index to pitch and logbook page
        [chosenPitch,pastPitchIdx] = ind2sub([numel(nowCandidates),size(logbook,3)],idx);
        
        logbook(hopNumber,:,pageIdx) = ...
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            [nowCandidates(chosenPitch), ...
            confidenceMatrix(chosenPitch,pastPitchIdx), ...
            pastPitchIdx];
        
        % Remove the chosen current pitch from the confidence matrix
        confidenceMatrix(chosenPitch,:) = NaN;
    end
    % Normalize confidence
    logbook(hopNumber,2,:) = logbook(hopNumber,2,:)/sum(logbook(hopNumber,2,:));
end

6. Traceback of HMM

Once the forward iteration of the HMM is complete, the final pitch contour is chosen as the most
confident path. Walk backward through the log book to determine the pitch contour output by the
HMM. Calculate the GPE and plot the new pitch contour and the known contour.

numHops = size(logbook,1);
keepLooking = true;
index = numHops + 1;

while keepLooking
    index = index - 1;
    if abs(max(logbook(index,2,:))-min(logbook(index,2,:)))~=0
        keepLooking = false;
    end
end

[~,bestPathIdx] = max(logbook(index,2,:));
bestIndices = zeros(numHops,1);
bestIndices(index) = bestPathIdx;

for ii = index:-1:2
    bestIndices(ii-1) = logbook(ii,3,bestIndices(ii));
end

bestIndices(bestIndices==0) = 1;
f0 = zeros(numHops,1);
for ii = (numHops):-1:2
    f0(ii) = logbook(ii,1,bestIndices(ii));
end

f0toPlot = f0;
f0toPlot(~isVoiced) = NaN;
GPE = mean( abs(f0toPlot(isVoiced) - truePitch(isVoiced)) > truePitch(isVoiced).*p).*100;
figure(8)
plot(t0,[truePitch,f0toPlot])
legend("Reference","Estimate")
ylabel("F0 (Hz)")
xlabel("Time (s)")
title("GPE = " + round(GPE,2) + " (%)")
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7. Moving Median Filter

As a final post-processing step, apply a moving median filter with a window length of three hops.
Calculate the final GPE and plot the final pitch contour and the known contour.

f0 = movmedian(f0,3);
f0(~isVoiced) = NaN;

GPE = mean(abs(f0(isVoiced) - truePitch(isVoiced)) > truePitch(isVoiced).*p).*100;
figure(9)
plot(t0,[truePitch,f0])
legend("Reference","Estimate")
ylabel("F0 (Hz)")
xlabel("Time (s)")
title("GPE = " + round(GPE,2) + " (%)")
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Performance Evaluation

The HelperPitchTracker function uses an HMM to apply continuity constraints to pitch contours.
The emission matrix of the HMM can be set directly. It is best to train the emission matrix on sound
sources similar to the ones you want to track.

This example uses the Pitch Tracking Database from Graz University of Technology (PTDB-TUG) [4]
on page 1-428. The data set consists of 20 English native speakers reading 2342 phonetically rich
sentences from the TIMIT corpus. Download and extract the data set. Depending on your system,
downloading and extracting the data set can take approximately 1.5 hours.

url = "https://www2.spsc.tugraz.at/databases/PTDB-TUG/SPEECH_DATA_ZIPPED.zip";
dataFolder = tempdir;
dataset = fullfile(dataFolder,"PTDB-TUG");

if ~datasetExists(dataset)
    disp("Downloading PTDB-TUG (3.9 G) ...")
    unzip(url,dataset)
end

Create an audio datastore that points to the microphone recordings in the database. Set the label
associated with each file to the location of the associated known pitch file. The dataset contains
recordings of 10 female and 10 male speakers. Use subset to isolate the 10th female and male
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speakers. Train an emission matrix based on the reference pitch contours for both male and female
speakers 1 through 9.

ads = audioDatastore([fullfile(dataset,"SPEECH DATA","FEMALE","MIC"),fullfile(dataset,"SPEECH DATA","MALE","MIC")], ...
                     IncludeSubfolders=true, ...
                     FileExtensions=".wav");
wavFileNames = ads.Files;
ads.Labels = replace(wavFileNames,["MIC","mic","wav"],["REF","ref","f0"]);

idxToRemove = contains(ads.Files,["F10","M10"]);
ads1 = subset(ads,idxToRemove);
ads9 = subset(ads,~idxToRemove);

Shuffle the audio datastores.

ads1 = shuffle(ads1);
ads9 = shuffle(ads9);

The emission matrix describes the probability of going from one pitch state to another. In the
following step, you create an emission matrix based on speakers 1 through 9 for both male and
female. The database stores reference pitch values, short-term energy, and additional information in
the text files with files extension f0. The getReferencePitch function reads in the pitch values if
the short-term energy is above a threshold. The threshold was determined empirically in listening
tests. The HelperUpdateEmissionMatrix creates a 2-dimensional histogram based on the current
pitch state and the next pitch state. After the histogram is created, it is normalized to create an
emission matrix.

emissionMatrixRange = [50,400];
emissionMatrix = [];

for i = 1:numel(ads9.Files)
    x = getReferencePitch(ads9.Labels{i});
    emissionMatrix = HelperUpdateEmissionMatrix(x,emissionMatrixRange,emissionMatrix);
end
emissionMatrix = emissionMatrix + sqrt(eps);
emissionMatrix = emissionMatrix./norm(emissionMatrix);

Define different types of background noise: white, ambiance, engine, jet, and street. Resample them
to 16 kHz to help speed up testing the database.

Define the SNR to test, in dB, as 10, 5, 0, -5, and -10.

noiseType = ["white","ambiance","engine","jet","street"];
numNoiseToTest = numel(noiseType);

desiredFs = 16e3;

whiteNoiseMaker = dsp.ColoredNoise(Color="white",SamplesPerFrame=40000,RandomStream="mt19937ar with seed",BoundedOutput=true);
noise{1} = whiteNoiseMaker();
[ambiance,ambianceFs] = audioread("Ambiance-16-44p1-mono-12secs.wav");
noise{2} = resample(ambiance,desiredFs,ambianceFs);
[engine,engineFs] = audioread("Engine-16-44p1-stereo-20sec.wav");
noise{3} = resample(engine,desiredFs,engineFs);
[jet,jetFs] = audioread("JetAirplane-16-11p025-mono-16secs.wav");
noise{4} = resample(jet,desiredFs,jetFs);
[street,streetFs] = audioread("MainStreetOne-16-16-mono-12secs.wav");
noise{5} = resample(street,desiredFs,streetFs);
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snrToTest = [10,5,0,-5,-10];
numSNRtoTest = numel(snrToTest);

Run the pitch detection algorithm for each SNR and noise type for each file. Calculate the average
GPE across speech files. This example compares performance with the popular pitch tracking
algorithm: Sawtooth Waveform Inspired Pitch Estimator (SWIPE). A MATLAB® implementation of the
algorithm can be found at [5 on page 1-428]. To run this example without comparing to other
algorithms, set compare to false. The following comparison takes around 15 minutes.

compare = ;
numFilesToTest = 20;
p = 0.1;
GPE_pitchTracker = zeros(numSNRtoTest,numNoiseToTest,numFilesToTest);
if compare
    GPE_swipe = GPE_pitchTracker;
end
for i = 1:numFilesToTest
    [cleanSpeech,info] = read(ads1);
    cleanSpeech = resample(cleanSpeech,desiredFs,info.SampleRate);
    
    truePitch = getReferencePitch(info.Label{:});
    isVoiced = truePitch~=0;
    truePitchInVoicedRegions = truePitch(isVoiced);
    
    for j = 1:numSNRtoTest
        for k = 1:numNoiseToTest
            noisySpeech = mixSNR(cleanSpeech,noise{k},snrToTest(j));
            f0 = HelperPitchTracker(noisySpeech,desiredFs,EmissionMatrix=emissionMatrix,EmissionMatrixRange=emissionMatrixRange);
            f0 = [0;f0]; % manual alignment with database.
            GPE_pitchTracker(j,k,i) = mean(abs(f0(isVoiced) - truePitchInVoicedRegions) > truePitchInVoicedRegions.*p).*100;
            
            if compare
                f0 = swipep(noisySpeech,desiredFs,[50,400],0.01);
                f0 = f0(3:end); % manual alignment with database.
                GPE_swipe(j,k,i) = mean(abs(f0(isVoiced) - truePitchInVoicedRegions) > truePitchInVoicedRegions.*p).*100;
            end
        end
    end
end
GPE_pitchTracker = mean(GPE_pitchTracker,3);

if compare
    GPE_swipe = mean(GPE_swipe,3);
end

Plot the gross pitch error for each noise type.

for ii = 1:numel(noise)
    figure(9+ii)
    plot(snrToTest,GPE_pitchTracker(:,ii),"b")
    hold on
    if compare
        plot(snrToTest,GPE_swipe(:,ii),"g")
    end
    plot(snrToTest,GPE_pitchTracker(:,ii),"bo")
    if compare
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        plot(snrToTest,GPE_swipe(:,ii),"gv")
    end
    title(noiseType(ii))
    xlabel("SNR (dB)")
    ylabel("Gross Pitch Error (p = " + round(p,2) + " )")
    if compare
        legend("HelperPitchTracker","SWIPE")
    else
        legend("HelperPitchTracker")
    end
    grid on
    hold off
end
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Conclusion

You can use HelperPitchTracker as a baseline for evaluating GPE performance of your pitch
tracking system, or adapt this example to your application.
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Voice Activity Detection in Noise Using Deep Learning

This example shows how to detect regions of speech in a low signal-to-noise environment using deep
learning. The example uses the Speech Commands Dataset to train a Bidirectional Long Short-Term
Memory (BiLSTM) network to detect voice activity.

Introduction

Voice activity detection is an essential component of many audio systems, such as automatic speech
recognition and speaker recognition. Voice activity detection can be especially challenging in low
signal-to-noise (SNR) situations, where speech is obstructed by noise.

This example uses long short-term memory (LSTM) networks, which are a type of recurrent neural
network (RNN) well-suited to study sequence and time-series data. An LSTM network can learn long-
term dependencies between time steps of a sequence. An LSTM layer (lstmLayer (Deep Learning
Toolbox)) can look at the time sequence in the forward direction, while a bidirectional LSTM layer
(bilstmLayer (Deep Learning Toolbox)) can look at the time sequence in both forward and
backward directions. This example uses a bidirectional LSTM layer.

This example trains a voice activity detection bidirectional LSTM network with feature sequences of
spectral characteristics and a harmonic ratio metric.

In high SNR scenarios, traditional speech detection algorithms perform adequately. Read in an audio
file that consists of words spoken with pauses between. Resample the audio to 16 kHz. Listen to the
audio.

fs = 16e3;
[speech,fileFs] = audioread("Counting-16-44p1-mono-15secs.wav");
speech = resample(speech,fs,fileFs);
speech = speech/max(abs(speech));
sound(speech,fs)

Use the detectSpeech function to locate regions of speech. The detectSpeech function correctly
identifies all regions of speech.

win = hamming(50e-3*fs,"periodic");
detectSpeech(speech,fs,Window=win)
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Corrupt the audio signal with washing machine noise at a -20 dB SNR. Listen to the corrupted audio.

[noise,fileFs] = audioread("WashingMachine-16-8-mono-200secs.mp3");
noise = resample(noise,fs,fileFs);

SNR = -20;
noiseGain = 10^(-SNR/20) * norm(speech) / norm(noise);

noisySpeech = speech + noiseGain*noise(1:numel(speech));
noisySpeech = noisySpeech./max(abs(noisySpeech));

sound(noisySpeech,fs)

Call detectSpeech on the noisy audio signal. The function fails to detect the speech regions given
the very low SNR.

detectSpeech(noisySpeech,fs,Window=win)
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Download and load a pretrained network and a configured audioFeatureExtractor object. The
network was trained to detect speech in a low SNR environments given features output from the
audioFeatureExtractor object.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","VoiceActivityDetection.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
netFolder = fullfile(dataFolder,"VoiceActivityDetection");
load(fullfile(netFolder,"voiceActivityDetectionExample.mat"));

speechDetectNet

speechDetectNet = 
  SeriesNetwork with properties:

         Layers: [6×1 nnet.cnn.layer.Layer]
     InputNames: {'sequenceinput'}
    OutputNames: {'classoutput'}

afe

afe = 
  audioFeatureExtractor with properties:
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   Properties
                     Window: [256×1 double]
              OverlapLength: 128
                 SampleRate: 16000
                  FFTLength: []
    SpectralDescriptorInput: 'linearSpectrum'
        FeatureVectorLength: 9

   Enabled Features
     spectralCentroid, spectralCrest, spectralEntropy, spectralFlux, spectralKurtosis, spectralRolloffPoint
     spectralSkewness, spectralSlope, harmonicRatio

   Disabled Features
     linearSpectrum, melSpectrum, barkSpectrum, erbSpectrum, mfcc, mfccDelta
     mfccDeltaDelta, gtcc, gtccDelta, gtccDeltaDelta, spectralDecrease, spectralFlatness
     spectralSpread, pitch, zerocrossrate, shortTimeEnergy

   To extract a feature, set the corresponding property to true.
   For example, obj.mfcc = true, adds mfcc to the list of enabled features.

Extract features from the speech data and then normalize them. Orient the features so that time is
across columns.

features = extract(afe,noisySpeech);
features = (features - mean(features,1))./std(features,[],1);
features = features';

Pass the features through the speech detection network to classify each feature vector as belonging
to a frame of speech or not.

decisionsCategorical = classify(speechDetectNet,features);

Each decision corresponds to an analysis window analyzed by the audioFeatureExtractor.
Replicate the decisions so that they are in one-to-one correspondence with the audio samples. Plot
the speech, the noisy speech, and the VAD decisions.

decisionsWindow = 1.2*(double(decisionsCategorical)-1);
decisionsSample = [repelem(decisionsWindow(1),numel(afe.Window)), ...
                   repelem(decisionsWindow(2:end),numel(afe.Window)-afe.OverlapLength)];

t = (0:numel(decisionsSample)-1)/afe.SampleRate;
plot(t,noisySpeech(1:numel(t)), ...
     t,speech(1:numel(t)), ...
     t,decisionsSample);
xlabel("Time (s)")
ylabel("Amplitude")
legend("Noisy Speech","Speech","VAD",Location="southwest")
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You can also use the trained VAD network in a streaming context. To simulate a streaming
environment, first save the speech and noise signals as WAV files. To simulate streaming input, you
will read frames from the files and mix them at a desired SNR.

audiowrite("Speech.wav",speech,fs)
audiowrite("Noise.wav",noise,fs)

To apply the VAD network to streaming audio, you have to trade off between delay and accuracy.
Define parameters for the streaming voice activity detection in noise demonstration. You can set the
duration of the test, the sequence length fed into the network, the sequence hop length, and the SNR
to test. Generally, increasing the sequence length increases the accuracy but also increases the lag.
You can also choose the signal output to your device as the original signal or the noisy signal.

testDuration = ;

sequenceLength = ;

sequenceHop = ;

SNR = ;
noiseGain = 10^(-SNR/20) * norm(speech) / norm(noise);
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signalToListenTo = ;

Call the streaming demo helper function to observe the performance of the VAD network on
streaming audio. The parameters you set using the live controls do not interrupt the streaming
example. After the streaming demo is complete, you can modify parameters of the demonstration,
then run the streaming demo again. You can find the code for the streaming demo in the Supporting
Functions on page 1-450.

helperStreamingDemo(speechDetectNet,afe, ...
                    "Speech.wav","Noise.wav", ...
                    testDuration,sequenceLength,sequenceHop,signalToListenTo,noiseGain);

The remainder of the example walks through training and evaluating the VAD network.

Train and Evaluate VAD Network

Training:

1 Create an audioDatastore that points to the audio speech files used to train the LSTM
network.

2 Create a training signal consisting of speech segments separated by segments of silence of
varying durations.

3 Corrupt the speech-plus-silence signal with washing machine noise (SNR = -10 dB).
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4 Extract feature sequences consisting of spectral characteristics and harmonic ratio from the
noisy signal.

5 Train the LSTM network using the feature sequences to identify regions of voice activity.

Prediction:

1 Create an audioDatastore of speech files used to test the trained network, and create a test
signal consisting of speech separated by segments of silence.

2 Corrupt the test signal with washing machine noise (SNR = -10 dB).
3 Extract feature sequences from the noisy test signal.
4 Identify regions of voice activity by passing the test features through the trained network.
5 Compare the network's accuracy to the voice activity baseline from the signal-plus-silence test

signal.

Here is a sketch of the training process.

Here is a sketch of the prediction process. You use the trained network to make predictions.
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Load Speech Commands Data Set

Download and extract the Google Speech Commands Dataset [1] on page 1-452.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","google_speech.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
dataset = fullfile(dataFolder,"google_speech");

Create an audioDatastore that points to the training data set.

adsTrain = audioDatastore(fullfile(dataset,"train"),Includesubfolders=true);

Create an audioDatastore that points to the validation data set.

adsValidation = audioDatastore(fullfile(dataset,"validation"),Includesubfolders=true);

Create Speech-Plus-Silence Training Signal

Read the contents of an audio file using read. Get the sample rate from the adsInfo struct.

[data,adsInfo] = read(adsTrain);
fs = adsInfo.SampleRate;

Listen to the audio signal using the sound command.

sound(data,fs)

Plot the audio signal.

timeVector = (1/fs) * (0:numel(data)-1);
plot(timeVector,data)
ylabel("Amplitude")
xlabel("Time (s)")
title("Sample Audio")
grid on
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The signal has non-speech portions (silence, background noise, etc) that do not contain useful speech
information. This example removes silence using the detectSpeech function.

Extract the useful portion of data. Define a 50 ms periodic Hamming window for analysis. Call
detectSpeech with no output arguments to plot the detected speech regions. Call detectSpeech
again to return the indices of the detected speech. Isolate the detected speech regions and then use
the sound command to listen to the audio.

win = hamming(50e-3*fs,"periodic");

detectSpeech(data,fs,Window=win);
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speechIndices = detectSpeech(data,fs,Window=win);

sound(data(speechIndices(1,1):speechIndices(1,2)),fs)

The detectSpeech function returns indices that tightly surround the detected speech region. It was
determined empirically that, for this example, extending the indices of the detected speech by five
frames on either side increased the final model's performance. Extend the speech indices by five
frames and then listen to the speech.

speechIndices(1,1) = max(speechIndices(1,1) - 5*numel(win),1);
speechIndices(1,2) = min(speechIndices(1,2) + 5*numel(win),numel(data));

sound(data(speechIndices(1,1):speechIndices(1,2)),fs)

Reset the training datastore and shuffle the order of files in the datastores.

reset(adsTrain)
adsTrain = shuffle(adsTrain);
adsValidation = shuffle(adsValidation);

The detectSpeech function calculates statistics-based thresholds to determine the speech regions.
You can skip the threshold calculation and speed up the detectSpeech function by specifying the
thresholds directly. To determine thresholds for a data set, call detectSpeech on a sampling of files
and get the thresholds it calculates. Take the mean of the thresholds.
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T = zeros(500,2);
for ii = 1:500
     data = read(adsTrain); 
     [~,T(ii,:)] = detectSpeech(data,fs,Window=win);
end

T = mean(T,1);

reset(adsTrain)

Create a 1000-second training signal by combining multiple speech files from the training data set.
Use detectSpeech to remove unwanted portions of each file. Insert a random period of silence
between speech segments.

Preallocate the training signal.

duration = 1000*fs;
audioTraining = zeros(duration,1);

Preallocate the voice activity training mask. Values of 1 in the mask correspond to samples located in
areas with voice activity. Values of 0 correspond to areas with no voice activity.

maskTraining = zeros(duration,1);

Specify a maximum silence segment duration of 2 seconds.

maxSilenceSegment = 2;

Construct the training signal by calling read on the datastore in a loop.

numSamples = 1;    

while numSamples < duration
    data = read(adsTrain);
    data = data ./ max(abs(data)); % Scale amplitude

    % Determine regions of speech
    idx = detectSpeech(data,fs,Window=win,Thresholds=T);

    % If a region of speech is detected
    if ~isempty(idx)
        
        % Extend the indices by five frames
        idx(1,1) = max(1,idx(1,1) - 5*numel(win));
        idx(1,2) = min(length(data),idx(1,2) + 5*numel(win));
        
        % Isolate the speech
        data = data(idx(1,1):idx(1,2));
        
        % Write speech segment to training signal
        audioTraining(numSamples:numSamples+numel(data)-1) = data;
        
        % Set VAD baseline
        maskTraining(numSamples:numSamples+numel(data)-1) = true;
        
        % Random silence period
        numSilenceSamples = randi(maxSilenceSegment*fs,1,1);
        numSamples = numSamples + numel(data) + numSilenceSamples;
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    end
end
audioTraining = audioTraining(1:duration);
maskTraining = maskTraining(1:duration);

Visualize a 10-second portion of the training signal. Plot the baseline voice activity mask.

figure
range = 1:10*fs;
plot((1/fs)*(range-1),audioTraining(range));
hold on
plot((1/fs)*(range-1),maskTraining(range),LineWidth=2);
grid on
xlabel("Time (s)")
legend("Signal","Speech Region")
title("Training Signal (first 10 seconds)");

Listen to the first 10 seconds of the training signal.

sound(audioTraining(range),fs);

Add Noise to the Training Signal

Corrupt the training signal with washing machine noise by adding washing machine noise to the
speech signal such that the signal-to-noise ratio is -10 dB.
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Read 8 kHz noise and convert it to 16 kHz.

noise = audioread("WashingMachine-16-8-mono-1000secs.mp3");
noise = resample(noise,2,1);

Corrupt training signal with noise.

noise = noise(1:numel(audioTraining));
SNR = -10;
noise = 10^(-SNR/20) * noise * norm(audioTraining) / norm(noise);
audioTrainingNoisy = audioTraining + noise; 
audioTrainingNoisy = audioTrainingNoisy / max(abs(audioTrainingNoisy));

Visualize a 10-second portion of the noisy training signal. Plot the baseline voice activity mask.

figure
plot((1/fs)*(range-1),audioTrainingNoisy(range));
hold on
plot((1/fs)*(range-1),maskTraining(range),LineWidth=2);
grid on
xlabel("Time (s)")
legend("Noisy Signal","Speech Area")
title("Training Signal (first 10 seconds)");

Listen to the first 10 seconds of the noisy training signal.
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sound(audioTrainingNoisy(range),fs)

Note that you obtained the baseline voice activity mask using the noiseless speech-plus-silence signal.
Verify that using detectSpeech on the noise-corrupted signal does not yield good results.

speechIndices = detectSpeech(audioTrainingNoisy,fs,Window=win);

speechIndices(:,1) = max(1,speechIndices(:,1) - 5*numel(win));
speechIndices(:,2) = min(numel(audioTrainingNoisy),speechIndices(:,2) + 5*numel(win));

noisyMask = zeros(size(audioTrainingNoisy));
for ii = 1:size(speechIndices)
    noisyMask(speechIndices(ii,1):speechIndices(ii,2)) = 1;
end

Visualize a 10-second portion of the noisy training signal. Plot the voice activity mask obtained by
analyzing the noisy signal.

figure
plot((1/fs)*(range-1),audioTrainingNoisy(range));
hold on
plot((1/fs)*(range-1),noisyMask(range),LineWidth=2);
grid on
xlabel("Time (s)")
legend("Noisy Signal","Mask from Noisy Signal")
title("Training Signal (first 10 seconds)");
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Create Speech-Plus-Silence Validation Signal

Create a 200-second noisy speech signal to validate the trained network. Use the validation
datastore. Note that the validation and training datastores have different speakers.

Preallocate the validation signal and the validation mask. You will use this mask to assess the
accuracy of the trained network.

duration = 200*fs;
audioValidation = zeros(duration,1);
maskValidation = zeros(duration,1);

Construct the validation signal by calling read on the datastore in a loop.

numSamples = 1;    
while numSamples < duration
    data = read(adsValidation);
    data = data ./ max(abs(data)); % Normalize amplitude
    
    % Determine regions of speech
    idx = detectSpeech(data,fs,Window=win,Thresholds=T);
    
    % If a region of speech is detected
    if ~isempty(idx)
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        % Extend the indices by five frames
        idx(1,1) = max(1,idx(1,1) - 5*numel(win));
        idx(1,2) = min(length(data),idx(1,2) + 5*numel(win));

        % Isolate the speech
        data = data(idx(1,1):idx(1,2));
        
        % Write speech segment to training signal
        audioValidation(numSamples:numSamples+numel(data)-1) = data;
        
        % Set VAD Baseline
        maskValidation(numSamples:numSamples+numel(data)-1) = true;
        
        % Random silence period
        numSilenceSamples = randi(maxSilenceSegment*fs,1,1);
        numSamples = numSamples + numel(data) + numSilenceSamples;
    end
end

Corrupt the validation signal with washing machine noise by adding washing machine noise to the
speech signal such that the signal-to-noise ratio is -10 dB. Use a different noise file for the validation
signal than you did for the training signal.

noise = audioread("WashingMachine-16-8-mono-200secs.mp3");
noise = resample(noise,2,1);
noise = noise(1:duration);
audioValidation = audioValidation(1:numel(noise));

noise = 10^(-SNR/20) * noise * norm(audioValidation) / norm(noise);
audioValidationNoisy = audioValidation + noise; 
audioValidationNoisy = audioValidationNoisy / max(abs(audioValidationNoisy));

Extract Training Features

This example trains the LSTM network using the following features:

1 spectralCentroid
2 spectralCrest
3 spectralEntropy
4 spectralFlux
5 spectralKurtosis
6 spectralRolloffPoint
7 spectralSkewness
8 spectralSlope
9 harmonicRatio

This example uses audioFeatureExtractor to create an optimal feature extraction pipeline for the
feature set. Create an audioFeatureExtractor object to extract the feature set. Use a 256-point
Hann window with 50% overlap.

afe = audioFeatureExtractor(SampleRate=fs, ...
    Window=hann(256,"Periodic"), ...
    OverlapLength=128, ...
    ...
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    spectralCentroid=true, ...
    spectralCrest=true, ...
    spectralEntropy=true, ...
    spectralFlux=true, ...
    spectralKurtosis=true, ...
    spectralRolloffPoint=true, ...
    spectralSkewness=true, ...
    spectralSlope=true, ...
    harmonicRatio=true);

featuresTraining = extract(afe,audioTrainingNoisy);

Display the dimensions of the features matrix. The first dimension corresponds to the number of
windows the signal was broken into (it depends on the window length and the overlap length). The
second dimension is the number of features used in this example.

[numWindows,numFeatures] = size(featuresTraining)

numWindows = 124999

numFeatures = 9

In classification applications, it is a good practice to normalize all features to have zero mean and
unity standard deviation.

Compute the mean and standard deviation for each coefficient, and use them to normalize the data.

M = mean(featuresTraining,1);
S = std(featuresTraining,[],1);
featuresTraining = (featuresTraining - M) ./ S;

Extract the features from the validation signal using the same process.

featuresValidation = extract(afe,audioValidationNoisy);
featuresValidation = (featuresValidation - mean(featuresValidation,1)) ./ std(featuresValidation,[],1);

Each feature corresponds to 128 samples of data (the hop length). For each hop, set the expected
voice/no voice value to the mode of the baseline mask values corresponding to those 128 samples.
Convert the voice/no voice mask to categorical.

windowLength = numel(afe.Window);
hopLength = windowLength - afe.OverlapLength;
range = hopLength*(1:size(featuresTraining,1)) + hopLength;
maskMode = zeros(size(range));
for index = 1:numel(range)
    maskMode(index) = mode(maskTraining( (index-1)*hopLength+1:(index-1)*hopLength+windowLength ));
end
maskTraining = maskMode.';

maskTrainingCat = categorical(maskTraining);

Do the same for the validation mask.

range = hopLength*(1:size(featuresValidation,1)) + hopLength;
maskMode = zeros(size(range));
for index = 1:numel(range)
    maskMode(index) = mode(maskValidation( (index-1)*hopLength+1:(index-1)*hopLength+windowLength ));
end
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maskValidation = maskMode.';

maskValidationCat = categorical(maskValidation);

Split the training features and the mask into sequences of length 800, with 75% overlap between
consecutive sequences.

sequenceLength = 800;
sequenceOverlap = round(0.75*sequenceLength);

trainFeatureCell = helperFeatureVector2Sequence(featuresTraining',sequenceLength,sequenceOverlap);
trainLabelCell = helperFeatureVector2Sequence(maskTrainingCat',sequenceLength,sequenceOverlap);

Define LSTM Network Architecture

LSTM networks can learn long-term dependencies between time steps of sequence data. This
example uses the bidirectional LSTM layer bilstmLayer (Deep Learning Toolbox) to look at the
sequence in both forward and backward directions.

Specify the input size to be sequences of length 9 (the number of features). Specify a hidden
bidirectional LSTM layer with an output size of 200 and output a sequence. This command instructs
the bidirectional LSTM layer to map the input time series into 200 features that are passed to the
next layer. Then, specify a bidirectional LSTM layer with an output size of 200 and output the last
element of the sequence. This command instructs the bidirectional LSTM layer to map its input into
200 features and then prepares the output for the fully connected layer. Finally, specify two classes by
including a fully connected layer of size 2, followed by a softmax layer and a classification layer.

layers = [ ...    
    sequenceInputLayer(afe.FeatureVectorLength)
    bilstmLayer(200,OutputMode="sequence")
    bilstmLayer(200,OutputMode="sequence")
    fullyConnectedLayer(2)
    softmaxLayer
    classificationLayer
    ];

Next, specify the training options for the classifier. Set MaxEpochs to 20 so that the network makes
20 passes through the training data. Set MiniBatchSize to 64 so that the network looks at 64
training signals at a time. Set Plots to "training-progress" to generate plots that show the
training progress as the number of iterations increases. Set Verbose to false to disable printing the
table output that corresponds to the data shown in the plot. Set Shuffle to "every-epoch" to
shuffle the training sequence at the beginning of each epoch. Set LearnRateSchedule to
"piecewise" to decrease the learning rate by a specified factor (0.1) every time a certain number of
epochs (10) has passed. Set ValidationData to the validation predictors and targets.

This example uses the adaptive moment estimation (ADAM) solver. ADAM performs better with
recurrent neural networks (RNNs) like LSTMs than the default stochastic gradient descent with
momentum (SGDM) solver.

maxEpochs = 20;
miniBatchSize = 64;
options = trainingOptions("adam", ...
    MaxEpochs=maxEpochs, ...
    MiniBatchSize=miniBatchSize, ...
    Shuffle="every-epoch", ...
    Verbose=0, ...
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    SequenceLength=sequenceLength, ...
    ValidationFrequency=floor(numel(trainFeatureCell)/miniBatchSize), ...
    ValidationData={featuresValidation.',maskValidationCat.'}, ...
    Plots="training-progress", ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropFactor=0.1, ...
    LearnRateDropPeriod=5);

Train the LSTM Network

Train the LSTM network with the specified training options and layer architecture using
trainNetwork. Because the training set is large, the training process can take several minutes.

speedupExample = ;
if speedupExample
   [speechDetectNet,netInfo] = trainNetwork(trainFeatureCell,trainLabelCell,layers,options);
    display("Validation accuracy: " + netInfo.FinalValidationAccuracy + "percent.");
else
    load speechDetectNet
end

    "Validation accuracy: 91percent."

Use Trained Network to Detect Voice Activity

Estimate voice activity in the validation signal using the trained network. Convert the estimated VAD
mask from categorical to double.

EstimatedVADMask = classify(speechDetectNet,featuresValidation.');
EstimatedVADMask = double(EstimatedVADMask);
EstimatedVADMask = EstimatedVADMask.' - 1;
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Calculate and plot the validation confusion matrix from the vectors of actual and estimated labels.

figure
confusionchart(maskValidation,EstimatedVADMask, ...
    title="Validation Accuracy",ColumnSummary="column-normalized",RowSummary="row-normalized");

If you changed parameters of your network or feature extraction pipeline, consider resaving the MAT
file with the new network and audioFeatureExtractor object.

resaveNetwork = ;
if resaveNetwork
     save("Audio_VoiceActivityDetectionExample.mat","speechDetectNet","afe");
end

Supporting Functions

Convert Feature Vectors to Sequences

function [sequences,sequencePerFile] = helperFeatureVector2Sequence(features,featureVectorsPerSequence,featureVectorOverlap)
    if featureVectorsPerSequence <= featureVectorOverlap
        error("The number of overlapping feature vectors must be less than the number of feature vectors per sequence.")
    end

    if ~iscell(features)
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        features = {features};
    end
    hopLength = featureVectorsPerSequence - featureVectorOverlap;
    idx1 = 1;
    sequences = {};
    sequencePerFile = cell(numel(features),1);
    for ii = 1:numel(features)
        sequencePerFile{ii} = floor((size(features{ii},2) - featureVectorsPerSequence)/hopLength) + 1;
        idx2 = 1;
        for j = 1:sequencePerFile{ii}
            sequences{idx1,1} = features{ii}(:,idx2:idx2 + featureVectorsPerSequence - 1); %#ok<AGROW>
            idx1 = idx1 + 1;
            idx2 = idx2 + hopLength;
        end
    end
end

Streaming Demo

function helperStreamingDemo(speechDetectNet,afe,cleanSpeech,noise,testDuration,sequenceLength,sequenceHop,signalToListenTo,noiseGain)

Create dsp.AudioFileReader objects to read from the speech and noise files frame by frame.

    speechReader = dsp.AudioFileReader(cleanSpeech,PlayCount=inf);
    noiseReader = dsp.AudioFileReader(noise,PlayCount=inf);
    fs = speechReader.SampleRate;

Create a dsp.MovingStandardDeviation object and a dsp.MovingAverage object. You will use
these to determine the standard deviation and mean of the audio features for normalization. The
statistics should improve over time.

    movSTD = dsp.MovingStandardDeviation(Method="Exponential weighting",ForgettingFactor=1);
    movMean = dsp.MovingAverage(Method="Exponential weighting",ForgettingFactor=1);

Create three dsp.AsyncBuffer objects. One to buffer the input audio, one to buffer the extracted
features, and one to buffer the output buffer. The output buffer is only necessary for visualizing the
decisions in real time.

    audioInBuffer = dsp.AsyncBuffer;
    featureBuffer = dsp.AsyncBuffer;
    audioOutBuffer = dsp.AsyncBuffer;

For the audio buffers, you will buffer both the original clean speech signal, and the noisy signal. You
will play back only the specified signalToListenTo. Convert the signalToListenTo variable to
the channel you want to listen to.

    channelToListenTo = 1;
    if strcmp(signalToListenTo,"clean")
        channelToListenTo = 2;
    end

Create a time scope to visualize the original speech signal, the noisy signal that the network is
applied to, and the decision output from the network.

    scope = timescope(SampleRate=fs, ...
        TimeSpanSource="property", ...
        TimeSpan=3, ...
        BufferLength=fs*3*3, ...
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        YLimits=[-1 1], ...
        TimeSpanOverrunAction="Scroll", ...
        ShowGrid=true, ...
        NumInputPorts=3, ...
        LayoutDimensions=[3,1], ...
        Title="Noisy Speech");
    scope.ActiveDisplay = 2;
    scope.Title = "Clean Speech (Original)";
    scope.YLimits = [-1 1];
    scope.ActiveDisplay = 3;
    scope.Title = "Detected Speech";
    scope.YLimits = [-1 1];

Create an audioDeviceWriter object to play either the original or noisy audio from your speakers.

    deviceWriter = audioDeviceWriter(SampleRate=fs);

Initialize variables used in the loop.

    windowLength = numel(afe.Window);
    hopLength = windowLength - afe.OverlapLength;
    myMax = 0;
    audioBufferInitialized = false;
    featureBufferInitialized = false;

Run the streaming demonstration.

    tic
    while toc < testDuration
    
        % Read a frame of the speech signal and a frame of the noise signal
        speechIn = speechReader();
        noiseIn = noiseReader();
        
        % Mix the speech and noise at the specified SNR
        noisyAudio = speechIn + noiseGain*noiseIn;
        
        % Update a running max for normalization
        myMax = max(myMax,max(abs(noisyAudio)));
        
        % Write the noisy audio and speech to buffers
        write(audioInBuffer,[noisyAudio,speechIn]);
        
        % If enough samples are buffered,
        % mark the audio buffer as initialized and push the read pointer
        % for the audio buffer up a window length.
        if audioInBuffer.NumUnreadSamples >= windowLength && ~audioBufferInitialized
            audioBufferInitialized = true;
            read(audioInBuffer,windowLength);
        end
        
        % If enough samples are in the audio buffer to calculate a feature
        % vector, read the samples, normalize them, extract the feature vectors, and write
        % the latest feature vector to the features buffer.
        while (audioInBuffer.NumUnreadSamples >= hopLength) && audioBufferInitialized
            x = read(audioInBuffer,windowLength + hopLength,windowLength);
            write(audioOutBuffer,x(end-hopLength+1:end,:));
            noisyAudio = x(:,1);
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            noisyAudio = noisyAudio/myMax;
            features = extract(afe,noisyAudio);
            write(featureBuffer,features(2,:));
        end
        
        % If enough feature vectors are buffered, mark the feature buffer
        % as initialized and push the read pointer for the feature buffer
        % and the audio output buffer (so that they are in sync).
        if featureBuffer.NumUnreadSamples >= (sequenceLength + sequenceHop) && ~featureBufferInitialized
            featureBufferInitialized = true;
            read(featureBuffer,sequenceLength - sequenceHop);
            read(audioOutBuffer,(sequenceLength - sequenceHop)*windowLength);
        end
        
       while featureBuffer.NumUnreadSamples >= sequenceHop && featureBufferInitialized
            features = read(featureBuffer,sequenceLength,sequenceLength - sequenceHop);
            features(isnan(features)) = 0;
            
            % Use only the new features to update the
            % standard deviation and mean. Normalize the features.
            localSTD = movSTD(features(end-sequenceHop+1:end,:));
            localMean = movMean(features(end-sequenceHop+1:end,:));
            features = (features - localMean(end,:)) ./ localSTD(end,:);
            
            decision = classify(speechDetectNet,features');
            decision = decision(end-sequenceHop+1:end);
            decision = double(decision)' - 1;
            decision = repelem(decision,hopLength);
            
            audioHop = read(audioOutBuffer,sequenceHop*hopLength);
            
            % Listen to the speech or speech+noise
            deviceWriter(audioHop(:,channelToListenTo));
            
            % Visualize the speech+noise, the original speech, and the
            % voice activity detection.
            scope(audioHop(:,1),audioHop(:,2),audioHop(:,1).*decision)
       end
    end
    release(deviceWriter)
    release(audioInBuffer)
    release(audioOutBuffer)
    release(featureBuffer)
    release(movSTD)
    release(movMean)
    release(scope)
end
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Using a MIDI Control Surface to Interact with a Simulink Model

This example shows how to use a MIDI control surface as a physical user interface to a Simulink®
model, allowing you to use knobs, sliders and buttons to interact with that model. It can be used in
Simulink as well as with generated code running on a workstation.

Introduction

Although MIDI is best known for its use in audio applications, this example illustrates that MIDI
control surfaces have uses in many other applications besides audio. In this example, we use a MIDI
controller to provide a user configurable value that can vary at runtime, we use it to control the
amplitude of signals, and for several other illustrative purposes. This example is not comprehensive,
but rather can provide inspiration for other creative uses of the control surface to interact with a
model.

By "MIDI control surfaces", we mean a physical device that

1 has knobs, sliders and push buttons,
2 and uses the MIDI (Musical Instrument Digital Interface) protocol.

Many MIDI controllers plug into the USB port on a computer and make use of the MIDI support built
into modern operating systems. Specific MIDI control surfaces that we have used include the Korg
nanoKONTROL and the Behringer BCF2000. An advantage of the Korg device is its cost: it is readily
available online at prices comparable to that of a good mouse. The Behringer device is more costly,
but has the enhanced capability to both send and receive MIDI signals (the Korg can only send
signals). This ability can be used to send data back from a model to keep a control surface in sync
with changes to the model. We use this capability to bring a control surface in sync with the starting
point of a model, so that initially changes to a specific control do not produce abrupt changes in the
block output.

To use your own controller with this example, plug it into the USB port on the computer and run the
model audiomidi. Be sure that the model is not running when you plug in the control device. The
model is originally configured such that it responds to movement of any control on the default MIDI
device. This construction is meant to make it easier and more likely that this example works out of
the box for all users. In a real use case, you would probably want to tie individual controls to each
sub-portion of the model. For that purpose, you can use the midiid function to explicitly set the MIDI
device parameter on the appropriate blocks in the model to recognize a specific control. For example,
running midiid with the Korg nanoKONTROL device produces the following information:

>> [ctl device]=midiid
Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

ctl =

      1002

device =

nanoKONTROL

The actual value of ctl depends on which control you moved.
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If you will be using a particular controller repeatedly, you may want to use the setpref command to
set that controller as the default midi device:

>> setpref('midi','DefaultDevice','nanoKONTROL')

This capability is particularly helpful on Linux, where your control surface may not be immediately
recognized as the default device.

After the controller is plugged in, hit the play button on audiomidi. Now move any knob or slider. You
should see variations in the signals that are plotted in the various scopes in the model as you move
any knob or slider. The model is initially configured to respond to any control.

Examples

Next, several example use cases are provided. Each example uses the basic MIDI Controls block to
accomplish a different task. Look under the mask of the appropriate block in each example to see how
that use case was accomplished. To reuse these in your own model, just drag a copy of the desired
block into your model.

Example 1: MIDI Controls as a User Defined Source

In example 1 of the model, we see the simplest use of this control. It can act as a source that is under
user control. The original block MIDI Controls (in the DSP sources block library), outputs a value
between 0 and 1. We have also created a slightly modified block, by placing a mask on the original
block to output a source with values that cover a user defined range.

Example 2: MIDI Controls to Adjust the Level of a Single Signal

In this example, a straightforward application of the MIDI controls block uses the 0 to 1 range as an
amplitude control on a given signal.

Example 3: MIDI Controls to Split a Signal Into Two Streams With User Controlled Relative
Amplitudes.

In this example, we see an example where a signal is split into two streams:  and  where
 can be interactively controlled by the user with the control surface.

Example 4: MIDI Controls to Mix Two Signals Into One

In this example, we create an arbitrary linear combination of two inputs:  with 
being set interactively by the user with the control surface.

Example 5: MIDI Controls to Generate a Sinusoid with Arbitrary Phase

Lastly, example 5 allows the user input a desired phase with the control surface. A sinusoid with that
phase is then generated. The phase can be interactively varied as the model runs.
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Conclusions

This model is provided to give inspiration for how the MIDI Controls block can be used to interact
with a model. Other uses are possible and encouraged, including use with generated code.
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Spoken Digit Recognition with Wavelet Scattering and Deep
Learning

This example shows how to classify spoken digits using both machine and deep learning techniques.
In the example, you perform classification using wavelet time scattering with a support vector
machine (SVM) and with a long short-term memory (LSTM) network. You also apply Bayesian
optimization to determine suitable hyperparameters to improve the accuracy of the LSTM network. In
addition, the example illustrates an approach using a deep convolutional neural network (CNN) and
mel-frequency spectrograms.

Data

Clone or download the Free Spoken Digit Dataset (FSDD), available at https://github.com/Jakobovski/
free-spoken-digit-dataset. FSDD is an open data set, which means that it can grow over time. This
example uses the version committed on January 29, 2019, which consists of 2000 recordings in
English of the digits 0 through 9 obtained from four speakers. In this version, two of the speakers are
native speakers of American English, one speaker is a nonnative speaker of English with a Belgian
French accent, and one speaker is a nonnative speaker of English with a German accent. The data is
sampled at 8000 Hz.

Use audioDatastore to manage data access and ensure the random division of the recordings into
training and test sets. Set the location property to the location of the FSDD recordings folder on
your computer, for example:

pathToRecordingsFolder = fullfile(tempdir,'free-spoken-digit-dataset-master','recordings');
location = pathToRecordingsFolder;

Point audioDatastore to that location.

ads = audioDatastore(location);

The helper function helpergenLabels creates a categorical array of labels from the FSDD files. The
source code for helpergenLabels is listed in the appendix. List the classes and the number of
examples in each class.

ads.Labels = helpergenLabels(ads);
summary(ads.Labels)

     0      300 
     1      300 
     2      300 
     3      300 
     4      300 
     5      300 
     6      300 
     7      300 
     8      300 
     9      300 

The FSDD data set consists of 10 balanced classes with 200 recordings each. The recordings in the
FSDD are not of equal duration. The FSDD is not prohibitively large, so read through the FSDD files
and construct a histogram of the signal lengths.

LenSig = zeros(numel(ads.Files),1);
nr = 1;
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while hasdata(ads)
    digit = read(ads);
    LenSig(nr) = numel(digit);
    nr = nr+1;
end
reset(ads)
histogram(LenSig)
grid on
xlabel('Signal Length (Samples)')
ylabel('Frequency')

The histogram shows that the distribution of recording lengths is positively skewed. For classification,
this example uses a common signal length of 8192 samples, a conservative value that ensures that
truncating longer recordings does not cut off speech content. If the signal is greater than 8192
samples (1.024 seconds) in length, the recording is truncated to 8192 samples. If the signal is less
than 8192 samples in length, the signal is prepadded and postpadded symmetrically with zeros out to
a length of 8192 samples.
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Wavelet Time Scattering

Use waveletScattering (Wavelet Toolbox) to create a wavelet time scattering framework using an
invariant scale of 0.22 seconds. In this example, you create feature vectors by averaging the
scattering transform over all time samples. To have a sufficient number of scattering coefficients per
time window to average, set OversamplingFactor to 2 to produce a four-fold increase in the
number of scattering coefficients for each path with respect to the critically downsampled value.

sf = waveletScattering('SignalLength',8192,'InvarianceScale',0.22,...
    'SamplingFrequency',8000,'OversamplingFactor',2);

Split the FSDD into training and test sets. Allocate 80% of the data to the training set and retain 20%
for the test set. The training data is for training the classifier based on the scattering transform. The
test data is for validating the model.

rng default;
ads = shuffle(ads);
[adsTrain,adsTest] = splitEachLabel(ads,0.8);
countEachLabel(adsTrain)

ans=10×2 table
    Label    Count
    _____    _____

      0       240 
      1       240 
      2       240 
      3       240 
      4       240 
      5       240 
      6       240 
      7       240 
      8       240 
      9       240 

countEachLabel(adsTest)

ans=10×2 table
    Label    Count
    _____    _____

      0       60  
      1       60  
      2       60  
      3       60  
      4       60  
      5       60  
      6       60  
      7       60  
      8       60  
      9       60  

The helper function helperReadSPData truncates or pads the data to a length of 8192 and
normalizes each recording by its maximum value. The source code for helperReadSPData is listed
in the appendix. Create an 8192-by-1600 matrix where each column is a spoken-digit recording.
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Xtrain = [];
scatds_Train = transform(adsTrain,@(x)helperReadSPData(x));
while hasdata(scatds_Train)
    smat = read(scatds_Train);
    Xtrain = cat(2,Xtrain,smat);
    
end

Repeat the process for the test set. The resulting matrix is 8192-by-400.

Xtest = [];
scatds_Test = transform(adsTest,@(x)helperReadSPData(x));
while hasdata(scatds_Test)
    smat = read(scatds_Test);
    Xtest = cat(2,Xtest,smat);
    
end

Apply the wavelet scattering transform to the training and test sets.

Strain = sf.featureMatrix(Xtrain);
Stest = sf.featureMatrix(Xtest);

Obtain the mean scattering features for the training and test sets. Exclude the zeroth-order
scattering coefficients.

TrainFeatures = Strain(2:end,:,:);
TrainFeatures = squeeze(mean(TrainFeatures,2))';
TestFeatures = Stest(2:end,:,:);
TestFeatures = squeeze(mean(TestFeatures,2))';

SVM Classifier

Now that the data has been reduced to a feature vector for each recording, the next step is to use
these features for classifying the recordings. Create an SVM learner template with a quadratic
polynomial kernel. Fit the SVM to the training data.

template = templateSVM(...
    'KernelFunction', 'polynomial', ...
    'PolynomialOrder', 2, ...
    'KernelScale', 'auto', ...
    'BoxConstraint', 1, ...
    'Standardize', true);
classificationSVM = fitcecoc(...
    TrainFeatures, ...
    adsTrain.Labels, ...
    'Learners', template, ...
    'Coding', 'onevsone', ...
    'ClassNames', categorical({'0'; '1'; '2'; '3'; '4'; '5'; '6'; '7'; '8'; '9'}));

Use k-fold cross-validation to predict the generalization accuracy of the model based on the training
data. Split the training set into five groups.

partitionedModel = crossval(classificationSVM, 'KFold', 5);
[validationPredictions, validationScores] = kfoldPredict(partitionedModel);
validationAccuracy = (1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'))*100

validationAccuracy = 97.4167
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The estimated generalization accuracy is approximately 97%. Use the trained SVM to predict the
spoken-digit classes in the test set.

predLabels = predict(classificationSVM,TestFeatures);
testAccuracy = sum(predLabels==adsTest.Labels)/numel(predLabels)*100

testAccuracy = 97.1667

Summarize the performance of the model on the test set with a confusion chart. Display the precision
and recall for each class by using column and row summaries. The table at the bottom of the
confusion chart shows the precision values for each class. The table to the right of the confusion
chart shows the recall values.

figure('Units','normalized','Position',[0.2 0.2 0.5 0.5]);
ccscat = confusionchart(adsTest.Labels,predLabels);
ccscat.Title = 'Wavelet Scattering Classification';
ccscat.ColumnSummary = 'column-normalized';
ccscat.RowSummary = 'row-normalized';

The scattering transform coupled with a SVM classifier classifies the spoken digits in the test set with
an accuracy of 98% (or an error rate of 2%).

Long Short-Term Memory (LSTM) Networks

An LSTM network is a type of recurrent neural network (RNN). RNNs are neural networks that are
specialized for working with sequential or temporal data such as speech data. Because the wavelet
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scattering coefficients are sequences, they can be used as inputs to an LSTM. By using scattering
features as opposed to the raw data, you can reduce the variability that your network needs to learn.

Modify the training and testing scattering features to be used with the LSTM network. Exclude the
zeroth-order scattering coefficients and convert the features to cell arrays.

TrainFeatures = Strain(2:end,:,:);
TrainFeatures = squeeze(num2cell(TrainFeatures,[1 2]));
TestFeatures = Stest(2:end,:,:);
TestFeatures = squeeze(num2cell(TestFeatures, [1 2]));

Construct a simple LSTM network with 512 hidden layers.

[inputSize, ~] = size(TrainFeatures{1});
YTrain = adsTrain.Labels;

numHiddenUnits = 512;
numClasses = numel(unique(YTrain));

layers = [ ...
    sequenceInputLayer(inputSize)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

Set the hyperparameters. Use Adam optimization and a mini-batch size of 50. Set the maximum
number of epochs to 300. Use a learning rate of 1e-4. You can turn off the training progress plot if
you do not want to track the progress using plots. The training uses a GPU by default if one is
available. Otherwise, it uses a CPU. For more information, see trainingOptions (Deep Learning
Toolbox).

maxEpochs = 300;
miniBatchSize = 50;

options = trainingOptions('adam', ...
    'InitialLearnRate',0.0001,...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize',miniBatchSize, ...
    'SequenceLength','shortest', ...
    'Shuffle','every-epoch',...
    'Verbose', false, ...
    'Plots','training-progress');

Train the network.

net = trainNetwork(TrainFeatures,YTrain,layers,options);

predLabels = classify(net,TestFeatures);
testAccuracy = sum(predLabels==adsTest.Labels)/numel(predLabels)*100

testAccuracy = 96.3333

Bayesian Optimization

Determining suitable hyperparameter settings is often one of the most difficult parts of training a
deep network. To mitigate this, you can use Bayesian optimization. In this example, you optimize the
number of hidden layers and the initial learning rate by using Bayesian techniques. Create a new
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directory to store the MAT-files containing information about hyperparameter settings and the
network along with the corresponding error rates.

YTrain = adsTrain.Labels;
YTest = adsTest.Labels;

if ~exist("results/",'dir')
    mkdir results
end

Initialize the variables to be optimized and their value ranges. Because the number of hidden layers
must be an integer, set 'type' to 'integer'.

optVars = [
    optimizableVariable('InitialLearnRate',[1e-5, 1e-1],'Transform','log')
    optimizableVariable('NumHiddenUnits',[10, 1000],'Type','integer')
    ];

Bayesian optimization is computationally intensive and can take several hours to finish. For the
purposes of this example, set optimizeCondition to false to download and use predetermined
optimized hyperparameter settings. If you set optimizeCondition to true, the objective function
helperBayesOptLSTM is minimized using Bayesian optimization. The objective function, listed in the
appendix, is the error rate of the network given specific hyperparameter settings. The loaded settings
are for the objective function minimum of 0.02 (2% error rate).

ObjFcn = helperBayesOptLSTM(TrainFeatures,YTrain,TestFeatures,YTest);

optimizeCondition = false;
if optimizeCondition
    BayesObject = bayesopt(ObjFcn,optVars,...
            'MaxObjectiveEvaluations',15,...
            'IsObjectiveDeterministic',false,...
            'UseParallel',true);
else
    url = 'http://ssd.mathworks.com/supportfiles/audio/SpokenDigitRecognition.zip';
    downloadNetFolder = tempdir;
    netFolder = fullfile(downloadNetFolder,'SpokenDigitRecognition');
    if ~exist(netFolder,'dir')
        disp('Downloading pretrained network (1 file - 12 MB) ...')
        unzip(url,downloadNetFolder)
    end
    load(fullfile(netFolder,'0.02.mat'));
end

Downloading pretrained network (1 file - 12 MB) ...

If you perform Bayesian optimization, figures similar to the following are generated to track the
objective function values with the corresponding hyperparameter values and the number of
iterations. You can increase the number of Bayesian optimization iterations to ensure that the global
minimum of the objective function is reached.
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Use the optimized values for the number of hidden units and initial learning rate and retrain the
network.

numHiddenUnits = 768;
numClasses = numel(unique(YTrain));

layers = [ ...
    sequenceInputLayer(inputSize)
    lstmLayer(numHiddenUnits,'OutputMode','last')
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer];

maxEpochs = 300;
miniBatchSize = 50;

options = trainingOptions('adam', ...
    'InitialLearnRate',2.198827960269379e-04,...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize',miniBatchSize, ...
    'SequenceLength','shortest', ...
    'Shuffle','every-epoch',...
    'Verbose', false, ...
    'Plots','training-progress');

net = trainNetwork(TrainFeatures,YTrain,layers,options);
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predLabels = classify(net,TestFeatures);
testAccuracy = sum(predLabels==adsTest.Labels)/numel(predLabels)*100

testAccuracy = 97.5000

As the plot shows, using Bayesian optimization yields an LSTM with a higher accuracy.

Deep Convolutional Network Using Mel-Frequency Spectrograms

As another approach to the task of spoken digit recognition, use a deep convolutional neural network
(DCNN) based on mel-frequency spectrograms to classify the FSDD data set. Use the same signal
truncation/padding procedure as in the scattering transform. Similarly, normalize each recording by
dividing each signal sample by the maximum absolute value. For consistency, use the same training
and test sets as for the scattering transform.

Set the parameters for the mel-frequency spectrograms. Use the same window, or frame, duration as
in the scattering transform, 0.22 seconds. Set the hop between windows to 10 ms. Use 40 frequency
bands.

segmentDuration = 8192*(1/8000);
frameDuration = 0.22;
hopDuration = 0.01;
numBands = 40;

Reset the training and test datastores.

reset(adsTrain);
reset(adsTest);

The helper function helperspeechSpectrograms, defined at the end of this example, uses
melSpectrogram to obtain the mel-frequency spectrogram after standardizing the recording length
and normalizing the amplitude. Use the logarithm of the mel-frequency spectrograms as the inputs to
the DCNN. To avoid taking the logarithm of zero, add a small epsilon to each element.

epsil = 1e-6;
XTrain = helperspeechSpectrograms(adsTrain,segmentDuration,frameDuration,hopDuration,numBands);

Computing speech spectrograms...
Processed 500 files out of 2400
Processed 1000 files out of 2400
Processed 1500 files out of 2400
Processed 2000 files out of 2400
...done

XTrain = log10(XTrain + epsil);

XTest = helperspeechSpectrograms(adsTest,segmentDuration,frameDuration,hopDuration,numBands);

Computing speech spectrograms...
Processed 500 files out of 600
...done

XTest = log10(XTest + epsil);

YTrain = adsTrain.Labels;
YTest = adsTest.Labels;
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Define DCNN Architecture

Construct a small DCNN as an array of layers. Use convolutional and batch normalization layers, and
downsample the feature maps using max pooling layers. To reduce the possibility of the network
memorizing specific features of the training data, add a small amount of dropout to the input to the
last fully connected layer.

sz = size(XTrain);
specSize = sz(1:2);
imageSize = [specSize 1];

numClasses = numel(categories(YTrain));

dropoutProb = 0.2;
numF = 12;
layers = [
    imageInputLayer(imageSize)

    convolution2dLayer(5,numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,'Stride',2,'Padding','same')

    convolution2dLayer(3,2*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,'Stride',2,'Padding','same')

    convolution2dLayer(3,4*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,'Stride',2,'Padding','same')

    convolution2dLayer(3,4*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,4*numF,'Padding','same')
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(2)

    dropoutLayer(dropoutProb)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer('Classes',categories(YTrain));
    ];

Set the hyperparameters to use in training the network. Use a mini-batch size of 50 and a learning
rate of 1e-4. Specify Adam optimization. Because the amount of data in this example is relatively
small, set the execution environment to 'cpu' for reproducibility. You can also train the network on
an available GPU by setting the execution environment to either 'gpu' or 'auto'. For more
information, see trainingOptions (Deep Learning Toolbox).
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miniBatchSize = 50;
options = trainingOptions('adam', ...
    'InitialLearnRate',1e-4, ...
    'MaxEpochs',30, ...
    'MiniBatchSize',miniBatchSize, ...
    'Shuffle','every-epoch', ...
    'Plots','training-progress', ...
    'Verbose',false, ...
    'ExecutionEnvironment','cpu');

Train the network.

trainedNet = trainNetwork(XTrain,YTrain,layers,options);

Use the trained network to predict the digit labels for the test set.

[Ypredicted,probs] = classify(trainedNet,XTest,'ExecutionEnvironment','CPU');
cnnAccuracy = sum(Ypredicted==YTest)/numel(YTest)*100

cnnAccuracy = 98.1667

Summarize the performance of the trained network on the test set with a confusion chart. Display the
precision and recall for each class by using column and row summaries. The table at the bottom of
the confusion chart shows the precision values. The table to the right of the confusion chart shows
the recall values.

figure('Units','normalized','Position',[0.2 0.2 0.5 0.5]);
ccDCNN = confusionchart(YTest,Ypredicted);
ccDCNN.Title = 'Confusion Chart for DCNN';
ccDCNN.ColumnSummary = 'column-normalized';
ccDCNN.RowSummary = 'row-normalized';
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The DCNN using mel-frequency spectrograms as inputs classifies the spoken digits in the test set
with an accuracy rate of approximately 98% as well.

Summary

This example shows how to use different machine and deep learning approaches for classifying
spoken digits in the FSDD. The example illustrated wavelet scattering paired with both an SVM and a
LSTM. Bayesian techniques were used to optimize LSTM hyperparameters. Finally, the example
shows how to use a CNN with mel-frequency spectrograms.

The goal of the example is to demonstrate how to use MathWorks® tools to approach the problem in
fundamentally different but complementary ways. All workflows use audioDatastore to manage
flow of data from disk and ensure proper randomization.

All approaches used in this example performed equally well on the test set. This example is not
intended as a direct comparison between the various approaches. For example, you can also use
Bayesian optimization for hyperparameter selection in the CNN. An additional strategy that is useful
in deep learning with small training sets like this version of the FSDD is to use data augmentation.
How manipulations affect class is not always known, so data augmentation is not always feasible.
However, for speech, established data augmentation strategies are available through
audioDataAugmenter.

In the case of wavelet time scattering, there are also a number of modifications you can try. For
example, you can change the invariant scale of the transform, vary the number of wavelet filters per
filter bank, and try different classifiers.
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Appendix: Helper Functions

function Labels = helpergenLabels(ads)
% This function is only for use in Wavelet Toolbox examples. It may be
% changed or removed in a future release.
tmp = cell(numel(ads.Files),1);
expression = "[0-9]+_";
for nf = 1:numel(ads.Files)
    idx = regexp(ads.Files{nf},expression);
    tmp{nf} = ads.Files{nf}(idx);
end
Labels = categorical(tmp);
end

function x = helperReadSPData(x)
% This function is only for use Wavelet Toolbox examples. It may change or
% be removed in a future release.

N = numel(x);
if N > 8192
    x = x(1:8192);
elseif N < 8192
    pad = 8192-N;
    prepad = floor(pad/2);
    postpad = ceil(pad/2);
    x = [zeros(prepad,1) ; x ; zeros(postpad,1)];
end
x = x./max(abs(x));

end

function x = helperBayesOptLSTM(X_train, Y_train, X_val, Y_val)
% This function is only for use in the
% "Spoken Digit Recognition with Wavelet Scattering and Deep Learning"
% example. It may change or be removed in a future release.
x = @valErrorFun;

    function [valError,cons, fileName] = valErrorFun(optVars)
        %% LSTM Architecture
        [inputSize,~] = size(X_train{1});
        numClasses = numel(unique(Y_train));

        layers = [ ...
            sequenceInputLayer(inputSize)
            bilstmLayer(optVars.NumHiddenUnits,'OutputMode','last') % Using number of hidden layers value from optimizing variable
            fullyConnectedLayer(numClasses)
            softmaxLayer
            classificationLayer];
        
        % Plots not displayed during training
        options = trainingOptions('adam', ...
            'InitialLearnRate',optVars.InitialLearnRate, ... % Using initial learning rate value from optimizing variable
            'MaxEpochs',300, ...
            'MiniBatchSize',30, ...
            'SequenceLength','shortest', ...
            'Shuffle','never', ...
            'Verbose', false);
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        %% Train the network
        net = trainNetwork(X_train, Y_train, layers, options);
        %% Training accuracy
        X_val_P = net.classify(X_val);
        accuracy_training  = sum(X_val_P == Y_val)./numel(Y_val);
        valError = 1 - accuracy_training;
        %% save results of network and options in a MAT file in the results folder along with the error value
        fileName = fullfile('results', num2str(valError) + ".mat");
        save(fileName,'net','valError','options')     
        cons = [];
    end % end for inner function
end % end for outer function

function X = helperspeechSpectrograms(ads,segmentDuration,frameDuration,hopDuration,numBands)
% This function is only for use in the 
% "Spoken Digit Recognition with Wavelet Scattering and Deep Learning"
% example. It may change or be removed in a future release.
%
% helperspeechSpectrograms(ads,segmentDuration,frameDuration,hopDuration,numBands)
% computes speech spectrograms for the files in the datastore ads.
% segmentDuration is the total duration of the speech clips (in seconds),
% frameDuration the duration of each spectrogram frame, hopDuration the
% time shift between each spectrogram frame, and numBands the number of
% frequency bands.
disp("Computing speech spectrograms...");

numHops = ceil((segmentDuration - frameDuration)/hopDuration);
numFiles = length(ads.Files);
X = zeros([numBands,numHops,1,numFiles],'single');

for i = 1:numFiles
    
    [x,info] = read(ads);
    x = normalizeAndResize(x);
    fs = info.SampleRate;
    frameLength = round(frameDuration*fs);
    hopLength = round(hopDuration*fs);
    
    spec = melSpectrogram(x,fs, ...
        'Window',hamming(frameLength,'periodic'), ...
        'OverlapLength',frameLength - hopLength, ...
        'FFTLength',2048, ...
        'NumBands',numBands, ...
        'FrequencyRange',[50,4000]);
    
    % If the spectrogram is less wide than numHops, then put spectrogram in
    % the middle of X.
    w = size(spec,2);
    left = floor((numHops-w)/2)+1;
    ind = left:left+w-1;
    X(:,ind,1,i) = spec;
    
    if mod(i,500) == 0
        disp("Processed " + i + " files out of " + numFiles)
    end
    
end
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disp("...done");

end

%--------------------------------------------------------------------------
function x = normalizeAndResize(x)
% This function is only for use in the 
% "Spoken Digit Recognition with Wavelet Scattering and Deep Learning"
% example. It may change or be removed in a future release.

N = numel(x);
if N > 8192
    x = x(1:8192);
elseif N < 8192
    pad = 8192-N;
    prepad = floor(pad/2);
    postpad = ceil(pad/2);
    x = [zeros(prepad,1) ; x ; zeros(postpad,1)];
end
x = x./max(abs(x));
end

Copyright 2018, The MathWorks, Inc.
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Active Noise Control with Simulink Real-Time

Design a real-time active noise control system using a Speedgoat® Simulink® Real-Time™ target.

Active Noise Control (ANC)

The goal of active noise control is to reduce unwanted sound by producing an “anti-noise” signal that
cancels the undesired sound wave. This principle has been applied successfully to a wide variety of
applications, such as noise-cancelling headphones, active sound design in car interiors, and noise
reduction in ventilation conduits and ventilated enclosures.

In this example, we apply the principles of model-based design. First, we design the ANC without any
hardware by using a simple acoustic model in our simulation. Then, we complete our prototype by
replacing the simulated acoustic path by the “Speedgoat Target Computers and Speedgoat Support”
(Simulink Real-Time) and its IO104 analog module. The Speedgoat is an external Real-Time target for
Simulink, which allows us to execute our model in real time and observe any data of interest, such as
the adaptive filter coefficients, in real time.

This example has a companion video: Active Noise Control – From Modeling to Real-Time
Prototyping.

ANC Feedforward Model

The following figure illustrates a classic example of feedforward ANC. A noise source at the entrance
of a duct, such as a fan, is “cancelled” by a loudspeaker. The noise source b(n) is measured with a
reference microphone, and the signal present at the output of the system is monitored with an error
microphone, e(n). Note that the smaller the distance between the reference microphone and the
loudspeaker, the faster the ANC must be able to compute and play back the “anti-noise”.

The primary path is the transfer function between the two microphones, W(z) is the adaptive filter
computed from the last available error signal e(n), and the secondary path S(z) is the transfer
function between the ANC output and the error microphone. The secondary path estimate S'(z) is
used to filter the input of the NLMS update function. Also, the acoustic feedback F(z) from the ANC
loudspeaker to the reference microphone can be estimated (F'(z)) and removed from the reference
signal b(n).
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To implement a successful ANC system, we must estimate both the primary and the secondary paths.
In this example, we estimate the secondary path and the acoustic feedback first and then keep it
constant while the ANC system adapts the primary path.

Filtered-X ANC Model

With Simulink and model-based design, you can start with a basic model of the desired system and a
simulated environment. Then, you can improve the realism of that model or replace the simulated
environment by the real one. You can also iterate by refining your simulated environment when you
learn more about the challenges of the real-world system. For example, you could add acoustic
feedback or measurement noise to the simulated environment if those are elements that limit the
performance of the real-world system.

Start with a model of a Filtered-X NLMS ANC system, including both the ANC controller and the
duct’s acoustic environment. Assume that we already have an estimate of the secondary path, since
we will design a system to measure that later. Simulate the signal at the error microphone as the sum
of the noise source filtered by the primary acoustic path and the ANC output filtered by the
secondary acoustic path. Use an “LMS Update” block in a configuration that minimizes the signal
captured by the error microphone. In a Filtered-X system, the NLMS update’s input is the noise
source filtered by the estimate of the secondary path. To avoid an algebraic loop, there is a delay of
one sample between the computation of the new filter coefficients and their use by the LMS filter.

Set the secondary path to s(n) = [0.5 0.5 -.3 -.3 -.2 -.2] and the primary path to conv(s(n), f(n)), where
f(n) = [.1 -.1 .2 -.2 .3 -.3 .15 -.15]. Verify that the adaptive filter properly converges to f(n), in which
case it matches the primary path in our model once convolved with the secondary path. Note that s(n)
and f(n) were set arbitrarily, but we could try any FIR transfer functions, such as an actual impulse
response measurement.
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Secondary Path Estimation Model

Design a model to estimate the secondary path. Use an adaptive filter in a configuration appropriate
for the identification of an unknown system. We can then verify that it converges to f(n).

1 Audio Toolbox Examples

1-474



Real-Time Implementation with Speedgoat

To experiment with ANC in a real-time environment, we built the classic duct example. In the
following image, from right to left, we have a loudspeaker playing the noise source, the reference
microphone, the ANC loudspeaker, and the error microphone.
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Latency is critical: the system must record the reference microphone, compute the response and play
it back on the ANC loudspeaker in the time it takes for sound to travel between these points. In this
example, the distance between the reference microphone and the beginning of the “Y” section is 34
cm. The speed of sound is 343 m/s, thus our maximum latency is 1 ms, or 8 samples at the 8 kHz
sampling rate used in this example.

We will be using the Speedgoat real-time target in Simulink, with the IO104 analog I/O interface card.
The Speedgoat allows us to achieve a latency as low as one or two samples.
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To realize our real-time model, we use the building blocks that we tested earlier, and simply replace
the acoustic models by the Speedgoat I/O blocks. We also included the measurement of the acoustic
feedback from the ANC loudspeaker to the reference microphone, and we added some logic to
automatically measure the secondary path for 10 seconds before switching to the actual ANC mode.
During the first 10 seconds, white noise is played back on the ANC loudspeaker and two NLMS filters
are enabled, one per microphone. Then, a “noise source” is played back by the model for
convenience, but the actual input of the ANC system is the reference microphone (this playback could
be replaced by a real noise source, such as a fan at the right end of the duct). The system records the
reference microphone, adapts the ANC NLMS filter and computes a signal for the ANC loudspeaker.
We take care to set up our model properties so that the IO104 card is driving the cadence of the
Simulink model (see IO104 in interrupt-driven mode). To access the model’s folder, open the example
by clicking the “Open Script” button. The model’s file name is “Speedgoat_FXLMS_ANC_model.slx”.
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Noise Reduction Performance

We have measured the performance of this ANC prototype with both dual tones and the actual
recording of a muffled washing machine. We obtained a noise reduction of 20-30 dB for the dual tones
and 8-10 dB for the recording, which is a more realistic but also more difficult case. The convergence
rate for the filter is less than a few seconds with tones, but requires much more time for the real case
(one or two minutes).

Latency Measurements

Another aspect of performance is the latency of the system, as this determines the minimum distance
between the reference microphone and the ANC loudspeaker. In our prototype, the active ANC
loudspeaker that we are using may introduce latency, so we can make sure that this is not an issue by
comparing the response between the two microphones to the response between the ANC output
signal and the error microphone. The difference between these two delays is the maximum time the
system has available to compute the anti-noise signal from the reference microphone. Using the same
NLMS identification technique, we obtain the following response from the reference microphone to
the error microphone:
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Then, we may compare that response to the secondary path estimation:

The difference is only two or three samples, so using our current active loudspeaker and the
Speedgoat, we cannot significantly reduce the distance between the reference microphone and the
ANC loudspeaker in our prototype. To reduce the distance, we would need a loudspeaker that does
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not introduce any extra latency. We could also increase the sampling rate of the Simulink model (the
Speedgoat latency is set to one or two samples, regardless of the sample rate).
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“Speedgoat Target Computers and Speedgoat Support” (Simulink Real-Time)

Setting up the IO104 module in Simulink

Setting up the IO104 in interrupt-driven mode

See also: “Active Noise Control Using a Filtered-X LMS FIR Adaptive Filter” on page 1-130
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Acoustic Scene Recognition Using Late Fusion

This example shows how to create a multi-model late fusion system for acoustic scene recognition.
The example trains a convolutional neural network (CNN) using mel spectrograms and an ensemble
classifier using wavelet scattering. The example uses the TUT dataset for training and evaluation [1]
on page 1-495.

Introduction

Acoustic scene classification (ASC) is the task of classifying environments from the sounds they
produce. ASC is a generic classification problem that is foundational for context awareness in
devices, robots, and many other applications [1] on page 1-495. Early attempts at ASC used mel-
frequency cepstral coefficients (mfcc) and Gaussian mixture models (GMMs) to describe their
statistical distribution. Other popular features used for ASC include zero crossing rate, spectral
centroid (spectralCentroid), spectral rolloff (spectralRolloffPoint), spectral flux
(spectralFlux ), and linear prediction coefficients (lpc) [5] on page 1-495. Hidden Markov models
(HMMs) were trained to describe the temporal evolution of the GMMs. More recently, the best
performing systems have used deep learning, usually CNNs, and a fusion of multiple models. The
most popular feature for top-ranked systems in the DCASE 2017 contest was the mel spectrogram
(melSpectrogram). The top-ranked systems in the challenge used late fusion and data augmentation
to help their systems generalize.

To illustrate a simple approach that produces reasonable results, this example trains a CNN using
mel spectrograms and an ensemble classifier using wavelet scattering. The CNN and ensemble
classifier produce roughly equivalent overall accuracy, but perform better at distinguishing different
acoustic scenes. To increase overall accuracy, you merge the CNN and ensemble classifier results
using late fusion.

Load Acoustic Scene Recognition Data Set

To run the example, you must first download the data set [1] on page 1-495. The full data set is
approximately 15.5 GB. Depending on your machine and internet connection, downloading the data
can take about 4 hours.

downloadFolder = tempdir;
dataset = fullfile(downloadFolder,"TUT-acoustic-scenes-2017");

if ~datasetExists(dataset)
    disp("Downloading TUT-acoustic-scenes-2017 (15.5 GB) ...")
    HelperDownload_TUT_acoustic_scenes_2017(dataset);
end

Read in the development set metadata as a table. Name the table variables FileName,
AcousticScene, and SpecificLocation.

trainMetaData = readtable(fullfile(dataset,"TUT-acoustic-scenes-2017-development","meta"), ...
    Delimiter={'\t'}, ...
    ReadVariableNames=false);
trainMetaData.Properties.VariableNames = ["FileName","AcousticScene","SpecificLocation"];
head(trainMetaData)

ans=8×3 table
             FileName             AcousticScene    SpecificLocation
    __________________________    _____________    ________________
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    {'audio/b020_90_100.wav' }      {'beach'}          {'b020'}    
    {'audio/b020_110_120.wav'}      {'beach'}          {'b020'}    
    {'audio/b020_100_110.wav'}      {'beach'}          {'b020'}    
    {'audio/b020_40_50.wav'  }      {'beach'}          {'b020'}    
    {'audio/b020_50_60.wav'  }      {'beach'}          {'b020'}    
    {'audio/b020_30_40.wav'  }      {'beach'}          {'b020'}    
    {'audio/b020_160_170.wav'}      {'beach'}          {'b020'}    
    {'audio/b020_170_180.wav'}      {'beach'}          {'b020'}    

testMetaData = readtable(fullfile(dataset,"TUT-acoustic-scenes-2017-evaluation","meta"), ...
    Delimiter={'\t'}, ...
    ReadVariableNames=false);
testMetaData.Properties.VariableNames = ["FileName","AcousticScene","SpecificLocation"];
head(testMetaData)

ans=8×3 table
         FileName         AcousticScene    SpecificLocation
    __________________    _____________    ________________

    {'audio/1245.wav'}      {'beach'}          {'b174'}    
    {'audio/1456.wav'}      {'beach'}          {'b174'}    
    {'audio/1318.wav'}      {'beach'}          {'b174'}    
    {'audio/967.wav' }      {'beach'}          {'b174'}    
    {'audio/203.wav' }      {'beach'}          {'b174'}    
    {'audio/777.wav' }      {'beach'}          {'b174'}    
    {'audio/231.wav' }      {'beach'}          {'b174'}    
    {'audio/768.wav' }      {'beach'}          {'b174'}    

Note that the specific recording locations in the test set do not intersect with the specific recording
locations in the development set. This makes it easier to validate that the trained models can
generalize to real-world scenarios.

sharedRecordingLocations = intersect(testMetaData.SpecificLocation,trainMetaData.SpecificLocation);
disp("Number of specific recording locations in both train and test sets = " + numel(sharedRecordingLocations))

Number of specific recording locations in both train and test sets = 0

The first variable of the metadata tables contains the file names. Concatenate the file names with the
file paths.

trainFilePaths = fullfile(dataset,"TUT-acoustic-scenes-2017-development",trainMetaData.FileName);

testFilePaths = fullfile(dataset,"TUT-acoustic-scenes-2017-evaluation",testMetaData.FileName);

There may be files listed in the metadata that are not present in the data set. Remove the filepaths
and acoustic scene labels that correspond to the missing files.

ads = audioDatastore(dataset,IncludeSubfolders=true);
allFiles = ads.Files;

trainIdxToRemove = ~ismember(trainFilePaths,allFiles);
trainFilePaths(trainIdxToRemove) = [];
trainLabels = categorical(trainMetaData.AcousticScene);
trainLabels(trainIdxToRemove) = [];
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testIdxToRemove = ~ismember(testFilePaths,allFiles);
testFilePaths(testIdxToRemove) = [];
testLabels = categorical(testMetaData.AcousticScene);
testLabels(testIdxToRemove) = [];

Create audio datastores for the train and test sets. Set the Labels property of the audioDatastore
to the acoustic scene. Call countEachLabel to verify an even distribution of labels in both the train
and test sets.

adsTrain = audioDatastore(trainFilePaths, ...
    Labels=trainLabels, ...
    IncludeSubfolders=true);
display(countEachLabel(adsTrain))

  15×2 table

         Label          Count
    ________________    _____

    beach                312 
    bus                  312 
    cafe/restaurant      312 
    car                  312 
    city_center          312 
    forest_path          312 
    grocery_store        312 
    home                 312 
    library              312 
    metro_station        312 
    office               312 
    park                 312 
    residential_area     312 
    train                312 
    tram                 312 

adsTest = audioDatastore(testFilePaths, ...
    Labels=categorical(testMetaData.AcousticScene), ...
    IncludeSubfolders=true);
display(countEachLabel(adsTest))

  15×2 table

         Label          Count
    ________________    _____

    beach                108 
    bus                  108 
    cafe/restaurant      108 
    car                  108 
    city_center          108 
    forest_path          108 
    grocery_store        108 
    home                 108 
    library              108 
    metro_station        108 
    office               108 
    park                 108 
    residential_area     108 
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    train                108 
    tram                 108 

You can reduce the data set used in this example to speed up the run time at the cost of performance.
In general, reducing the data set is a good practice for development and debugging. Set
speedupExample to true to reduce the data set.

speedupExample = ;
if speedupExample
    adsTrain = splitEachLabel(adsTrain,20);
    adsTest = splitEachLabel(adsTest,10);
end

Call read to get the data and sample rate of a file from the train set. Audio in the database has
consistent sample rate and duration. Normalize the audio and listen to it. Display the corresponding
label.

[data,adsInfo] = read(adsTrain);
data = data./max(data,[],"all");

fs = adsInfo.SampleRate;
sound(data,fs)

disp("Acoustic scene = " + string(adsTrain.Labels(1)))

Acoustic scene = beach

Call reset to return the datastore to its initial condition.

reset(adsTrain)

Feature Extraction for CNN

Each audio clip in the dataset consists of 10 seconds of stereo (left-right) audio. The feature
extraction pipeline and the CNN architecture in this example are based on [3] on page 1-495.
Hyperparameters for the feature extraction, the CNN architecture, and the training options were
modified from the original paper using a systematic hyperparameter optimization workflow.

First, convert the audio to mid-side encoding. [3] on page 1-495 suggests that mid-side encoded data
provides better spatial information that the CNN can use to identify moving sources (such as a train
moving across an acoustic scene).

dataMidSide = [sum(data,2),data(:,1)-data(:,2)];

Divide the signal into one-second segments with overlap. The final system uses a probability-weighted
average on the one-second segments to predict the scene for each 10-second audio clip in the test
set. Dividing the audio clips into one-second segments makes the network easier to train and helps
prevent overfitting to specific acoustic events in the training set. The overlap helps to ensure all
combinations of features relative to one another are captured by the training data. It also provides
the system with additional data that can be mixed uniquely during augmentation.

segmentLength = 1;
segmentOverlap = 0.5;

[dataBufferedMid,~] = buffer(dataMidSide(:,1),round(segmentLength*fs),round(segmentOverlap*fs),"nodelay");
[dataBufferedSide,~] = buffer(dataMidSide(:,2),round(segmentLength*fs),round(segmentOverlap*fs),"nodelay");
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dataBuffered = zeros(size(dataBufferedMid,1),size(dataBufferedMid,2)+size(dataBufferedSide,2));
dataBuffered(:,1:2:end) = dataBufferedMid;
dataBuffered(:,2:2:end) = dataBufferedSide;

Use melSpectrogram to transform the data into a compact frequency-domain representation. Define
parameters for the mel spectrogram as suggested by [3] on page 1-495.

windowLength = 2048;
samplesPerHop = 1024;
samplesOverlap = windowLength - samplesPerHop;
fftLength = 2*windowLength;
numBands = 128;

melSpectrogram operates along channels independently. To optimize processing time, call
melSpectrogram with the entire buffered signal.

spec = melSpectrogram(dataBuffered,fs, ...
    Window=hamming(windowLength,"periodic"), ...
    OverlapLength=samplesOverlap, ...
    FFTLength=fftLength, ...
    NumBands=numBands);

Convert the mel spectrogram into the logarithmic scale.

spec = log10(spec+eps);

Reshape the array to dimensions (Number of bands)-by-(Number of hops)-by-(Number of channels)-
by-(Number of segments). When you feed an image into a neural network, the first two dimensions
are the height and width of the image, the third dimension is the channels, and the fourth dimension
separates the individual images.

X = reshape(spec,size(spec,1),size(spec,2),size(data,2),[]);

Call melSpectrogram without output arguments to plot the mel spectrogram of the mid channel for
the first six of the one-second increments.

tiledlayout(3,2)
for channel = 1:2:11
    nexttile
    melSpectrogram(dataBuffered(:,channel),fs, ...
        Window=hamming(windowLength,"periodic"), ...
        OverlapLength=samplesOverlap, ...
        FFTLength=fftLength, ...
        NumBands=numBands);
    title("Segment " + ceil(channel/2))
end
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The helper function HelperSegmentedMelSpectrograms on page 1-494 performs the feature
extraction steps outlined above.

To speed up processing, extract mel spectrograms of all audio files in the datastores using tall
arrays. Unlike in-memory arrays, tall arrays remain unevaluated until you request that the
calculations be performed using the gather function. This deferred evaluation enables you to work
quickly with large data sets. When you eventually request the output using gather, MATLAB
combines the queued calculations where possible and takes the minimum number of passes through
the data. If you have Parallel Computing Toolbox™, you can use tall arrays in your local MATLAB
session, or on a local parallel pool. You can also run tall array calculations on a cluster if you have
MATLAB® Parallel Server™ installed.

If you do not have Parallel Computing Toolbox™, the code in this example still runs.

train_set_tall = tall(adsTrain);
xTrain = cellfun(@(x)HelperSegmentedMelSpectrograms(x,fs, ...
    SegmentLength=segmentLength, ...
    SegmentOverlap=segmentOverlap, ...
    WindowLength=windowLength, ...
    HopLength=samplesPerHop, ...
    NumBands=numBands, ...
    FFTLength=fftLength), ...
    train_set_tall, ...
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    UniformOutput=false);
xTrain = gather(xTrain);

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: 0% complete
Evaluation 0% complete

- Pass 1 of 1: Completed in 3 min 56 sec
Evaluation completed in 3 min 56 sec

xTrain = cat(4,xTrain{:});

test_set_tall = tall(adsTest);
xTest = cellfun(@(x)HelperSegmentedMelSpectrograms(x,fs, ...
    SegmentLength=segmentLength, ...
    SegmentOverlap=segmentOverlap, ...
    WindowLength=windowLength, ...
    HopLength=samplesPerHop, ...
    NumBands=numBands, ...
    FFTLength=fftLength), ...
    test_set_tall, ...
    UniformOutput=false);
xTest = gather(xTest);

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1 min 26 sec
Evaluation completed in 1 min 26 sec

xTest = cat(4,xTest{:});

Replicate the labels of the training and test sets so that they are in one-to-one correspondence with
the segments.

numSegmentsPer10seconds = size(dataBuffered,2)/2;
yTrain = repmat(adsTrain.Labels,1,numSegmentsPer10seconds)';
yTrain = yTrain(:);
yTest = repmat(adsTest.Labels,1,numSegmentsPer10seconds)';
yTest = yTest(:);

Data Augmentation for CNN

The DCASE 2017 dataset contains a relatively small number of acoustic recordings for the task, and
the development set and evaluation set were recorded at different specific locations. As a result, it is
easy to overfit to the data during training. One popular method to reduce overfitting is mixup. In
mixup, you augment your dataset by mixing the features of two different classes. When you mix the
features, you mix the labels in equal proportion. That is:

x∼ = λxi + 1− λ x j

y∼ = λyi + 1− λ y j

Mixup was reformulated by [2] on page 1-495 as labels drawn from a probability distribution instead
of mixed labels. The implementation of mixup in this example is a simplified version of mixup: each
spectrogram is mixed with a spectrogram of a different label with lambda set to 0.5. The original and
mixed datasets are combined for training.

xTrainExtra = xTrain;
yTrainExtra = yTrain;
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lambda = 0.5;
for ii = 1:size(xTrain,4)
    
    % Find all available spectrograms with different labels.
    availableSpectrograms = find(yTrain~=yTrain(ii));
    
    % Randomly choose one of the available spectrograms with a different label.
    numAvailableSpectrograms = numel(availableSpectrograms);
    idx = randi([1,numAvailableSpectrograms]);
    
    % Mix.
    xTrainExtra(:,:,:,ii) = lambda*xTrain(:,:,:,ii) + (1-lambda)*xTrain(:,:,:,availableSpectrograms(idx));
    
    % Specify the label as randomly set by lambda.
    if rand > lambda
        yTrainExtra(ii) = yTrain(availableSpectrograms(idx));
    end
end
xTrain = cat(4,xTrain,xTrainExtra);
yTrain = [yTrain;yTrainExtra];

Call summary to display the distribution of labels for the augmented training set.

summary(yTrain)

     beach                 11769 
     bus                   11904 
     cafe/restaurant       11873 
     car                   11820 
     city_center           11886 
     forest_path           11936 
     grocery_store         11914 
     home                  11923 
     library               11817 
     metro_station         11804 
     office                11922 
     park                  11871 
     residential_area      11704 
     train                 11773 
     tram                  11924 

Define and Train CNN

Define the CNN architecture. This architecture is based on [1] on page 1-495 and modified through
trial and error. See “List of Deep Learning Layers” (Deep Learning Toolbox) to learn more about deep
learning layers available in MATLAB®.

imgSize = [size(xTrain,1),size(xTrain,2),size(xTrain,3)];
numF = 32;
layers = [ ...
    imageInputLayer(imgSize)
    
    batchNormalizationLayer
    
    convolution2dLayer(3,numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,numF,Padding="same")
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    batchNormalizationLayer
    reluLayer 
    
    maxPooling2dLayer(3,Stride=2,Padding="same")

    convolution2dLayer(3,2*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,2*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    
    maxPooling2dLayer(3,Stride=2,Padding="same")
    
    convolution2dLayer(3,4*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,4*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    
    maxPooling2dLayer(3,Stride=2,Padding="same")
    
    convolution2dLayer(3,8*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,8*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    
    globalAveragePooling2dLayer
    
    dropoutLayer(0.5)
    
    fullyConnectedLayer(15)
    softmaxLayer
    classificationLayer];

Define trainingOptions (Deep Learning Toolbox) for the CNN. These options are based on [3] on
page 1-495 and modified through a systematic hyperparameter optimization workflow.

miniBatchSize = 128;
tuneme = 128;
lr = 0.05*miniBatchSize/tuneme;
options = trainingOptions( ...
    "sgdm", ...
    Momentum=0.9, ...
    L2Regularization=0.005, ...
    ...
    MiniBatchSize=miniBatchSize, ...
    MaxEpochs=8, ...
    Shuffle="every-epoch", ...
    ...
    Plots="training-progress", ...
    Verbose=false, ...
    ...
    InitialLearnRate=lr, ...
    LearnRateSchedule="piecewise", ...
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    LearnRateDropPeriod=2, ...
    LearnRateDropFactor=0.2, ...
    ...
    ValidationData={xTest,yTest}, ...
    ValidationFrequency=floor(size(xTrain,4)/miniBatchSize));

Call trainNetwork (Deep Learning Toolbox) to train the network.

trainedNet = trainNetwork(xTrain,yTrain,layers,options);

Evaluate CNN

Call predict (Deep Learning Toolbox) to predict responses from the trained network using the held-
out test set.

cnnResponsesPerSegment = predict(trainedNet,xTest);

Average the responses over each 10-second audio clip.

classes = trainedNet.Layers(end).Classes;
numFiles = numel(adsTest.Files);

counter = 1;
cnnResponses = zeros(numFiles,numel(classes));
for channel = 1:numFiles
    cnnResponses(channel,:) = sum(cnnResponsesPerSegment(counter:counter+numSegmentsPer10seconds-1,:),1)/numSegmentsPer10seconds;
    counter = counter + numSegmentsPer10seconds;
end

For each 10-second audio clip, choose the maximum of the predictions, then map it to the
corresponding predicted location.
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[~,classIdx] = max(cnnResponses,[],2);
cnnPredictedLabels = classes(classIdx);

Call confusionchart (Deep Learning Toolbox) to visualize the accuracy on the test set.

figure(Units="normalized",Position=[0.2 0.2 0.5 0.5])
confusionchart(adsTest.Labels,cnnPredictedLabels, ...
    title=["Test Accuracy - CNN","Average Accuracy = " + mean(adsTest.Labels==cnnPredictedLabels)*100], ...
    ColumnSummary="column-normalized",RowSummary="row-normalized");

Feature Extraction for Ensemble Classifier

Wavelet scattering has been shown in [4] on page 1-495 to provide a good representation of acoustic
scenes. Define a waveletScattering (Wavelet Toolbox) object. The invariance scale and quality
factors were determined through trial and error.

sf = waveletScattering(SignalLength=size(data,1), ...
                       SamplingFrequency=fs, ...
                       InvarianceScale=0.75, ...
                       QualityFactors=[4 1]);

Convert the audio signal to mono, and then call featureMatrix (Wavelet Toolbox) to return the
scattering coefficients for the scattering decomposition framework, sf.

dataMono = mean(data,2);
scatteringCoeffients = featureMatrix(sf,dataMono,Transform="log");

Average the scattering coefficients over the 10-second audio clip.

featureVector = mean(scatteringCoeffients,2);
disp("Number of wavelet features per 10-second clip = " + numel(featureVector));
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Number of wavelet features per 10-second clip = 286

The helper function HelperWaveletFeatureVector on page 1-495 performs the above steps. Use a
tall array with cellfun and HelperWaveletFeatureVector to parallelize the feature extraction.
Extract wavelet feature vectors for the train and test sets.

scatteringTrain = cellfun(@(x)HelperWaveletFeatureVector(x,sf),train_set_tall,UniformOutput=false);
xTrain = gather(scatteringTrain);
xTrain = cell2mat(xTrain')';

scatteringTest = cellfun(@(x)HelperWaveletFeatureVector(x,sf),test_set_tall,UniformOutput=false);
xTest = gather(scatteringTest);
xTest = cell2mat(xTest')';

Define and Train Ensemble Classifier

Use fitcensemble to create a trained classification ensemble model (ClassificationEnsemble).

subspaceDimension = min(150,size(xTrain,2) - 1);
numLearningCycles = 30;
classificationEnsemble = fitcensemble(xTrain,adsTrain.Labels, ...
    Method="Subspace", ...
    NumLearningCycles=numLearningCycles, ...
    Learners="discriminant", ...
    NPredToSample=subspaceDimension, ...
    ClassNames=removecats(unique(adsTrain.Labels)));

Evaluate Ensemble Classifier

For each 10-second audio clip, call predict to return the labels and the weights, then map it to the
corresponding predicted location. Call confusionchart (Deep Learning Toolbox) to visualize the
accuracy on the test set.

[waveletPredictedLabels,waveletResponses] = predict(classificationEnsemble,xTest);

figure(Units="normalized",Position=[0.2 0.2 0.5 0.5])
confusionchart(adsTest.Labels,waveletPredictedLabels, ...
    title=["Test Accuracy - Wavelet Scattering","Average Accuracy = " + mean(adsTest.Labels==waveletPredictedLabels)*100], ...
    ColumnSummary="column-normalized",RowSummary="row-normalized");
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fprintf('Average accuracy of classifier = %0.2f\n',mean(adsTest.Labels==waveletPredictedLabels)*100)

Average accuracy of classifier = 75.74

Apply Late Fusion

For each 10-second clip, calling predict on the wavelet classifier and the CNN returns a vector
indicating the relative confidence in their decision. Multiply the waveletResponses with the
cnnResponses to create a late fusion system.

fused = waveletResponses.*cnnResponses;
[~,classIdx] = max(fused,[],2);

predictedLabels = classes(classIdx);

Evaluate Late Fusion

Call confusionchart to visualize the fused classification accuracy.

figure(Units="normalized",Position=[0.2 0.2 0.5 0.5])
confusionchart(adsTest.Labels,predictedLabels, ...
    Title=["Test Accuracy - Fusion","Average Accuracy = " + mean(adsTest.Labels==predictedLabels)*100], ...
    ColumnSummary="column-normalized",RowSummary="row-normalized");
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Supporting Functions

HelperSegmentedMelSpectrograms

function X = HelperSegmentedMelSpectrograms(x,fs,varargin)
% Copyright 2019-2021 The MathWorks, Inc.
p = inputParser;
addParameter(p,WindowLength=1024);
addParameter(p,HopLength=512);
addParameter(p,NumBands=128);
addParameter(p,SegmentLength=1);
addParameter(p,SegmentOverlap=0);
addParameter(p,FFTLength=1024);
parse(p,varargin{:})
params = p.Results;

x = [sum(x,2),x(:,1)-x(:,2)];
x = x./max(max(x));

[xb_m,~] = buffer(x(:,1),round(params.SegmentLength*fs),round(params.SegmentOverlap*fs),"nodelay");
[xb_s,~] = buffer(x(:,2),round(params.SegmentLength*fs),round(params.SegmentOverlap*fs),"nodelay");
xb = zeros(size(xb_m,1),size(xb_m,2)+size(xb_s,2));
xb(:,1:2:end) = xb_m;
xb(:,2:2:end) = xb_s;

spec = melSpectrogram(xb,fs, ...
    Window=hamming(params.WindowLength,"periodic"), ...
    OverlapLength=params.WindowLength - params.HopLength, ...
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    FFTLength=params.FFTLength, ...
    NumBands=params.NumBands, ...
    FrequencyRange=[0,floor(fs/2)]);
spec = log10(spec+eps);

X = reshape(spec,size(spec,1),size(spec,2),size(x,2),[]);
end

HelperWaveletFeatureExtractor

function features = HelperWaveletFeatureVector(x,sf)
% Copyright 2019-2021 The MathWorks, Inc.
x = mean(x,2);
features = featureMatrix(sf,x,Transform="log");
features = mean(features,2);
end
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Keyword Spotting in Noise Using MFCC and LSTM Networks

This example shows how to identify a keyword in noisy speech using a deep learning network. In
particular, the example uses a Bidirectional Long Short-Term Memory (BiLSTM) network and mel
frequency cepstral coefficients (MFCC).

Introduction

Keyword spotting (KWS) is an essential component of voice-assist technologies, where the user
speaks a predefined keyword to wake-up a system before speaking a complete command or query to
the device.

This example trains a KWS deep network with feature sequences of mel-frequency cepstral
coefficients (MFCC). The example also demonstrates how network accuracy in a noisy environment
can be improved using data augmentation.

This example uses long short-term memory (LSTM) networks, which are a type of recurrent neural
network (RNN) well-suited to study sequence and time-series data. An LSTM network can learn long-
term dependencies between time steps of a sequence. An LSTM layer (lstmLayer (Deep Learning
Toolbox)) can look at the time sequence in the forward direction, while a bidirectional LSTM layer
(bilstmLayer (Deep Learning Toolbox)) can look at the time sequence in both forward and
backward directions. This example uses a bidirectional LSTM layer.

The example uses the google Speech Commands Dataset to train the deep learning model. To run the
example, you must first download the data set. If you do not want to download the data set or train
the network, then you can download and use a pretrained network by opening this example in
MATLAB® and running the Spot Keyword with Pretrained Network section.

Spot Keyword with Pretrained Network

Before going into the training process in detail, you will download and use a pretrained keyword
spotting network to identify a keyword.

In this example, the keyword to spot is YES.

Read a test signal where the keyword is uttered.

[audioIn,fs] = audioread("keywordTestSignal.wav");
sound(audioIn,fs)

Download and load the pretrained network, the mean (M) and standard deviation (S) vectors used for
feature normalization, as well as 2 audio files used for validating the network later in the example.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","KeywordSpotting.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
netFolder = fullfile(dataFolder,"KeywordSpotting");
load(fullfile(netFolder,"KWSNet.mat"));

Create an audioFeatureExtractor object to perform feature extraction.

windowLength = 512;
overlapLength = 384;
afe = audioFeatureExtractor(SampleRate=fs, ...
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    Window=hann(windowLength,"periodic"),OverlapLength=overlapLength, ...
    mfcc=true,mfccDelta=true,mfccDeltaDelta=true);

Extract features from the test signal and normalize them.

features = extract(afe,audioIn);

features = (features - M)./S;

Compute the keyword spotting binary mask. A mask value of one corresponds to a segment where the
keyword was spotted.

mask = classify(KWSNet,features.');

Each sample in the mask corresponds to 128 samples from the speech signal (windowLength -
overlapLength).

Expand the mask to the length of the signal.

mask = repmat(mask,windowLength-overlapLength,1);
mask = double(mask) - 1;
mask = mask(:);

Plot the test signal and the mask.

figure
audioIn = audioIn(1:length(mask));
t = (0:length(audioIn)-1)/fs;
plot(t,audioIn)
grid on
hold on
plot(t, mask)
legend("Speech","YES")
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Listen to the spotted keyword.

sound(audioIn(mask==1),fs)

Detect Commands Using Streaming Audio from Microphone

Test your pre-trained command detection network on streaming audio from your microphone. Try
saying random words, including the keyword (YES).

Call generateMATLABFunction on the audioFeatureExtractor object to create the feature
extraction function. You will use this function in the processing loop.

generateMATLABFunction(afe,"generateKeywordFeatures",IsStreaming=true);

Define an audio device reader that can read audio from your microphone. Set the frame length to the
hop length. This enables you to compute a new set of features for every new audio frame from the
microphone.

hopLength = windowLength - overlapLength;
frameLength = hopLength;
adr = audioDeviceReader(SampleRate=fs,SamplesPerFrame=frameLength);

Create a scope for visualizing the speech signal and the estimated mask.

scope = timescope(SampleRate=fs, ...
    TimeSpanSource="property", ...
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    TimeSpan=5, ...
    TimeSpanOverrunAction="Scroll", ...
    BufferLength=fs*5*2, ...
    ShowLegend=true, ...
    ChannelNames={'Speech','Keyword Mask'}, ...
    YLimits=[-1.2,1.2], ...
    Title="Keyword Spotting");

Define the rate at which you estimate the mask. You will generate a mask once every
numHopsPerUpdate audio frames.

numHopsPerUpdate = 16;

Initialize a buffer for the audio.

dataBuff = dsp.AsyncBuffer(windowLength);

Initialize a buffer for the computed features.

featureBuff = dsp.AsyncBuffer(numHopsPerUpdate);

Initialize a buffer to manage plotting the audio and the mask.

plotBuff = dsp.AsyncBuffer(numHopsPerUpdate*windowLength);

To run the loop indefinitely, set timeLimit to Inf. To stop the simulation, close the scope.

timeLimit = 20;

tic
while toc < timeLimit

    data = adr();
    write(dataBuff,data);
    write(plotBuff,data);

    frame = read(dataBuff,windowLength,overlapLength);
    features = generateKeywordFeatures(frame,fs);
    write(featureBuff,features.');

    if featureBuff.NumUnreadSamples == numHopsPerUpdate
        featureMatrix = read(featureBuff);
        featureMatrix(~isfinite(featureMatrix)) = 0;
        featureMatrix = (featureMatrix - M)./S;

        [keywordNet,v] = classifyAndUpdateState(KWSNet,featureMatrix.');
        v = double(v) - 1;
        v = repmat(v,hopLength,1);
        v = v(:);
        v = mode(v);
        v = repmat(v,numHopsPerUpdate*hopLength,1);

        data = read(plotBuff);
        scope([data,v]);

        if ~isVisible(scope)
            break;
        end
    end
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end
hide(scope)

In the rest of the example, you will learn how to train the keyword spotting network.

Training Process Summary

The training process goes through the following steps:

1 Inspect a "gold standard" keyword spotting baseline on a validation signal.
2 Create training utterances from a noise-free dataset.
3 Train a keyword spotting LSTM network using MFCC sequences extracted from those

utterances.
4 Check the network accuracy by comparing the validation baseline to the output of the network

when applied to the validation signal.
5 Check the network accuracy for a validation signal corrupted by noise.
6 Augment the training dataset by injecting noise to the speech data using audioDataAugmenter.
7 Retrain the network with the augmented dataset.
8 Verify that the retrained network now yields higher accuracy when applied to the noisy validation

signal.
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Inspect the Validation Signal

You use a sample speech signal to validate the KWS network. The validation signal consists 34
seconds of speech with the keyword YES appearing intermittently.

Load the validation signal.

[audioIn,fs] = audioread(fullfile(netFolder,"KeywordSpeech-16-16-mono-34secs.flac"));

Listen to the signal.

sound(audioIn,fs)

Visualize the signal.

figure
t = (1/fs)*(0:length(audioIn)-1);
plot(t,audioIn);
grid on
xlabel("Time (s)")
title("Validation Speech Signal")

 Keyword Spotting in Noise Using MFCC and LSTM Networks

1-501



Inspect the KWS Baseline

Load the KWS baseline. This baseline was obtained using speech2text and Signal Labeler. For a
related example, see “Label Spoken Words in Audio Signals”.

load("KWSBaseline.mat","KWSBaseline")

The baseline is a logical vector of the same length as the validation audio signal. Segments in
audioIn where the keyword is uttered are set to one in KWSBaseline.

Visualize the speech signal along with the KWS baseline.

fig = figure;
plot(t,[audioIn,KWSBaseline'])
grid on
xlabel("Time (s)")
legend("Speech","KWS Baseline",Location="southeast")
l = findall(fig,"type","line");
l(1).LineWidth = 2;
title("Validation Signal")

Listen to the speech segments identified as keywords.

sound(audioIn(KWSBaseline),fs)
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The objective of the network that you train is to output a KWS mask of zeros and ones like this
baseline.

Load Speech Commands Data Set

Download and extract the Google Speech Commands Dataset [1] on page 1-521.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","google_speech.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
dataset = fullfile(dataFolder,"google_speech");

Create an audioDatastore that points to the data set.

ads = audioDatastore(dataset,LabelSource="foldername",Includesubfolders=true);
ads = shuffle(ads);

The dataset contains background noise files that are not used in this example. Use subset to create
a new datastore that does not have the background noise files.

isBackNoise = ismember(ads.Labels,"background");
ads = subset(ads,~isBackNoise);

The dataset has approximately 65,000 one-second long utterances of 30 short words (including the
keyword YES). Get a breakdown of the word distribution in the datastore.

countEachLabel(ads)

ans=30×2 table
    Label     Count
    ______    _____

    bed       1713 
    bird      1731 
    cat       1733 
    dog       1746 
    down      2359 
    eight     2352 
    five      2357 
    four      2372 
    go        2372 
    happy     1742 
    house     1750 
    left      2353 
    marvin    1746 
    nine      2364 
    no        2375 
    off       2357 
      ⋮

Split ads into two datastores: The first datastore contains files corresponding to the keyword. The
second datastore contains all the other words.

keyword = "yes";
isKeyword = ismember(ads.Labels,keyword);
adsKeyword = subset(ads,isKeyword);
adsOther = subset(ads,~isKeyword);
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To train the network with the entire dataset and achieve the highest possible accuracy, set
speedupExample to false. To run this example quickly, set speedupExample to true.

speedupExample = ;
if speedupExample
    % Reduce the dataset by a factor of 20
    adsKeyword = splitEachLabel(adsKeyword,round(numel(adsKeyword.Files)/20));
    numUniqueLabels = numel(unique(adsOther.Labels));
    adsOther = splitEachLabel(adsOther,round(numel(adsOther.Files)/numUniqueLabels/20));
end

Get a breakdown of the word distribution in each datastore. Shuffle the adsOther datastore so that
consecutive reads return different words.

countEachLabel(adsKeyword)

ans=1×2 table
    Label    Count
    _____    _____

     yes     2377 

countEachLabel(adsOther)

ans=29×2 table
    Label     Count
    ______    _____

    bed       1713 
    bird      1731 
    cat       1733 
    dog       1746 
    down      2359 
    eight     2352 
    five      2357 
    four      2372 
    go        2372 
    happy     1742 
    house     1750 
    left      2353 
    marvin    1746 
    nine      2364 
    no        2375 
    off       2357 
      ⋮

adsOther = shuffle(adsOther);

Create Training Sentences and Labels

The training datastores contain one-second speech signals where one word is uttered. You will create
more complex training speech utterances that contain a mixture of the keyword along with other
words.

Here is an example of a constructed utterance. Read one keyword from the keyword datastore and
normalize it to have a maximum value of one.
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yes = read(adsKeyword);
yes = yes/max(abs(yes));

The signal has non-speech portions (silence, background noise, etc.) that do not contain useful speech
information. This example removes silence using detectSpeech.

Get the start and end indices of the useful portion of the signal.

speechIndices = detectSpeech(yes,fs);

Randomly select the number of words to use in the synthesized training sentence. Use a maximum of
10 words.

numWords = randi([0,10]);

Randomly pick the location at which the keyword occurs.

keywordLocation = randi([1,numWords+1]);

Read the desired number of non-keyword utterances, and construct the training sentence and mask.

sentence = [];
mask = [];
for index = 1:numWords+1
    if index == keywordLocation
        sentence = [sentence;yes]; %#ok
        newMask = zeros(size(yes));
        newMask(speechIndices(1,1):speechIndices(1,2)) = 1;
        mask = [mask;newMask]; %#ok
    else
        other = read(adsOther);
        other = other./max(abs(other));
        sentence = [sentence;other]; %#ok
        mask = [mask;zeros(size(other))]; %#ok
    end
end

Plot the training sentence along with the mask.

figure
t = (1/fs)*(0:length(sentence)-1);
fig = figure;
plot(t,[sentence,mask])
grid on
xlabel("Time (s)")
legend("Training Signal","Mask",Location="southeast")
l = findall(fig,"type","line");
l(1).LineWidth = 2;
title("Example Utterance")
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Listen to the training sentence.

sound(sentence,fs)

Extract Features

This example trains a deep learning network using 39 MFCC coefficients (13 MFCC, 13 delta and 13
delta-delta coefficients).

Define parameters required for MFCC extraction.

windowLength = 512;
overlapLength = 384;

Create an audioFeatureExtractor object to perform the feature extraction.

afe = audioFeatureExtractor(SampleRate=fs, ...
    Window=hann(windowLength,"periodic"),OverlapLength=overlapLength, ...
    mfcc=true,mfccDelta=true,mfccDeltaDelta=true);

Extract the features.

featureMatrix = extract(afe,sentence);
size(featureMatrix)
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ans = 1×2

   478    39

Note that you compute MFCC by sliding a window through the input, so the feature matrix is shorter
than the input speech signal. Each row in featureMatrix corresponds to 128 samples from the
speech signal (windowLength - overlapLength).

Compute a mask of the same length as featureMatrix.

hopLength = windowLength - overlapLength;
range = hopLength*(1:size(featureMatrix,1)) + hopLength;
featureMask = zeros(size(range));
for index = 1:numel(range)
    featureMask(index) = mode(mask((index-1)*hopLength+1:(index-1)*hopLength+windowLength));
end

Extract Features from Training Dataset

Sentence synthesis and feature extraction for the whole training dataset can be quite time-
consuming. To speed up processing, if you have Parallel Computing Toolbox™, partition the training
datastore, and process each partition on a separate worker.

Select a number of datastore partitions.

numPartitions = 6;

Initialize cell arrays for the feature matrices and masks.

TrainingFeatures = {};
TrainingMasks= {};

Perform sentence synthesis, feature extraction, and mask creation using parfor.

emptyCategories = categorical([1 0]);
emptyCategories(:) = [];

tic
parfor ii = 1:numPartitions

    subadsKeyword = partition(adsKeyword,numPartitions,ii);
    subadsOther = partition(adsOther,numPartitions,ii);

    count = 1;
    localFeatures = cell(length(subadsKeyword.Files),1);
    localMasks = cell(length(subadsKeyword.Files),1);

    while hasdata(subadsKeyword)

        % Create a training sentence
        [sentence,mask] = synthesizeSentence(subadsKeyword,subadsOther,fs,windowLength);

        % Compute mfcc features
        featureMatrix = extract(afe, sentence);
        featureMatrix(~isfinite(featureMatrix)) = 0;

        % Create mask
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        range = hopLength*(1:size(featureMatrix,1)) + hopLength;
        featureMask = zeros(size(range));
        for index = 1:numel(range)
            featureMask(index) = mode(mask((index-1)*hopLength+1:(index-1)*hopLength+windowLength));
        end

        localFeatures{count} = featureMatrix;
        localMasks{count} = [emptyCategories,categorical(featureMask)];

        count = count + 1;
    end

    TrainingFeatures = [TrainingFeatures;localFeatures];
    TrainingMasks = [TrainingMasks;localMasks];
end

Analyzing and transferring files to the workers ...done.

disp("Training feature extraction took " + toc + " seconds.")

Training feature extraction took 41.0509 seconds.

It is good practice to normalize all features to have zero mean and unity standard deviation. Compute
the mean and standard deviation for each coefficient and use them to normalize the data.

sampleFeature = TrainingFeatures{1};
numFeatures = size(sampleFeature,2);
featuresMatrix = cat(1,TrainingFeatures{:});
if speedupExample
    load(fullfile(netFolder,"keywordNetNoAugmentation.mat"),"keywordNetNoAugmentation","M","S");
else
    M = mean(featuresMatrix);
    S = std(featuresMatrix);
end
for index = 1:length(TrainingFeatures)
    f = TrainingFeatures{index};
    f = (f - M)./S;
    TrainingFeatures{index} = f.'; %#ok
end

Extract Validation Features

Extract MFCC features from the validation signal.

featureMatrix = extract(afe, audioIn);
featureMatrix(~isfinite(featureMatrix)) = 0;

Normalize the validation features.

FeaturesValidationClean = (featureMatrix - M)./S;
range = hopLength*(1:size(FeaturesValidationClean,1)) + hopLength;

Construct the validation KWS mask.

featureMask = zeros(size(range));
for index = 1:numel(range)
    featureMask(index) = mode(KWSBaseline((index-1)*hopLength+1:(index-1)*hopLength+windowLength));
end
BaselineV = categorical(featureMask);
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Define the LSTM Network Architecture

LSTM networks can learn long-term dependencies between time steps of sequence data. This
example uses the bidirectional LSTM layer bilstmLayer (Deep Learning Toolbox) to look at the
sequence in both forward and backward directions.

Specify the input size to be sequences of size numFeatures. Specify two hidden bidirectional LSTM
layers with an output size of 150 and output a sequence. This command instructs the bidirectional
LSTM layer to map the input time series into 150 features that are passed to the next layer. Specify
two classes by including a fully connected layer of size 2, followed by a softmax layer and a
classification layer.

layers = [ ...
    sequenceInputLayer(numFeatures)
    bilstmLayer(150,OutputMode="sequence")
    bilstmLayer(150,OutputMode="sequence")
    fullyConnectedLayer(2)
    softmaxLayer
    classificationLayer
    ];

Define Training Options

Specify the training options for the classifier. Set MaxEpochs to 10 so that the network makes 10
passes through the training data. Set MiniBatchSize to 64 so that the network looks at 64 training
signals at a time. Set Plots to "training-progress" to generate plots that show the training
progress as the number of iterations increases. Set Verbose to false to disable printing the table
output that corresponds to the data shown in the plot. Set Shuffle to "every-epoch" to shuffle the
training sequence at the beginning of each epoch. Set LearnRateSchedule to "piecewise" to
decrease the learning rate by a specified factor (0.1) every time a certain number of epochs (5) has
passed. Set ValidationData to the validation predictors and targets.

This example uses the adaptive moment estimation (ADAM) solver. ADAM performs better with
recurrent neural networks (RNNs) like LSTMs than the default stochastic gradient descent with
momentum (SGDM) solver.

maxEpochs = 10;
miniBatchSize = 64;
options = trainingOptions("adam", ...
    InitialLearnRate=1e-4, ...
    MaxEpochs=maxEpochs, ...
    MiniBatchSize=miniBatchSize, ...
    Shuffle="every-epoch", ...
    Verbose=false, ...
    ValidationFrequency=floor(numel(TrainingFeatures)/miniBatchSize), ...
    ValidationData={FeaturesValidationClean.',BaselineV}, ...
    Plots="training-progress", ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropFactor=0.1, ...
    LearnRateDropPeriod=5);

Train the LSTM Network

Train the LSTM network with the specified training options and layer architecture using
trainNetwork (Deep Learning Toolbox). Because the training set is large, the training process can
take several minutes.
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[keywordNetNoAugmentation,netInfo] = trainNetwork(TrainingFeatures,TrainingMasks,layers,options);

if speedupExample
    load(fullfile(netFolder,"keywordNetNoAugmentation.mat"),"keywordNetNoAugmentation","M","S");
end

Check Network Accuracy for Noise-Free Validation Signal

Estimate the KWS mask for the validation signal using the trained network.

v = classify(keywordNetNoAugmentation,FeaturesValidationClean.');

Calculate and plot the validation confusion matrix from the vectors of actual and estimated labels.

figure
confusionchart(BaselineV,v, ...
    Title="Validation Accuracy", ...
    ColumnSummary="column-normalized",RowSummary="row-normalized");
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Convert the network output from categorical to double.

v = double(v) - 1;
v = repmat(v,hopLength,1);
v = v(:);

Listen to the keyword areas identified by the network.

sound(audioIn(logical(v)),fs)

Visualize the estimated and expected KWS masks.

baseline = double(BaselineV) - 1;
baseline = repmat(baseline,hopLength,1);
baseline = baseline(:);

t = (1/fs)*(0:length(v)-1);
fig = figure;
plot(t,[audioIn(1:length(v)),v,0.8*baseline])
grid on
xlabel("Time (s)")
legend("Training Signal","Network Mask","Baseline Mask",Location="southeast")
l = findall(fig,"type","line");
l(1).LineWidth = 2;
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l(2).LineWidth = 2;
title("Results for Noise-Free Speech")

Check Network Accuracy for a Noisy Validation Signal

You will now check the network accuracy for a noisy speech signal. The noisy signal was obtained by
corrupting the clean validation signal by additive white Gaussian noise.

Load the noisy signal.

[audioInNoisy,fs] = audioread(fullfile(netFolder,"NoisyKeywordSpeech-16-16-mono-34secs.flac"));
sound(audioInNoisy,fs)

Visualize the signal.

figure
t = (1/fs)*(0:length(audioInNoisy)-1);
plot(t,audioInNoisy)
grid on
xlabel("Time (s)")
title("Noisy Validation Speech Signal")
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Extract the feature matrix from the noisy signal.

featureMatrixV = extract(afe, audioInNoisy);
featureMatrixV(~isfinite(featureMatrixV)) = 0;
FeaturesValidationNoisy = (featureMatrixV - M)./S;

Pass the feature matrix to the network.

v = classify(keywordNetNoAugmentation,FeaturesValidationNoisy.');

Compare the network output to the baseline. Note that the accuracy is lower than the one you got for
a clean signal.

figure
confusionchart(BaselineV,v, ...
    Title="Validation Accuracy - Noisy Speech", ...
    ColumnSummary="column-normalized",RowSummary="row-normalized");
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Convert the network output from categorical to double.

v = double(v) - 1;
v = repmat(v,hopLength,1);
v = v(:);

Listen to the keyword areas identified by the network.

sound(audioIn(logical(v)),fs)

Visualize the estimated and baseline masks.

t = (1/fs)*(0:length(v)-1);
fig = figure;
plot(t,[audioInNoisy(1:length(v)),v,0.8*baseline])
grid on
xlabel("Time (s)")
legend("Training Signal","Network Mask","Baseline Mask",Location="southeast")
l = findall(fig,"type","line");
l(1).LineWidth = 2;
l(2).LineWidth = 2;
title("Results for Noisy Speech - No Data Augmentation")
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Perform Data Augmentation

The trained network did not perform well on a noisy signal because the trained dataset contained
only noise-free sentences. You will rectify this by augmenting your dataset to include noisy sentences.

Use audioDataAugmenter to augment your dataset.

ada = audioDataAugmenter(TimeStretchProbability=0,PitchShiftProbability=0, ...
    VolumeControlProbability=0,TimeShiftProbability=0, ...
    SNRRange=[-1,1],AddNoiseProbability=0.85);

With these settings, the audioDataAugmenter object corrupts an input audio signal with white
Gaussian noise with a probability of 85%. The SNR is randomly selected from the range [-1 1] (in dB).
There is a 15% probability that the augmenter does not modify your input signal.

As an example, pass an audio signal to the augmenter.

reset(adsKeyword)
x = read(adsKeyword);
data = augment(ada,x,fs)

data=1×2 table
         Audio          AugmentationInfo
    ________________    ________________
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    {16000×1 double}       1×1 struct   

Inspect the AugmentationInfo variable in data to verify how the signal was modified.

data.AugmentationInfo

ans = struct with fields:
    SNR: 0.3410

Reset the datastores.

reset(adsKeyword)
reset(adsOther)

Initialize the feature and mask cells.

TrainingFeatures = {};
TrainingMasks = {};

Perform feature extraction again. Each signal is corrupted by noise with a probability of 85%, so your
augmented dataset has approximately 85% noisy data and 15% noise-free data.

tic
parfor ii = 1:numPartitions

    subadsKeyword = partition(adsKeyword,numPartitions,ii);
    subadsOther = partition(adsOther,numPartitions,ii);

    count = 1;
    localFeatures = cell(length(subadsKeyword.Files),1);
    localMasks = cell(length(subadsKeyword.Files),1);

    while hasdata(subadsKeyword)

        [sentence,mask] = synthesizeSentence(subadsKeyword,subadsOther,fs,windowLength);

        % Corrupt with noise
        augmentedData = augment(ada,sentence,fs);
        sentence = augmentedData.Audio{1};

        % Compute mfcc features
        featureMatrix = extract(afe, sentence);
        featureMatrix(~isfinite(featureMatrix)) = 0;

        range = hopLength*(1:size(featureMatrix,1)) + hopLength;
        featureMask = zeros(size(range));
        for index = 1:numel(range)
            featureMask(index) = mode(mask((index-1)*hopLength+1:(index-1)*hopLength+windowLength));
        end

        localFeatures{count} = featureMatrix;
        localMasks{count} = [emptyCategories,categorical(featureMask)];

        count = count + 1;
    end

    TrainingFeatures = [TrainingFeatures;localFeatures];
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    TrainingMasks = [TrainingMasks;localMasks];
end
disp("Training feature extraction took " + toc + " seconds.")

Training feature extraction took 35.6612 seconds.

Compute the mean and standard deviation for each coefficient; use them to normalize the data.

sampleFeature = TrainingFeatures{1};
numFeatures = size(sampleFeature,2);
featuresMatrix = cat(1,TrainingFeatures{:});
if speedupExample
    load(fullfile(netFolder,"KWSNet.mat"),"KWSNet","M","S");
else
    M = mean(featuresMatrix);
    S = std(featuresMatrix);
end
for index = 1:length(TrainingFeatures)
    f = TrainingFeatures{index};
    f = (f - M) ./ S;
    TrainingFeatures{index} = f.'; %#ok
end

Normalize the validation features with the new mean and standard deviation values.

FeaturesValidationNoisy = (featureMatrixV - M)./S;

Retrain Network with Augmented Dataset

Recreate the training options. Use the noisy baseline features and mask for validation.

options = trainingOptions("adam", ...
    InitialLearnRate=1e-4, ...
    MaxEpochs=maxEpochs, ...
    MiniBatchSize=miniBatchSize, ...
    Shuffle="every-epoch", ...
    Verbose=false, ...
    ValidationFrequency=floor(numel(TrainingFeatures)/miniBatchSize), ...
    ValidationData={FeaturesValidationNoisy.',BaselineV}, ...
    Plots="training-progress", ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropFactor=0.1, ...
    LearnRateDropPeriod=5);

Train the network.

[KWSNet,netInfo] = trainNetwork(TrainingFeatures,TrainingMasks,layers,options);
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if speedupExample
    load(fullfile(netFolder,"KWSNet.mat"));
end

Verify the network accuracy on the validation signal.

v = classify(KWSNet,FeaturesValidationNoisy.');

Compare the estimated and expected KWS masks.

figure
confusionchart(BaselineV,v, ...
    Title="Validation Accuracy with Data Augmentation", ...
    ColumnSummary="column-normalized",RowSummary="row-normalized");
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Listen to the identified keyword regions.

v = double(v) - 1;
v = repmat(v,hopLength,1);
v = v(:);

sound(audioIn(logical(v)),fs)

Visualize the estimated and expected masks.

fig = figure;
plot(t,[audioInNoisy(1:length(v)),v,0.8*baseline])
grid on
xlabel("Time (s)")
legend("Training Signal","Network Mask","Baseline Mask",Location="southeast")
l = findall(fig,"type","line");
l(1).LineWidth = 2;
l(2).LineWidth = 2;
title("Results for Noisy Speech - With Data Augmentation")
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Supporting Functions

Synthesize Sentence
function [sentence,mask] = synthesizeSentence(adsKeyword,adsOther,fs,minlength)

% Read one keyword
keyword = read(adsKeyword);
keyword = keyword./max(abs(keyword));

% Identify region of interest
speechIndices = detectSpeech(keyword,fs);
if isempty(speechIndices) || diff(speechIndices(1,:)) <= minlength
    speechIndices = [1,length(keyword)];
end
keyword = keyword(speechIndices(1,1):speechIndices(1,2));

% Pick a random number of other words (between 0 and 10)
numWords = randi([0,10]);
% Pick where to insert keyword
loc = randi([1,numWords+1]);
sentence = [];
mask = [];
for index = 1:numWords+1
    if index==loc
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        sentence = [sentence;keyword];
        newMask = ones(size(keyword));
        mask = [mask;newMask];
    else
        other = read(adsOther);
        other = other./max(abs(other));
        sentence = [sentence;other];
        mask = [mask;zeros(size(other))];
    end
end
end

References

[1] Warden P. "Speech Commands: A public dataset for single-word speech recognition", 2017.
Available from https://storage.googleapis.com/download.tensorflow.org/data/
speech_commands_v0.01.tar.gz. Copyright Google 2017. The Speech Commands Dataset is licensed
under the Creative Commons Attribution 4.0 license.
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Speaker Verification Using Gaussian Mixture Model

Speaker verification, or authentication, is the task of verifying that a given speech segment belongs
to a given speaker. In speaker verification systems, there is an unknown set of all other speakers, so
the likelihood that an utterance belongs to the verification target is compared to the likelihood that it
does not. This contrasts with speaker identification tasks, where the likelihood of each speaker is
calculated, and those likelihoods are compared. Both speaker verification and speaker identification
can be text dependent or text independent. In this example, you create a text-dependent speaker
verification system using a Gaussian mixture model/universal background model (GMM-UBM).

A sketch of the GMM-UBM system is shown:

Perform Speaker Verification

To motivate this example, you will first perform speaker verification using a pre-trained universal
background model (UBM). The model was trained using the word "stop" from the Google Speech
Commands data set [1] on page 1-539.

The MAT file, speakerVerficationExampleData.mat, includes the UBM, a configured
audioFeatureExtractor object, and normalization factors used to normalize the features.

load speakerVerificationExampleData.mat ubm afe normFactors

Enroll

If you would like to test enrolling yourself, set enrollYourself to true. You will be prompted to
record yourself saying "stop" several times. Say "stop" only once per prompt. Increasing the number
of recordings should increase the verification accuracy.
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enrollYourself = ;
if enrollYourself

    numToRecord = ;

    ID = ;
    helperAddUser(afe.SampleRate,numToRecord,ID);
end

Create an audioDatastore object to point to the five audio files included with this example, and, if
you enrolled yourself, the audio files you just recorded. The audio files included with this example are
part of an internally created data set and were not used to train the UBM.

ads = audioDatastore(pwd);

The files included with this example consist of the word "stop" spoken five times by three different
speakers: BFn (1), BHm (3), and RPalanim (1). The file names are in the format
SpeakerID_RecordingNumber. Set the datastore labels to the corresponding speaker ID.

[~,fileName] = cellfun(@(x)fileparts(x),ads.Files,UniformOutput=false);
fileName = split(fileName,"_");
speaker = strcat(fileName(:,1));
ads.Labels = categorical(speaker);

Use all but one file from the speaker you are enrolling for the enrollment process. The remaining files
are used to test the system.

if enrollYourself
    enrollLabel = ID;
else
    enrollLabel = "BHm";
end

forEnrollment = ads.Labels==enrollLabel;
forEnrollment(find(forEnrollment==1,1)) = false;
adsEnroll = subset(ads,forEnrollment);
adsTest = subset(ads,~forEnrollment);

Enroll the chosen speaker using maximum a posteriori (MAP) adaptation. You can find details of the
enrollment algorithm later in the example on page 1-529.

speakerGMM = helperEnroll(ubm,afe,normFactors,adsEnroll);

Verification

For each of the files in the test set, use the likelihood ratio test and a threshold to determine whether
the speaker is the enrolled speaker or an imposter.

threshold = ;
reset(adsTest)
while hasdata(adsTest)
    disp("Identity to confirm: " + enrollLabel)
    [audioData,adsInfo] = read(adsTest);
    
    disp(" | Speaker identity: " + string(adsInfo.Label))
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    verificationStatus = helperVerify(audioData,afe,normFactors,speakerGMM,ubm,threshold);

    if verificationStatus
        disp(" | Confirmed.");
    else
        disp(" | Imposter!");
    end
end

Identity to confirm: BHm

 | Speaker identity: BFn

 | Imposter!

Identity to confirm: BHm

 | Speaker identity: BHm

 | Confirmed.

Identity to confirm: BHm

 | Speaker identity: RPalanim

 | Imposter!

The remainder of the example details the creation of the UBM and the enrollment algorithm, and
then evaluates the system using commonly reported metrics.

Create Universal Background Model

The UBM used in this example is trained using [1] on page 1-539. Download and extract the data
set.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","google_speech.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)

Create an audioDatastore that points to the dataset. Use the folder names as the labels. The folder
names indicate the words spoken in the dataset.

ads = audioDatastore(dataFolder,Includesubfolders=true,LabelSource="folderNames");

subset the dataset to only include the word "stop".

ads = subset(ads,ads.Labels==categorical("stop"));

Set the labels to the unique speaker IDs encoded in the file names. The speaker IDs sometimes start
with a number: add an 'a' to all the IDs to make the names more variable friendly.

[~,fileName] = cellfun(@(x)fileparts(x),ads.Files,UniformOutput=false);
fileName = split(fileName,"_");
speaker = strcat("a",fileName(:,1));
ads.Labels = categorical(speaker);

Create three datastores: one for enrollment, one for evaluating the verification system, and one for
training the UBM. Enroll speakers who have at least three utterances. For each of the speakers, place
two of the utterances in the enrollment set. The others will go in the test set. The test set consists of
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utterances from all speakers who have three or more utterances in the dataset. The UBM training set
consists of the remaining utterances.

numSpeakersToEnroll = ;
labelCount = countEachLabel(ads);
forEnrollAndTestSet = labelCount{:,1}(labelCount{:,2}>=3);
forEnroll = forEnrollAndTestSet(randi([1,numel(forEnrollAndTestSet)],numSpeakersToEnroll,1));
tf = ismember(ads.Labels,forEnroll);
adsEnrollAndValidate = subset(ads,tf);
adsEnroll = splitEachLabel(adsEnrollAndValidate,2);

adsTest = subset(ads,ismember(ads.Labels,forEnrollAndTestSet));
adsTest = subset(adsTest,~ismember(adsTest.Files,adsEnroll.Files));

forUBMTraining = ~(ismember(ads.Files,adsTest.Files) | ismember(ads.Files,adsEnroll.Files));
adsTrainUBM = subset(ads,forUBMTraining);

Read from the training datastore and listen to a file. Reset the datastore.

[audioData,audioInfo] = read(adsTrainUBM);
fs = audioInfo.SampleRate;

sound(audioData,fs)

reset(adsTrainUBM)

Feature Extraction

In the feature extraction pipeline for this example, you:

1 Normalize the audio
2 Use detectSpeech to remove nonspeech regions from the audio
3 Extract features from the audio
4 Normalize the features
5 Apply cepstral mean normalization

First, create an audioFeatureExtractor object to extract the MFCC. Specify a 40 ms duration and
10 ms hop for the frames.

windowDuration = 0.04;
hopDuration = 0.01;
windowSamples = round(windowDuration*fs);
hopSamples = round(hopDuration*fs);
overlapSamples = windowSamples - hopSamples;

afe = audioFeatureExtractor( ...
    SampleRate=fs, ...
    Window=hann(windowSamples,"periodic"), ...
    OverlapLength=overlapSamples, ...
    ...
    mfcc=true);

Normalize the audio.

audioData = audioData./max(abs(audioData));
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Use the detectSpeech function to locate the region of speech in the audio clip. Call detectSpeech
without any output arguments to visualize the detected region of speech.

detectSpeech(audioData,fs);

Call detectSpeech again. This time, return the indices of the speech region and use them to remove
nonspeech regions from the audio clip.

idx = detectSpeech(audioData,fs);
audioData = audioData(idx(1,1):idx(1,2));

Call extract on the audioFeatureExtractor object to extract features from audio data. The size
output from extract is numHops-by-numFeatures.

features = extract(afe,audioData);
[numHops,numFeatures] = size(features)

numHops = 21

numFeatures = 13

Normalize the features by their global mean and variance. The next section of the example walks
through calculating the global mean and variance. For now, just use the precalculated mean and
variance already loaded.
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features = (features' - normFactors.Mean) ./ normFactors.Variance;

Apply a local cepstral mean normalization.

features = features - mean(features,"all");

The feature extraction pipeline is encapsulated in the helper function, helperFeatureExtraction on
page 1-537.

Calculate Global Feature Normalization Factors

Extract all features from the data set. If you have the Parallel Computing Toolbox™, determine the
optimal number of partitions for the dataset and spread the computation across available workers. If
you do not have Parallel Computing Toolbox™, use a single partition.

featuresAll = {};
if ~isempty(ver("parallel"))
    numPar = 18;
else
    numPar = 1;
end

Use the helper function, helperFeatureExtraction, to extract all features from the dataset.
Calling helperFeatureExtraction with an empty third argument performs the feature extraction
steps described in Feature Extraction on page 1-525 except for the normalization by global mean and
variance.

parfor ii = 1:numPar
    adsPart = partition(ads,numPar,ii);
    featuresPart = cell(0,numel(adsPart.Files));
    for iii = 1:numel(adsPart.Files)
        audioData = read(adsPart);
        featuresPart{iii} = helperFeatureExtraction(audioData,afe,[]);
    end
    featuresAll = [featuresAll,featuresPart];
end

Analyzing and transferring files to the workers ...done.

allFeatures = cat(2,featuresAll{:});

Calculate the mean and variance of each feature.

normFactors.Mean = mean(allFeatures,2,"omitnan");
normFactors.STD = std(allFeatures,[],2,"omitnan");

Initialize GMM

The universal background model is a Gaussian mixture model. Define the number of components in
the mixture. [2] on page 1-539 suggests more than 512 for text-independent systems. The
component weights begin evenly distributed.

numComponents = ;
alpha = ones(1,numComponents)/numComponents;

Use random initialization for the mu and sigma of each GMM component. Create a structure to hold
the necessary UBM information.
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mu = randn(numFeatures,numComponents);
sigma = rand(numFeatures,numComponents);
ubm = struct(ComponentProportion=alpha,mu=mu,sigma=sigma);

Train UBM Using Expectation-Maximization

Fit the GMM to the training set to create the UBM. Use the expectation-maximization algorithm.

The expectation-maximization algorithm is recursive. First, define the stopping criteria.

maxIter = 20;
targetLogLikelihood = 0;
tol = 0.5;
pastL = -inf; % initialization of previous log-likelihood

In a loop, train the UBM using the expectation-maximization algorithm.

tic
for iter = 1:maxIter
    
    % EXPECTATION
    N = zeros(1,numComponents);
    F = zeros(numFeatures,numComponents);
    S = zeros(numFeatures,numComponents);
    L = 0;
    parfor ii = 1:numPar
        adsPart = partition(adsTrainUBM,numPar,ii);
        while hasdata(adsPart)
            audioData = read(adsPart);
            
            % Extract features
            features = helperFeatureExtraction(audioData,afe,normFactors);
 
            % Compute a posteriori log-likelihood
            logLikelihood = helperGMMLogLikelihood(features,ubm);

            % Compute a posteriori normalized probability
            logLikelihoodSum = helperLogSumExp(logLikelihood);
            gamma = exp(logLikelihood - logLikelihoodSum)';
            
            % Compute Baum-Welch statistics
            n = sum(gamma,1);
            f = features * gamma;
            s = (features.*features) * gamma;
            
            % Update the sufficient statistics over utterances
            N = N + n;
            F = F + f;
            S = S + s;
            
            % Update the log-likelihood
            L = L + sum(logLikelihoodSum);
        end
    end
    
    % Print current log-likelihood and stop if it meets criteria.
    L = L/numel(adsTrainUBM.Files);
    disp("Iteration " + iter + ", Log-likelihood = " + round(L,3))
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    if L > targetLogLikelihood || abs(pastL - L) < tol
        break
    else
        pastL = L;
    end
    
    % MAXIMIZATION
    N = max(N,eps);
    ubm.ComponentProportion = max(N/sum(N),eps);
    ubm.ComponentProportion = ubm.ComponentProportion/sum(ubm.ComponentProportion);
    ubm.mu = bsxfun(@rdivide,F,N);
    ubm.sigma = max(bsxfun(@rdivide,S,N) - ubm.mu.^2,eps);
end

Iteration 1, Log-likelihood = -826.174
Iteration 2, Log-likelihood = -538.56
Iteration 3, Log-likelihood = -522.685
Iteration 4, Log-likelihood = -517.473
Iteration 5, Log-likelihood = -514.866
Iteration 6, Log-likelihood = -513.083
Iteration 7, Log-likelihood = -511.658
Iteration 8, Log-likelihood = -510.602
Iteration 9, Log-likelihood = -509.802
Iteration 10, Log-likelihood = -509.148
Iteration 11, Log-likelihood = -508.543
Iteration 12, Log-likelihood = -508.046

disp("UBM training completed in " + round(toc,2) + " seconds.")

UBM training completed in 30.66 seconds.

Enrollment: Maximum a Posteriori (MAP) Estimation

Once you have a universal background model, you can enroll speakers and adapt the UBM to the
speakers. [2] on page 1-539 suggests an adaptation relevance factor of 16. The relevance factor
controls how much to move each component of the UBM to the speaker GMM.

relevanceFactor = 16;

speakers = unique(adsEnroll.Labels);
numSpeakers = numel(speakers);

gmmCellArray = cell(numSpeakers,1);
tic
parfor ii = 1:numSpeakers
    % Subset the datastore to the speaker you are adapting.
    adsTrainSubset = subset(adsEnroll,adsEnroll.Labels==speakers(ii));
    
    N = zeros(1,numComponents);
    F = zeros(numFeatures,numComponents);
    S = zeros(numFeatures,numComponents);
    while hasdata(adsTrainSubset)
        audioData = read(adsTrainSubset);
        features = helperFeatureExtraction(audioData,afe,normFactors);
        [n,f,s,l] = helperExpectation(features,ubm);
        N = N + n;
        F = F + f;
        S = S + s;
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    end
    
    % Determine the maximum likelihood
    gmm = helperMaximization(N,F,S);
    
    % Determine adaption coefficient
    alpha = N./(N + relevanceFactor);
    
    % Adapt the means
    gmm.mu = alpha.*gmm.mu + (1-alpha).*ubm.mu;
    
    % Adapt the variances
    gmm.sigma = alpha.*(S./N) + (1-alpha).*(ubm.sigma + ubm.mu.^2) - gmm.mu.^2;
    gmm.sigma = max(gmm.sigma,eps);
    
    % Adapt the weights
    gmm.ComponentProportion = alpha.*(N/sum(N)) + (1-alpha).*ubm.ComponentProportion;
    gmm.ComponentProportion = gmm.ComponentProportion./sum(gmm.ComponentProportion);

    gmmCellArray{ii} = gmm;
end
disp("Enrollment completed in " + round(toc,2) + " seconds.")

Enrollment completed in 0.31 seconds.

For bookkeeping purposes, convert the cell array of GMMs to a struct, with the fields being the
speaker IDs and the values being the GMM structs.

for i = 1:numel(gmmCellArray)
    enrolledGMMs.(string(speakers(i))) = gmmCellArray{i};
end

Evaluation

Speaker False Rejection Rate

The speaker false rejection rate (FRR) is the rate that a given speaker is incorrectly rejected. Use the
known speaker set to determine the speaker false rejection rate for a set of thresholds.

speakers = unique(adsEnroll.Labels);
numSpeakers = numel(speakers);
llr = cell(numSpeakers,1);
tic
parfor speakerIdx = 1:numSpeakers
    localGMM = enrolledGMMs.(string(speakers(speakerIdx))); 
    adsTestSubset = subset(adsTest,adsTest.Labels==speakers(speakerIdx));
    llrPerSpeaker = zeros(numel(adsTestSubset.Files),1);
    for fileIdx = 1:numel(adsTestSubset.Files)
        audioData = read(adsTestSubset);
        [x,numFrames] = helperFeatureExtraction(audioData,afe,normFactors);
        
        logLikelihood = helperGMMLogLikelihood(x,localGMM);
        Lspeaker = helperLogSumExp(logLikelihood);
        
        logLikelihood = helperGMMLogLikelihood(x,ubm);
        Lubm = helperLogSumExp(logLikelihood);
        
        llrPerSpeaker(fileIdx) = mean(movmedian(Lspeaker - Lubm,3));
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    end
    llr{speakerIdx} = llrPerSpeaker;
end
disp("False rejection rate computed in " + round(toc,2) + " seconds.")

False rejection rate computed in 0.23 seconds.

Plot the false rejection rate as a function of the threshold.

llr = cat(1,llr{:});

thresholds = -0.5:0.01:2.5;
FRR = mean(llr<thresholds);

plot(thresholds,FRR*100)
title("False Rejection Rate (FRR)")
xlabel("Threshold")
ylabel("Incorrectly Rejected (%)")
grid on

Speaker False Acceptance

The speaker false acceptance rate (FAR) is the rate that utterances not belonging to an enrolled
speaker are incorrectly accepted as belonging to the enrolled speaker. Use the known speaker set to
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determine the speaker FAR for a set of thresholds. Use the same set of thresholds used to determine
FRR.

speakersTest = unique(adsTest.Labels);
llr = cell(numSpeakers,1);
tic
parfor speakerIdx = 1:numel(speakers)
    localGMM = enrolledGMMs.(string(speakers(speakerIdx)));
    adsTestSubset = subset(adsTest,adsTest.Labels~=speakers(speakerIdx));
    llrPerSpeaker = zeros(numel(adsTestSubset.Files),1);
    for fileIdx = 1:numel(adsTestSubset.Files)
        audioData = read(adsTestSubset);
        [x,numFrames] = helperFeatureExtraction(audioData,afe,normFactors);
        
        logLikelihood = helperGMMLogLikelihood(x,localGMM);
        Lspeaker = helperLogSumExp(logLikelihood);
        
        logLikelihood = helperGMMLogLikelihood(x,ubm);
        Lubm = helperLogSumExp(logLikelihood);
        
        llrPerSpeaker(fileIdx) = mean(movmedian(Lspeaker - Lubm,3));
    end
    llr{speakerIdx} = llrPerSpeaker;
end
disp("FAR computed in " + round(toc,2) + " seconds.")

FAR computed in 22.52 seconds.

Plot the FAR as a function of the threshold.

llr = cat(1,llr{:});

FAR = mean(llr>thresholds);

plot(thresholds,FAR*100)
title("False Acceptance Rate (FAR)")
xlabel("Threshold")
ylabel("Incorrectly Rejected (%)")
grid on
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Detection Error Tradeoff (DET)

As you move the threshold in a speaker verification system, you trade off between FAR and FRR. This
is referred to as the detection error tradeoff (DET) and is commonly reported for binary classification
problems.

x1 = FAR*100;
y1 = FRR*100;
plot(x1,y1)
grid on
xlabel("False Acceptance Rate (%)")
ylabel("False Rejection Rate (%)")
title("Detection Error Tradeoff (DET) Curve")
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Equal Error Rate (EER)

To compare multiple systems, you need a single metric that combines the FAR and FRR
performances. For this, you determine the equal error rate (EER), which is the threshold where the
FAR and FRR curves meet. In practice, the EER threshold may not be the best choice. For example, if
speaker verification is used as part of a multi-authentication approach for wire transfers, FAR would
most likely be weighed more heavily than FRR.

[~,EERThresholdIdx] = min(abs(FAR - FRR));
EERThreshold = thresholds(EERThresholdIdx);
EER = mean([FAR(EERThresholdIdx),FRR(EERThresholdIdx)]);
plot(thresholds,FAR,"k", ...
     thresholds,FRR,"b", ...
     EERThreshold,EER,"ro",MarkerFaceColor="r")
title(["Equal Error Rate = " + round(EER,2), "Threshold = " + round(EERThreshold,2)])
xlabel("Threshold")
ylabel("Error Rate")
legend("False Acceptance Rate (FAR)","False Rejection Rate (FRR)","Equal Error Rate (EER)")
grid on
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If you changed parameters of the UBM training, consider resaving the MAT file with the new
universal background model, audioFeatureExtractor, and norm factors.

resave = ;
if resave
    save("speakerVerificationExampleData.mat","ubm","afe","normFactors")
end

Supporting Functions

Add User to Data Set

function helperAddUser(fs,numToRecord,ID)
% Create an audio device reader to read from your audio device
deviceReader = audioDeviceReader(SampleRate=fs);

% Initialize variables
numRecordings = 1;
audioIn = [];

% Record the requested number
while numRecordings <= numToRecord
    fprintf('Say "stop" once (recording %i of %i) ...',numRecordings,numToRecord)
    tic
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    while toc<2
        audioIn = [audioIn;deviceReader()];
    end
    fprintf('complete.\n')
    idx = detectSpeech(audioIn,fs);
    if isempty(idx)
        fprintf('Speech not detected. Try again.\n')
    else
        audiowrite(sprintf('%s_%i.flac',ID,numRecordings),audioIn,fs)
        numRecordings = numRecordings+1;
    end
    pause(0.2)
    audioIn = [];
end

% Release the device
release(deviceReader)
end

Enroll

function speakerGMM = helperEnroll(ubm,afe,normFactors,adsEnroll)
% Initialization
numComponents = numel(ubm.ComponentProportion);
numFeatures = size(ubm.mu,1);
N = zeros(1,numComponents);
F = zeros(numFeatures,numComponents);
S = zeros(numFeatures,numComponents);
NumFrames = 0;

while hasdata(adsEnroll)
    % Read from the enrollment datastore
    audioData = read(adsEnroll);

    % 1. Extract the features and apply feature normalization
    [features,numFrames] = helperFeatureExtraction(audioData,afe,normFactors);
    
    % 2. Calculate the a posteriori probability. Use it to determine the
    % sufficient statistics (the count, and the first and second moments)
    [n,f,s] = helperExpectation(features,ubm);
    
    % 3. Update the sufficient statistics
    N = N + n;
    F = F + f;
    S = S + s;
    NumFrames = NumFrames + numFrames;
end
% Create the Gaussian mixture model that maximizes the expectation
speakerGMM = helperMaximization(N,F,S);

% Adapt the UBM to create the speaker model. Use a relevance factor of 16,
% as proposed in [2]
relevanceFactor = 16;

% Determine adaption coefficient
alpha = N ./ (N + relevanceFactor);

% Adapt the means
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speakerGMM.mu = alpha.*speakerGMM.mu + (1-alpha).*ubm.mu;

% Adapt the variances
speakerGMM.sigma = alpha.*(S./N) + (1-alpha).*(ubm.sigma + ubm.mu.^2) - speakerGMM.mu.^2;
speakerGMM.sigma = max(speakerGMM.sigma,eps);

% Adapt the weights
speakerGMM.ComponentProportion = alpha.*(N/sum(N)) + (1-alpha).*ubm.ComponentProportion;
speakerGMM.ComponentProportion = speakerGMM.ComponentProportion./sum(speakerGMM.ComponentProportion);
end

Verify

function verificationStatus = helperVerify(audioData,afe,normFactors,speakerGMM,ubm,threshold)
    % Extract features
    x = helperFeatureExtraction(audioData,afe,normFactors);
    
    % Determine the log-likelihood the audio came from the GMM adapted to
    % the speaker
    post = helperGMMLogLikelihood(x,speakerGMM);
    Lspeaker = helperLogSumExp(post);
    
    % Determine the log-likelihood the audio came form the GMM fit to all
    % speakers
    post = helperGMMLogLikelihood(x,ubm);
    Lubm = helperLogSumExp(post);
    
    % Calculate the ratio for all frames. Apply a moving median filter
    % to remove outliers, and then take the mean across the frames
    llr = mean(movmedian(Lspeaker - Lubm,3));

    if llr > threshold
        verificationStatus = true;
    else
        verificationStatus = false;
    end
end

Feature Extraction

function [features,numFrames] = helperFeatureExtraction(audioData,afe,normFactors)
    % Normalize
    audioData = audioData/max(abs(audioData(:)));
    
    % Protect against NaNs
    audioData(isnan(audioData)) = 0;
    
    % Isolate speech segment
    % The dataset used in this example has one word per audioData, if more
    % than one is speech section is detected, just use the longest
    % detected.
    idx = detectSpeech(audioData,afe.SampleRate);
    if size(idx,1)>1
        [~,seg] = max(idx(:,2) - idx(:,1));
    else
        seg = 1;
    end
    audioData = audioData(idx(seg,1):idx(seg,2));
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    % Feature extraction
    features = extract(afe,audioData);

    % Feature normalization
    if ~isempty(normFactors)
        features = (features-normFactors.Mean')./normFactors.STD';
    end
    features = features';
    
    % Cepstral mean subtraction (for channel noise)
    if ~isempty(normFactors)
        features = features - mean(features,"all");
    end
    
    numFrames = size(features,2);
end

Log-sum-exponent

function y = helperLogSumExp(x)
% Calculate the log-sum-exponent while avoiding overflow
a = max(x,[],1);
y = a + sum(exp(bsxfun(@minus,x,a)),1);
end

Expectation

function [N,F,S,L] = helperExpectation(features,gmm)

post = helperGMMLogLikelihood(features,gmm);

% Sum the likelihood over the frames
L = helperLogSumExp(post);

% Compute the sufficient statistics
gamma = exp(post-L)';

N = sum(gamma,1);
F = features * gamma;
S = (features.*features) * gamma;
L = sum(L);
end

Maximization

function gmm = helperMaximization(N,F,S)
    N = max(N,eps);
    gmm.ComponentProportion = max(N/sum(N),eps);
    gmm.mu = bsxfun(@rdivide,F,N);
    gmm.sigma = max(bsxfun(@rdivide,S,N) - gmm.mu.^2,eps);
end

Gaussian Multi-Component Mixture Log-Likelihood

function L = helperGMMLogLikelihood(x,gmm)
    xMinusMu = repmat(x,1,1,numel(gmm.ComponentProportion)) - permute(gmm.mu,[1,3,2]);
    permuteSigma = permute(gmm.sigma,[1,3,2]);
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    Lunweighted = -0.5*(sum(log(permuteSigma),1) + sum(bsxfun(@times,xMinusMu,(bsxfun(@rdivide,xMinusMu,permuteSigma))),1) + size(gmm.mu,1)*log(2*pi));

    temp = squeeze(permute(Lunweighted,[1,3,2]));
    if size(temp,1)==1
        % If there is only one frame, the trailing singleton dimension was
        % removed in the permute. This accounts for that edge case
        temp = temp';
    end
    L = bsxfun(@plus,temp,log(gmm.ComponentProportion)');
end
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Sequential Feature Selection for Audio Features

This example shows a typical workflow for feature selection applied to the task of spoken digit
recognition.

In sequential feature selection, you train a network on a given feature set and then incrementally add
or remove features until the highest accuracy is reached [1] on page 1-552. In this example, you
apply sequential forward selection to the task of spoken digit recognition using the Free Spoken Digit
Dataset [2] on page 1-552.

Streaming Spoken Digit Recognition

To motivate the example, begin by loading a pretrained network, the audioFeatureExtractor
object used to train the network, and normalization factors for the features.

load("network_Audio_SequentialFeatureSelection.mat","bestNet","afe","normalizers");

Create an audioDeviceReader to read audio from a microphone. Create three dsp.AsyncBuffer
objects: one to buffer audio read from your microphone, one to buffer short-term energy of the input
audio for speech detection, and one to buffer predictions.

fs = afe.SampleRate;

deviceReader = audioDeviceReader(SampleRate=fs,SamplesPerFrame=256);

audioBuffer = dsp.AsyncBuffer(fs*3);
steBuffer = dsp.AsyncBuffer(1000);
predictionBuffer = dsp.AsyncBuffer(5);

Create a plot to display the streaming audio, the probability the network outputs during inference,
and the prediction.

fig = figure;

streamAxes = subplot(3,1,1);
streamPlot = plot(zeros(fs,1));
ylabel("Amplitude")
xlabel("Time (s)")
title("Audio Stream")
streamAxes.XTick = [0,fs];
streamAxes.XTickLabel = [0,1];
streamAxes.YLim = [-1,1];

analyzedAxes = subplot(3,1,2);
analyzedPlot = plot(zeros(fs/2,1));
title("Analyzed Segment")
ylabel("Amplitude")
xlabel("Time (s)")
set(gca,XTickLabel=[])
analyzedAxes.XTick = [0,fs/2];
analyzedAxes.XTickLabel = [0,0.5];
analyzedAxes.YLim = [-1,1];

probabilityAxes = subplot(3,1,3);
probabilityPlot = bar(0:9,0.1*ones(1,10));
axis([-1,10,0,1])
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ylabel("Probability")
xlabel("Class")

Perform streaming digit recognition (digits 0 through 9) for 20 seconds. While the loop runs, speak
one of the digits and test its accuracy.

First, define a short-term energy threshold under which to assume a signal contains no speech.

steThreshold = 0.015;
idxVec = 1:fs;
tic
while toc < 20
    
    % Read in a frame of audio from your device.
    audioIn = deviceReader();
    
    % Write the audio into a the buffer.
    write(audioBuffer,audioIn);
    
    % While 200 ms of data is unused, continue this loop.
    while audioBuffer.NumUnreadSamples > 0.2*fs
        
        % Read 1 second from the audio buffer. Of that 1 second, 800 ms
        % is rereading old data and 200 ms is new data.
        audioToAnalyze = read(audioBuffer,fs,0.8*fs);
        
        % Update the figure to plot the current audio data.
        streamPlot.YData = audioToAnalyze;

        ste = mean(abs(audioToAnalyze));
        write(steBuffer,ste);
        if steBuffer.NumUnreadSamples > 5
            abc = sort(peek(steBuffer));
            steThreshold = abc(round(0.4*numel(abc)));
        end
        if ste > steThreshold
            
            % Use the detectSpeeech function to determine if a region of speech
            % is present.
            idx = detectSpeech(audioToAnalyze,fs);
            
            % If a region of speech is present, perform the following.
            if ~isempty(idx)
                % Zero out all parts of the signal except the speech
                % region, and trim to 0.5 seconds.
                audioToAnalyze = trimOrPad(audioToAnalyze(idx(1,1):idx(1,2)),fs/2);
                
                % Normalize the audio.
                audioToAnalyze = audioToAnalyze/max(abs(audioToAnalyze));
                
                % Update the analyzed segment plot
                analyzedPlot.YData = audioToAnalyze;

                % Extract the features and transpose them so that time is
                % across columns.
                features = (extract(afe,audioToAnalyze))';

                % Normalize the features.
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                features = (features - normalizers.Mean) ./ normalizers.StandardDeviation;
                
                % Call classify to determine the probabilities and the
                % winning label.
                features(isnan(features)) = 0;
                [label,probs] = classify(bestNet,features);
                
                % Update the plot with the probabilities and the winning
                % label.
                probabilityPlot.YData = probs;
                write(predictionBuffer,probs);

                if predictionBuffer.NumUnreadSamples == predictionBuffer.Capacity
                    lastTen = peek(predictionBuffer);
                    [~,decision] = max(mean(lastTen.*hann(size(lastTen,1)),1));
                    probabilityAxes.Title.String = num2str(decision-1);
                end
            end
        else
            % If the signal energy is below the threshold, assume no speech
            % detected.
             probabilityAxes.Title.String = "";
             probabilityPlot.YData = 0.1*ones(10,1);
             analyzedPlot.YData = zeros(fs/2,1);
             reset(predictionBuffer)
        end
        
        drawnow limitrate
    end
end
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The remainder of the example illustrates how the network used in the streaming detection was
trained and how the features fed into the network were chosen.

Create Train and Validation Data Sets

Download the Free Spoken Digit Dataset (FSDD) [2] on page 1-552. FSDD consists of short audio
files with spoken digits (0-9).

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","FSDD.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
dataset = fullfile(dataFolder,"FSDD");

Create an audioDatastore to point to the recordings. Get the sample rate of the data set.

ads = audioDatastore(dataset,IncludeSubfolders=true);
[~,adsInfo] = read(ads);
fs = adsInfo.SampleRate;

The first element of the file names is the digit spoken in the file. Get the first element of the file
names, convert them to categorical, and then set the Labels property of the audioDatastore.

[~,filenames] = cellfun(@(x)fileparts(x),ads.Files,UniformOutput=false);
ads.Labels = categorical(string(cellfun(@(x)x(1),filenames)));

To split the datastore into a development set and a validation set, use splitEachLabel. Allocate
80% of the data for development and the remaining 20% for validation.
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[adsTrain,adsValidation] = splitEachLabel(ads,0.8);

Set Up Audio Feature Extractor

Create an audioFeatureExtractor object to extract audio features over 30 ms windows with an
update rate of 10 ms. Set all features you would like to test in this example to true.

win = hamming(round(0.03*fs),"periodic");
overlapLength = round(0.02*fs);

afe = audioFeatureExtractor( ...
    Window=win, ...
    OverlapLength=overlapLength, ...
    SampleRate=fs, ...
    ...
    linearSpectrum=false, ...
    melSpectrum=false, ...
    barkSpectrum=false, ...
    erbSpectrum=false, ...
    ...
    mfcc=true, ...
    mfccDelta=true, ...
    mfccDeltaDelta=true, ...
    gtcc=true, ...
    gtccDelta=true, ...
    gtccDeltaDelta=true, ...
    ...
    spectralCentroid=true, ...
    spectralCrest=true, ...
    spectralDecrease=true, ...
    spectralEntropy=true, ...
    spectralFlatness=true, ...
    spectralFlux=true, ...
    spectralKurtosis=true, ...
    spectralRolloffPoint=true, ...
    spectralSkewness=true, ...
    spectralSlope=true, ...
    spectralSpread=true, ...
    ...
    pitch=false, ...
    harmonicRatio=false, ...
    zerocrossrate=false, ...
    shortTimeEnergy=false);

Define Layers and Training Options

Define the “List of Deep Learning Layers” (Deep Learning Toolbox) and trainingOptions (Deep
Learning Toolbox) used in this example. The first layer, sequenceInputLayer (Deep Learning
Toolbox), is just a placeholder. Depending on which features you test during sequential feature
selection, the first layer is replaced with a sequenceInputLayer of the appropriate size.

numUnits = ;
layers = [ ...
    sequenceInputLayer(1)
    bilstmLayer(numUnits,OutputMode="last")
    fullyConnectedLayer(numel(categories(adsTrain.Labels)))
    softmaxLayer
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    classificationLayer];

options = trainingOptions("adam", ...
    LearnRateSchedule="piecewise", ...
    Shuffle="every-epoch", ...
    Verbose=false, ...
    MaxEpochs=20);

Sequential Feature Selection

In the basic form of sequential feature selection, you train a network on a given feature set and then
incrementally add or remove features until the accuracy no longer improves [1] on page 1-552.

Forward Selection

Consider a simple case of forward selection on a set of four features. In the first forward selection
loop, each of the four features are tested independently by training a network and comparing their
validation accuracy. The feature that resulted in the highest validation accuracy is noted. In the
second forward selection loop, the best feature from the first loop is combined with each of the
remaining features. Now each pair of features is used for training. If the accuracy in the second loop
did not improve over the accuracy in the first loop, the selection process ends. Otherwise, a new best
feature set is selected. The forward selection loop continues until the accuracy no longer improves.

Backward Selection

In backward feature selection, you begin by training on a feature set that consists of all features and
test whether or not accuracy improves as you remove features.
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Run Sequential Feature Selection

The helper functions (sequentialFeatureSelection on page 1-549,
trainAndValidateNetwork on page 1-548, and trimOrPad on page 1-551) implement forward or
backward sequential feature selection. Specify the training datastore, validation datastore, audio
feature extractor, network layers, network options, and direction. As a general rule, choose forward if
you anticipate a small feature set or backward if you anticipate a large feature set.

direction = ;
[logbook,bestFeatures,bestNet,normalizers] = sequentialFeatureSelection(adsTrain,adsValidation,afe,layers,options,direction);

The logbook output from HelperFeatureExtractor is a table containing all feature
configurations tested and the corresponding validation accuracy.

logbook

logbook=62×2 table
                                  Features                                   Accuracy
    _____________________________________________________________________    ________

    "mfccDelta, spectralKurtosis, spectralRolloffPoint"                       98.25  
    "mfccDelta, spectralRolloffPoint"                                         97.75  
    "mfccDelta, spectralEntropy, spectralRolloffPoint"                        97.75  
    "mfccDelta, spectralDecrease, spectralKurtosis, spectralRolloffPoint"     97.25  
    "mfccDelta, mfccDeltaDelta"                                                  97  
    "mfccDelta, gtccDeltaDelta, spectralRolloffPoint"                            97  
    "mfcc, mfccDelta, spectralKurtosis, spectralRolloffPoint"                    97  
    "mfcc, mfccDelta"                                                         96.75  
    "mfccDelta, gtccDeltaDelta, spectralKurtosis, spectralRolloffPoint"       96.75  
    "mfccDelta, spectralRolloffPoint, spectralSlope"                           96.5  
    "mfccDelta"                                                               96.25  
    "mfccDelta, spectralKurtosis"                                             96.25  
    "mfccDelta, spectralSpread"                                               96.25  
    "mfccDelta, spectralDecrease, spectralRolloffPoint"                       96.25  
    "mfccDelta, spectralFlatness, spectralKurtosis, spectralRolloffPoint"     96.25  
    "mfccDelta, gtccDeltaDelta"                                                  96  
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The bestFeatures output from sequentialFeatureSelection contains a struct with the optimal
features set to true.

bestFeatures

bestFeatures = struct with fields:
                    mfcc: 0
               mfccDelta: 1
          mfccDeltaDelta: 0
                    gtcc: 0
               gtccDelta: 0
          gtccDeltaDelta: 0
        spectralCentroid: 0
           spectralCrest: 0
        spectralDecrease: 0
         spectralEntropy: 0
        spectralFlatness: 0
            spectralFlux: 0
        spectralKurtosis: 1
    spectralRolloffPoint: 1
        spectralSkewness: 0
           spectralSlope: 0
          spectralSpread: 0

You can set your audioFeatureExtractor using the struct.

set(afe,bestFeatures)
afe

afe = 
  audioFeatureExtractor with properties:

   Properties
                     Window: [240×1 double]
              OverlapLength: 160
                 SampleRate: 8000
                  FFTLength: []
    SpectralDescriptorInput: 'linearSpectrum'
        FeatureVectorLength: 15

   Enabled Features
     mfccDelta, spectralKurtosis, spectralRolloffPoint

   Disabled Features
     linearSpectrum, melSpectrum, barkSpectrum, erbSpectrum, mfcc, mfccDeltaDelta
     gtcc, gtccDelta, gtccDeltaDelta, spectralCentroid, spectralCrest, spectralDecrease
     spectralEntropy, spectralFlatness, spectralFlux, spectralSkewness, spectralSlope, spectralSpread
     pitch, harmonicRatio, zerocrossrate, shortTimeEnergy

   To extract a feature, set the corresponding property to true.
   For example, obj.mfcc = true, adds mfcc to the list of enabled features.
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sequentialFeatureSelection also outputs the best performing network and the normalization
factors that correspond to the chosen features. To save the network, configured
audioFeatureExtractor, and normalization factors, uncomment this line:

% save('network_Audio_SequentialFeatureSelection.mat','bestNet','afe','normalizers')

Conclusion

This example illustrates a workflow for sequential feature selection for a Recurrent Neural Network
(LSTM or BiLSTM). It could easily be adapted for CNN and RNN-CNN workflows.

Supporting Functions

Train and Validate Network

function [trueLabels,predictedLabels,net,normalizers] = trainAndValidateNetwork(adsTrain,adsValidation,afe,layers,options)
% Train and validate a network.
%
%   INPUTS:
%   adsTrain      - audioDatastore object that points to training set
%   adsValidation - audioDatastore object that points to validation set
%   afe           - audioFeatureExtractor object.
%   layers        - Layers of LSTM or BiLSTM network
%   options       - trainingOptions object
%
%   OUTPUTS:
%   trueLabels      - true labels of validation set
%   predictedLabels - predicted labels of validation set
%   net             - trained network
%   normalizers     - normalization factors for features under test

% Copyright 2019 The MathWorks, Inc.

% Convert the data to tall arrays.
tallTrain = tall(adsTrain);
tallValidation = tall(adsValidation);

% Extract features from the training set. Reorient the features so that
% time is along rows to be compatible with sequenceInputLayer.
fs = afe.SampleRate;
tallTrain = cellfun(@(x)trimOrPad(x,fs/2),tallTrain,UniformOutput=false);
tallTrain = cellfun(@(x)x/max(abs(x),[],"all"),tallTrain,UniformOutput=false);
tallFeaturesTrain = cellfun(@(x)extract(afe,x),tallTrain,UniformOutput=false);
tallFeaturesTrain = cellfun(@(x)x',tallFeaturesTrain,UniformOutput=false);  %#ok<NASGU>
[~,featuresTrain] = evalc('gather(tallFeaturesTrain)'); % Use evalc to suppress command-line output.

tallValidation = cellfun(@(x)trimOrPad(x,fs/2),tallValidation,UniformOutput=false);
tallValidation = cellfun(@(x)x/max(abs(x),[],'all'),tallValidation,UniformOutput=false);
tallFeaturesValidation = cellfun(@(x)extract(afe,x),tallValidation,UniformOutput=false);
tallFeaturesValidation = cellfun(@(x)x',tallFeaturesValidation,UniformOutput=false); %#ok<NASGU>
[~,featuresValidation] = evalc('gather(tallFeaturesValidation)'); % Use evalc to suppress command-line output.

% Use the training set to determine the mean and standard deviation of each
% feature. Normalize the training and validation sets.
allFeatures = cat(2,featuresTrain{:});
M = mean(allFeatures,2,"omitnan");
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S = std(allFeatures,0,2,"omitnan");
featuresTrain = cellfun(@(x)(x-M)./S,featuresTrain,UniformOutput=false);
for ii = 1:numel(featuresTrain)
    idx = find(isnan(featuresTrain{ii}));
    if ~isempty(idx)
        featuresTrain{ii}(idx) = 0;
    end
end
featuresValidation = cellfun(@(x)(x-M)./S,featuresValidation,UniformOutput=false);
for ii = 1:numel(featuresValidation)
    idx = find(isnan(featuresValidation{ii}));
    if ~isempty(idx)
        featuresValidation{ii}(idx) = 0;
    end
end

% Replicate the labels of the train and validation sets so that they are in
% one-to-one correspondence with the sequences.
labelsTrain = adsTrain.Labels;

% Update input layer for the number of features under test.
layers(1) = sequenceInputLayer(size(featuresTrain{1},1));

% Train the network.
net = trainNetwork(featuresTrain,labelsTrain,layers,options);

% Evaluate the network. Call classify to get the predicted labels for each
% sequence.
predictedLabels = classify(net,featuresValidation);
trueLabels = adsValidation.Labels;

% Save the normalization factors as a struct.
normalizers.Mean = M;
normalizers.StandardDeviation = S;
end

Sequential Feature Selection

function [logbook,bestFeatures,bestNet,bestNormalizers] = sequentialFeatureSelection(adsTrain,adsValidate,afeThis,layers,options,direction)
%
%   INPUTS:
%   adsTrain    - audioDatastore object that points to training set
%   adsValidate - audioDatastore object that points to validation set
%   afe         - audioFeatureExtractor object. Set all features to test to true
%   layers      - Layers of LSTM or BiLSTM network
%   options     - trainingOptions object
%   direction   - SFS direction, specify as 'forward' or 'backward'
%
%   OUTPUTS:
%   logbook         - table containing feature configurations tested and corresponding validation accuracies
%   bestFeatures    - struct containg best feature configuration
%   bestNet         - Trained network with highest validation accuracy
%   bestNormalizers - Feature normalization factors for best features

% Copyright 2019 The MathWorks, Inc.
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afe = copy(afeThis);
featuresToTest = fieldnames(info(afe));
N = numel(featuresToTest);
bestValidationAccuracy = 0;

% Set the initial feature configuration: all on for backward selection
% or all off for forward selection.
featureConfig = info(afe);
for i = 1:N
    if strcmpi(direction,"backward")
        featureConfig.(featuresToTest{i}) = true;
    else
        featureConfig.(featuresToTest{i}) = false;
    end
end

% Initialize logbook to track feature configuration and accuracy.
logbook = table(featureConfig,0,VariableNames=["Feature Configuration","Accuracy"]);

% Perform sequential feature evaluation.
wrapperIdx = 1;
bestAccuracy = 0;
while wrapperIdx <= N
    % Create a cell array containing all feature configurations to test
    % in the current loop.
    featureConfigsToTest = cell(numel(featuresToTest),1);
    for ii = 1:numel(featuresToTest)
        if strcmpi(direction,"backward")
            featureConfig.(featuresToTest{ii}) = false;
        else
            featureConfig.(featuresToTest{ii}) = true;
        end
        featureConfigsToTest{ii} = featureConfig;
        if strcmpi(direction,"backward")
            featureConfig.(featuresToTest{ii}) = true;
        else
            featureConfig.(featuresToTest{ii}) = false;
        end
    end

    % Loop over every feature set.
    for ii = 1:numel(featureConfigsToTest)

        % Determine the current feature configuration to test. Update
        % the feature afe.
        currentConfig = featureConfigsToTest{ii};
        set(afe,currentConfig)

        % Train and get k-fold cross-validation accuracy for current
        % feature configuration.
        [trueLabels,predictedLabels,net,normalizers] = trainAndValidateNetwork(adsTrain,adsValidate,afe,layers,options);
        valAccuracy = mean(trueLabels==predictedLabels)*100;
        if valAccuracy > bestValidationAccuracy
            bestValidationAccuracy = valAccuracy;
            bestNet = net;
            bestNormalizers = normalizers;
        end
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        % Update Logbook
        result = table(currentConfig,valAccuracy,VariableNames=["Feature Configuration","Accuracy"]);
        logbook = [logbook;result]; %#ok<AGROW> 

    end

    % Determine and print the setting with the best accuracy. If accuracy
    % did not improve, end the run.
    [a,b] = max(logbook{:,"Accuracy"});
    if a <= bestAccuracy
        wrapperIdx = inf;
    else
        wrapperIdx = wrapperIdx + 1;
    end
    bestAccuracy = a;

    % Update the features-to-test based on the most recent winner.
    winner = logbook{b,"Feature Configuration"};
    fn = fieldnames(winner);
    tf = structfun(@(x)(x),winner);
    if strcmpi(direction,"backward")
        featuresToRemove = fn(~tf);
    else
        featuresToRemove = fn(tf);
    end
    for ii = 1:numel(featuresToRemove)
        loc =  strcmp(featuresToTest,featuresToRemove{ii});
        featuresToTest(loc) = [];
        if strcmpi(direction,"backward")
            featureConfig.(featuresToRemove{ii}) = false;
        else
            featureConfig.(featuresToRemove{ii}) = true;
        end
    end

end

% Sort the logbook and make it more readable.
logbook(1,:) = []; % Delete placeholder first row.
logbook = sortrows(logbook,"Accuracy","descend");
bestFeatures = logbook{1,"Feature Configuration"};
m = logbook{:,"Feature Configuration"};
fn = fieldnames(m);
myString = strings(numel(m),1);
for wrapperIdx = 1:numel(m)
    tf = structfun(@(x)(x),logbook{wrapperIdx,"Feature Configuration"});
    myString(wrapperIdx) = strjoin(fn(tf),", ");
end
logbook = table(myString,logbook{:,"Accuracy"},VariableNames=["Features","Accuracy"]);
end

Trim or Pad

function y = trimOrPad(x,n)
% y = trimOrPad(x,n) trims or pads the input x to n samples. If x is
% trimmed, it is trimmed equally on the front and back. If x is padded, it is
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% padded equally on the front and back with zeros. For odd-length trimming or
% padding, the extra sample is trimmed or padded from the back.

% Copyright 2019 The MathWorks, Inc.
a = size(x,1);
if a < n
    frontPad = floor((n-a)/2);
    backPad = n - a - frontPad;
    y = [zeros(frontPad,1);x;zeros(backPad,1)];
elseif a > n
    frontTrim = floor((a-n)/2)+1;
    backTrim = a - n - frontTrim;
    y = x(frontTrim:end-backTrim);
else
    y = x;
end
end
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Train Generative Adversarial Network (GAN) for Sound
Synthesis

This example shows how to train and use a generative adversarial network (GAN) to generate sounds.

Introduction

In generative adversarial networks, a generator and a discriminator compete against each other to
improve the generation quality.

GANs have generated significant interest in the field of audio and speech processing. Applications
include text-to-speech synthesis, voice conversion, and speech enhancement.

This example trains a GAN for unsupervised synthesis of audio waveforms. The GAN in this example
generates drumbeat sounds. The same approach can be followed to generate other types of sound,
including speech.

Synthesize Audio with Pre-Trained GAN

Before you train a GAN from scratch, you will use a pretrained GAN generator to synthesize drum
beats.

Download the pretrained generator.

matFileName = "drumGeneratorWeights.mat";
loc = matlab.internal.examples.downloadSupportFile("audio","GanAudioSynthesis/" + matFileName);
copyfile(loc,pwd)

The function synthesizeDrumBeat on page 1-573 calls a pretrained network to synthesize a
drumbeat sampled at 16 kHz. The synthesizeDrumBeat function is included at the end of this
example.

Synthesize a drumbeat and listen to it.

drum = synthesizeDrumBeat;

fs = 16e3;
sound(drum,fs)

Plot the synthesized drumbeat.

t = (0:length(drum)-1)/fs;
plot(t,drum)
grid on
xlabel("Time (s)")
title("Synthesized Drum Beat")
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You can use the drumbeat synthesizer with other audio effects to create more complex applications.
For example, you can apply reverberation to the synthesized drum beats.

Create a reverberator object and open its parameter tuner UI. This UI enables you to tune the
reverberator parameters as the simulation runs.

reverb = reverberator(SampleRate=fs);
parameterTuner(reverb);
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Create a time scope object to visualize the drum beats.

ts = timescope(SampleRate=fs, ...
    TimeSpanSource="Property", ...
    TimeSpanOverrunAction="Scroll", ...
    TimeSpan=10, ...
    BufferLength=10*256*64, ...
    ShowGrid=true, ...
    YLimits=[-1 1]);

In a loop, synthesize the drum beats and apply reverberation. Use the parameter tuner UI to tune
reverberation. If you want to run the simulation for a longer time, increase the value of the
loopCount parameter.

loopCount = 20;
for ii = 1:loopCount
    drum = synthesizeDrumBeat;
    drum = reverb(drum);
    ts(drum(:,1));
    soundsc(drum,fs)
    pause(0.5)
end
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Train the GAN

Now that you have seen the pretrained drumbeat generator in action, you can investigate the training
process in detail.

A GAN is a type of deep learning network that generates data with characteristics similar to the
training data.

A GAN consists of two networks that train together, a generator and a discriminator:

• Generator - Given a vector or random values as input, this network generates data with the same
structure as the training data. It is the generator's job to fool the discriminator.

• Discriminator - Given batches of data containing observations from both the training data and the
generated data, this network attempts to classify the observations as real or generated.

To maximize the performance of the generator, maximize the loss of the discriminator when given
generated data. That is, the objective of the generator is to generate data that the discriminator
classifies as real. To maximize the performance of the discriminator, minimize the loss of the
discriminator when given batches of both real and generated data. Ideally, these strategies result in a
generator that generates convincingly realistic data and a discriminator that has learned strong
feature representations that are characteristic of the training data.

In this example, you train the generator to create fake time-frequency short-time Fourier transform
(STFT) representations of drum beats. You train the discriminator to identify real STFTs. You create
the real STFTs by computing the STFT of short recordings of real drum beats.
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Load Training Data

Train a GAN using the Drum Sound Effects dataset [1] on page 1-574. Download and extract the
dataset.

url = "http://deepyeti.ucsd.edu/cdonahue/wavegan/data/drums.tar.gz";
downloadFolder = tempdir;
filename = fullfile(downloadFolder,"drums_dataset.tgz");

drumsFolder = fullfile(downloadFolder,"drums");
if ~datasetExists(drumsFolder)
    disp("Downloading Drum Sound Effects Dataset (218 MB) ...")
    websave(filename,url);
    untar(filename,downloadFolder)
end

Downloading Drum Sound Effects Dataset (218 MB) ...

Create an audioDatastore object that points to the drums dataset.

ads = audioDatastore(drumsFolder,IncludeSubfolders=true);

Define Generator Network

Define a network that generates STFTs from 1-by-1-by-100 arrays of random values. Create a network
that upscales 1-by-1-by-100 arrays to 128-by-128-by-1 arrays using a fully connected layer followed
by a reshape layer and a series of transposed convolution layers with ReLU layers.

This figure shows the dimensions of the signal as it travels through the generator. The generator
architecture is defined in Table 4 of [1].
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The generator network is defined in modelGenerator, which is included at the end of this example.

Define Discriminator Network

Define a network that classifies real and generated 128-by-128 STFTs.

Create a network that takes 128-by-128 images and outputs a scalar prediction score using a series of
convolution layers with leaky ReLU layers followed by a fully connected layer.

This figure shows the dimensions of the signal as it travels through the discriminator. The
discriminator architecture is defined in Table 5 of [1].
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The discriminator network is defined in modelDiscriminator on page 1-570, which is included at
the end of this example.

Generate Real Drumbeat Training Data

Generate STFT data from the drumbeat signals in the datastore.

Define the STFT parameters.

fftLength = 256;
win = hann(fftLength,"periodic");
overlapLength = 128;

To speed up processing, distribute the feature extraction across multiple workers using parfor.

First, determine the number of partitions for the dataset. If you do not have Parallel Computing
Toolbox™, use a single partition.

if ~isempty(ver("parallel"))
    pool = gcp;
    numPar = numpartitions(ads,pool);
else
    numPar = 1;
end

For each partition, read from the datastore and compute the STFT.

parfor ii = 1:numPar

    subds = partition(ads,numPar,ii);
    STrain = zeros(fftLength/2+1,128,1,numel(subds.Files));
    
    for idx = 1:numel(subds.Files)
        
        x = read(subds);
        
        if length(x) > fftLength*64 
            % Lengthen the signal if it is too short
            x = x(1:fftLength*64);
        end
        
        % Convert from double-precision to single-precision
        x = single(x);
        
        % Scale the signal
        x = x ./ max(abs(x));
        
        % Zero-pad to ensure stft returns 128 windows.
        x = [x;zeros(overlapLength,1,"like",x)];
        
        S0 = stft(x,Window=win,OverlapLength=overlapLength,Centered=false);
        
        % Convert from two-sided to one-sided.
        S = S0(1:129,:);
        S = abs(S);
        STrain(:,:,:,idx) = S;
    end
    STrainC{ii} = STrain;
end
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Convert the output to a four-dimensional array with STFTs along the fourth dimension.

STrain = cat(4,STrainC{:});

Convert the data to the log scale to better align with human perception.

STrain = log(STrain + 1e-6);

Normalize training data to have zero mean and unit standard deviation.

Compute the STFT mean and standard deviation of each frequency bin.

SMean = mean(STrain,[2 3 4]);
SStd = std(STrain,1,[2 3 4]);

Normalize each frequency bin.

STrain = (STrain-SMean)./SStd;

The computed STFTs have unbounded values. Following the approach in [1] on page 1-574, make
the data bounded by clipping the spectra to 3 standard deviations and rescaling to [-1 1].

STrain = STrain/3;
Y = reshape(STrain,numel(STrain),1);
Y(Y<-1) = -1;
Y(Y>1) = 1;
STrain = reshape(Y,size(STrain));

Discard the last frequency bin to force the number of STFT bins to a power of two (which works well
with convolutional layers).

STrain = STrain(1:end-1,:,:,:);

Permute the dimensions in preparation for feeding to the discriminator.

STrain = permute(STrain,[2 1 3 4]);

Specify Training Options

Train with a mini-batch size of 64 for 1000 epochs.

maxEpochs = 1000;
miniBatchSize = 64;

Compute the number of iterations required to consume the data.

numIterationsPerEpoch = floor(size(STrain,4)/miniBatchSize);

Specify the options for Adam optimization. Set the learn rate of the generator and discriminator to
0.0002. For both networks, use a gradient decay factor of 0.5 and a squared gradient decay factor of
0.999.

learnRateGenerator = 0.0002;
learnRateDiscriminator = 0.0002;
gradientDecayFactor = 0.5;
squaredGradientDecayFactor = 0.999;

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™.
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executionEnvironment = ;

Initialize the generator and discriminator weights. The initializeGeneratorWeights and
initializeDiscriminatorWeights functions return random weights obtained using Glorot
uniform initialization. The functions are included at the end of this example.

generatorParameters = initializeGeneratorWeights;
discriminatorParameters = initializeDiscriminatorWeights;

Train Model

Train the model using a custom training loop. Loop over the training data and update the network
parameters at each iteration.

For each epoch, shuffle the training data and loop over mini-batches of data.

For each mini-batch:

• Generate a dlarray object containing an array of random values for the generator network.
• For GPU training, convert the data to a gpuArray (Parallel Computing Toolbox) object.
• Evaluate the model gradients using dlfeval (Deep Learning Toolbox) and the helper functions,

modelDiscriminatorGradients and modelGeneratorGradients.
• Update the network parameters using the adamupdate (Deep Learning Toolbox) function.

Initialize the parameters for Adam.

trailingAvgGenerator = [];
trailingAvgSqGenerator = [];
trailingAvgDiscriminator = [];
trailingAvgSqDiscriminator = [];

You can set saveCheckpoints to true to save the updated weights and states to a MAT file every
ten epochs. You can then use this MAT file to resume training if it is interrupted. For the purpose of
this example, set saveCheckpoints to false.

saveCheckpoints = ;

Specify the length of the generator input.

numLatentInputs = 100;

Train the GAN. This can take multiple hours to run.

iteration = 0;

for epoch = 1:maxEpochs

    % Shuffle the data.
    idx = randperm(size(STrain,4));
    STrain = STrain(:,:,:,idx);

    % Loop over mini-batches.
    for index = 1:numIterationsPerEpoch
        
        iteration = iteration + 1;
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        % Read mini-batch of data.
        dlX = STrain(:,:,:,(index-1)*miniBatchSize+1:index*miniBatchSize);
        dlX = dlarray(dlX,"SSCB");
        
        % Generate latent inputs for the generator network.
        Z = 2 * ( rand(1,1,numLatentInputs,miniBatchSize,"single") - 0.5 ) ;
        dlZ = dlarray(Z);

        % If training on a GPU, then convert data to gpuArray.
        if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
            dlZ = gpuArray(dlZ);
            dlX = gpuArray(dlX);
        end
        
        % Evaluate the discriminator gradients using dlfeval and the
        % modelDiscriminatorGradients helper function.
        gradientsDiscriminator = ...
            dlfeval(@modelDiscriminatorGradients,discriminatorParameters,generatorParameters,dlX,dlZ);
        
        % Update the discriminator network parameters.
        [discriminatorParameters,trailingAvgDiscriminator,trailingAvgSqDiscriminator] = ...
            adamupdate(discriminatorParameters,gradientsDiscriminator, ...
            trailingAvgDiscriminator,trailingAvgSqDiscriminator,iteration, ...
            learnRateDiscriminator,gradientDecayFactor,squaredGradientDecayFactor);

        % Generate latent inputs for the generator network.
        Z = 2 * ( rand(1,1,numLatentInputs,miniBatchSize,"single") - 0.5 ) ;
        dlZ = dlarray(Z);
        
        % If training on a GPU, then convert data to gpuArray.
        if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
            dlZ = gpuArray(dlZ);
        end
        
        % Evaluate the generator gradients using dlfeval and the
        % |modelGeneratorGradients| helper function.
        gradientsGenerator  = ...
            dlfeval(@modelGeneratorGradients,discriminatorParameters,generatorParameters,dlZ);
        
        % Update the generator network parameters.
        [generatorParameters,trailingAvgGenerator,trailingAvgSqGenerator] = ...
            adamupdate(generatorParameters,gradientsGenerator, ...
            trailingAvgGenerator,trailingAvgSqGenerator,iteration, ...
            learnRateGenerator,gradientDecayFactor,squaredGradientDecayFactor);
    end

    % Every 10 epochs, save a training snapshot to a MAT file.
    if mod(epoch,10)==0
        disp("Epoch " + epoch + " out of " + maxEpochs + " complete.");
        if saveCheckpoints
            % Save checkpoint in case training is interrupted.
            save("audiogancheckpoint.mat", ...
                "generatorParameters","discriminatorParameters", ...
                "trailingAvgDiscriminator","trailingAvgSqDiscriminator", ...
                "trailingAvgGenerator","trailingAvgSqGenerator","iteration");
        end
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    end
end

Epoch 10 out of 1000 complete.
Epoch 20 out of 1000 complete.
Epoch 30 out of 1000 complete.
Epoch 40 out of 1000 complete.
Epoch 50 out of 1000 complete.
Epoch 60 out of 1000 complete.
Epoch 70 out of 1000 complete.
Epoch 80 out of 1000 complete.
Epoch 90 out of 1000 complete.
Epoch 100 out of 1000 complete.
Epoch 110 out of 1000 complete.
Epoch 120 out of 1000 complete.
Epoch 130 out of 1000 complete.
Epoch 140 out of 1000 complete.
Epoch 150 out of 1000 complete.
Epoch 160 out of 1000 complete.
Epoch 170 out of 1000 complete.
Epoch 180 out of 1000 complete.
Epoch 190 out of 1000 complete.
Epoch 200 out of 1000 complete.
Epoch 210 out of 1000 complete.
Epoch 220 out of 1000 complete.
Epoch 230 out of 1000 complete.
Epoch 240 out of 1000 complete.
Epoch 250 out of 1000 complete.
Epoch 260 out of 1000 complete.
Epoch 270 out of 1000 complete.
Epoch 280 out of 1000 complete.
Epoch 290 out of 1000 complete.
Epoch 300 out of 1000 complete.
Epoch 310 out of 1000 complete.
Epoch 320 out of 1000 complete.
Epoch 330 out of 1000 complete.
Epoch 340 out of 1000 complete.
Epoch 350 out of 1000 complete.
Epoch 360 out of 1000 complete.
Epoch 370 out of 1000 complete.
Epoch 380 out of 1000 complete.
Epoch 390 out of 1000 complete.
Epoch 400 out of 1000 complete.
Epoch 410 out of 1000 complete.
Epoch 420 out of 1000 complete.
Epoch 430 out of 1000 complete.
Epoch 440 out of 1000 complete.
Epoch 450 out of 1000 complete.
Epoch 460 out of 1000 complete.
Epoch 470 out of 1000 complete.
Epoch 480 out of 1000 complete.
Epoch 490 out of 1000 complete.
Epoch 500 out of 1000 complete.
Epoch 510 out of 1000 complete.
Epoch 520 out of 1000 complete.
Epoch 530 out of 1000 complete.
Epoch 540 out of 1000 complete.
Epoch 550 out of 1000 complete.
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Epoch 560 out of 1000 complete.
Epoch 570 out of 1000 complete.
Epoch 580 out of 1000 complete.
Epoch 590 out of 1000 complete.
Epoch 600 out of 1000 complete.
Epoch 610 out of 1000 complete.
Epoch 620 out of 1000 complete.
Epoch 630 out of 1000 complete.
Epoch 640 out of 1000 complete.
Epoch 650 out of 1000 complete.
Epoch 660 out of 1000 complete.
Epoch 670 out of 1000 complete.
Epoch 680 out of 1000 complete.
Epoch 690 out of 1000 complete.
Epoch 700 out of 1000 complete.
Epoch 710 out of 1000 complete.
Epoch 720 out of 1000 complete.
Epoch 730 out of 1000 complete.
Epoch 740 out of 1000 complete.
Epoch 750 out of 1000 complete.
Epoch 760 out of 1000 complete.
Epoch 770 out of 1000 complete.
Epoch 780 out of 1000 complete.
Epoch 790 out of 1000 complete.
Epoch 800 out of 1000 complete.
Epoch 810 out of 1000 complete.
Epoch 820 out of 1000 complete.
Epoch 830 out of 1000 complete.
Epoch 840 out of 1000 complete.
Epoch 850 out of 1000 complete.
Epoch 860 out of 1000 complete.
Epoch 870 out of 1000 complete.
Epoch 880 out of 1000 complete.
Epoch 890 out of 1000 complete.
Epoch 900 out of 1000 complete.
Epoch 910 out of 1000 complete.
Epoch 920 out of 1000 complete.
Epoch 930 out of 1000 complete.
Epoch 940 out of 1000 complete.
Epoch 950 out of 1000 complete.
Epoch 960 out of 1000 complete.
Epoch 970 out of 1000 complete.
Epoch 980 out of 1000 complete.
Epoch 990 out of 1000 complete.
Epoch 1000 out of 1000 complete.

Synthesize Sounds

Now that you have trained the network, you can investigate the synthesis process in more detail.
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The trained drumbeat generator synthesizes short-time Fourier transform (STFT) matrices from input
arrays of random values. An inverse STFT (ISTFT) operation converts the time-frequency STFT to a
synthesized time-domain audio signal.

Load the weights of a pretrained generator. These weights were obtained by running the training
highlighted in the previous section for 1000 epochs.

load(matFileName,"generatorParameters","SMean","SStd");

The generator takes 1-by-1-by-100 vectors of random values as an input. Generate a sample input
vector.

numLatentInputs = 100;
dlZ = dlarray(2*(rand(1,1,numLatentInputs,1,"single") - 0.5));

Pass the random vector to the generator to create an STFT image. generatorParameters is a
structure containing the weights of the pretrained generator.

dlXGenerated = modelGenerator(dlZ,generatorParameters);

Convert the STFT dlarray to a single-precision matrix.

S = dlXGenerated.extractdata;

Transpose the STFT to align its dimensions with the istft function.

S = S.';

The STFT is a 128-by-128 matrix, where the first dimension represents 128 frequency bins linearly
spaced from 0 to 8 kHz. The generator was trained to generate a one-sided STFT from an FFT length
of 256, with the last bin omitted. Reintroduce that bin by inserting a row of zeros into the STFT.

S = [S;zeros(1,128)];

Revert the normalization and scaling steps used when you generated the STFTs for training.

S = S * 3;
S = (S.*SStd) + SMean;

Convert the STFT from the log domain to the linear domain.

S = exp(S);

Convert the STFT from one-sided to two-sided.

S = [S;S(end-1:-1:2,:)];

Pad with zeros to remove window edge-effects.
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S = [zeros(256,100),S,zeros(256,100)];

The STFT matrix does not contain any phase information. Use a fast version of the Griffin-Lim
algorithm with 20 iterations to estimate the signal phase and produce audio samples.

myAudio = stftmag2sig(S,256, ...
    FrequencyRange="twosided", ...
    Window=hann(256,"periodic"), ...
    OverlapLength=128, ...
    MaxIterations=20, ...
    Method="fgla");
myAudio = myAudio./max(abs(myAudio),[],"all");
myAudio = myAudio(128*100:end-128*100);

Listen to the synthesized drumbeat.

sound(myAudio,fs)

Plot the synthesized drumbeat.

t = (0:length(myAudio)-1)/fs;
plot(t,myAudio)
grid on
xlabel("Time (s)")
title("Synthesized GAN Sound")
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Plot the STFT of the synthesized drumbeat.

figure
stft(myAudio,fs,Window=hann(256,"periodic"),OverlapLength=128);

Model Generator Function

The modelGenerator function upscales 1-by-1-by-100 arrays (dlX) to 128-by-128-by-1 arrays (dlY).
parameters is a structure holding the weights of the generator layers. The generator architecture is
defined in Table 4 of [1] on page 1-574.

function dlY = modelGenerator(dlX,parameters)

dlY = fullyconnect(dlX,parameters.FC.Weights,parameters.FC.Bias,Dataformat="SSCB");

dlY = reshape(dlY,[1024 4 4 size(dlY,2)]);
dlY = permute(dlY,[3 2 1 4]);
dlY = relu(dlY);

dlY = dltranspconv(dlY,parameters.Conv1.Weights,parameters.Conv1.Bias,Stride=2,Cropping="same",DataFormat="SSCB");
dlY = relu(dlY);

dlY = dltranspconv(dlY,parameters.Conv2.Weights,parameters.Conv2.Bias,Stride=2,Cropping="same",DataFormat="SSCB");
dlY = relu(dlY);
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dlY = dltranspconv(dlY,parameters.Conv3.Weights,parameters.Conv3.Bias,Stride=2,Cropping="same",DataFormat="SSCB");
dlY = relu(dlY);

dlY = dltranspconv(dlY,parameters.Conv4.Weights,parameters.Conv4.Bias,Stride=2,Cropping="same",DataFormat="SSCB");
dlY = relu(dlY);

dlY = dltranspconv(dlY,parameters.Conv5.Weights,parameters.Conv5.Bias,Stride=2,Cropping="same",DataFormat="SSCB");
dlY = tanh(dlY);
end

Model Discriminator Function

The modelDiscriminator function takes 128-by-128 images and outputs a scalar prediction score.
The discriminator architecture is defined in Table 5 of [1].

function dlY = modelDiscriminator(dlX,parameters)

dlY = dlconv(dlX,parameters.Conv1.Weights,parameters.Conv1.Bias,Stride=2,Padding="same");
dlY = leakyrelu(dlY,0.2);

dlY = dlconv(dlY,parameters.Conv2.Weights,parameters.Conv2.Bias,Stride=2,Padding="same");
dlY = leakyrelu(dlY,0.2);

dlY = dlconv(dlY,parameters.Conv3.Weights,parameters.Conv3.Bias,Stride=2,Padding="same");
dlY = leakyrelu(dlY,0.2);

dlY = dlconv(dlY,parameters.Conv4.Weights,parameters.Conv4.Bias,Stride=2,Padding="same");
dlY = leakyrelu(dlY,0.2);

dlY = dlconv(dlY,parameters.Conv5.Weights,parameters.Conv5.Bias,Stride=2,Padding="same");
dlY = leakyrelu(dlY,0.2);
 
dlY = stripdims(dlY);
dlY = permute(dlY,[3 2 1 4]);
dlY = reshape(dlY,4*4*64*16,numel(dlY)/(4*4*64*16));

weights = parameters.FC.Weights;
bias = parameters.FC.Bias;
dlY = fullyconnect(dlY,weights,bias,Dataformat="CB");

end

Model Discriminator Gradients Function

The modelDiscriminatorGradients functions takes as input the generator and discriminator
parameters generatorParameters and discriminatorParameters, a mini-batch of input data X,
and an array of random values Z, and returns the gradients of the discriminator loss with respect to
the learnable parameters in the networks.

function gradientsDiscriminator = modelDiscriminatorGradients(discriminatorParameters,generatorParameters,X,Z)

% Calculate the predictions for real data with the discriminator network.
Y = modelDiscriminator(X,discriminatorParameters);

% Calculate the predictions for generated data with the discriminator network.
Xgen = modelGenerator(Z,generatorParameters);
Ygen = modelDiscriminator(dlarray(Xgen,"SSCB"),discriminatorParameters);
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% Calculate the GAN loss.
lossDiscriminator = ganDiscriminatorLoss(Y,Ygen);

% For each network, calculate the gradients with respect to the loss.
gradientsDiscriminator = dlgradient(lossDiscriminator,discriminatorParameters);

end

Model Generator Gradients Function

The modelGeneratorGradients function takes as input the discriminator and generator learnable
parameters and an array of random values Z, and returns the gradients of the generator loss with
respect to the learnable parameters in the networks.

function gradientsGenerator = modelGeneratorGradients(discriminatorParameters,generatorParameters,Z)

% Calculate the predictions for generated data with the discriminator network.
Xgen = modelGenerator(Z,generatorParameters);
Ygen = modelDiscriminator(dlarray(Xgen,"SSCB"),discriminatorParameters);

% Calculate the GAN loss
lossGenerator = ganGeneratorLoss(Ygen);

% For each network, calculate the gradients with respect to the loss.
gradientsGenerator = dlgradient(lossGenerator,generatorParameters);

end

Discriminator Loss Function

The objective of the discriminator is to not be fooled by the generator. To maximize the probability
that the discriminator successfully discriminates between the real and generated images, minimize
the discriminator loss function. The loss function for the generator follows the DCGAN approach
highlighted in [1] on page 1-574.

function  lossDiscriminator = ganDiscriminatorLoss(dlYPred,dlYPredGenerated)

fake = dlarray(zeros(1,size(dlYPred,2)));
real = dlarray(ones(1,size(dlYPred,2)));

D_loss = mean(sigmoid_cross_entropy_with_logits(dlYPredGenerated,fake));
D_loss = D_loss + mean(sigmoid_cross_entropy_with_logits(dlYPred,real));
lossDiscriminator  = D_loss / 2;
end

Generator Loss Function

The objective of the generator is to generate data that the discriminator classifies as "real". To
maximize the probability that images from the generator are classified as real by the discriminator,
minimize the generator loss function. The loss function for the generator follows the deep
convolutional generative adverarial network (DCGAN) approach highlighted in [1] on page 1-574.

function lossGenerator = ganGeneratorLoss(dlYPredGenerated)
real = dlarray(ones(1,size(dlYPredGenerated,2)));
lossGenerator = mean(sigmoid_cross_entropy_with_logits(dlYPredGenerated,real));
end
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Discriminator Weights Initializer

initializeDiscriminatorWeights initializes discriminator weights using the Glorot algorithm.

function discriminatorParameters = initializeDiscriminatorWeights

filterSize = [5 5];
dim = 64;

% Conv2D
weights = iGlorotInitialize([filterSize(1) filterSize(2) 1 dim]);
bias = zeros(1,1,dim,"single");
discriminatorParameters.Conv1.Weights = dlarray(weights);
discriminatorParameters.Conv1.Bias = dlarray(bias);

% Conv2D
weights = iGlorotInitialize([filterSize(1) filterSize(2) dim 2*dim]);
bias = zeros(1,1,2*dim,"single");
discriminatorParameters.Conv2.Weights = dlarray(weights);
discriminatorParameters.Conv2.Bias = dlarray(bias);

% Conv2D
weights = iGlorotInitialize([filterSize(1) filterSize(2) 2*dim 4*dim]);
bias = zeros(1,1,4*dim,"single");
discriminatorParameters.Conv3.Weights = dlarray(weights);
discriminatorParameters.Conv3.Bias = dlarray(bias);

% Conv2D
weights = iGlorotInitialize([filterSize(1) filterSize(2) 4*dim 8*dim]);
bias = zeros(1,1,8*dim,"single");
discriminatorParameters.Conv4.Weights = dlarray(weights);
discriminatorParameters.Conv4.Bias = dlarray(bias);

% Conv2D
weights = iGlorotInitialize([filterSize(1) filterSize(2) 8*dim 16*dim]);
bias = zeros(1,1,16*dim,"single");
discriminatorParameters.Conv5.Weights = dlarray(weights);
discriminatorParameters.Conv5.Bias = dlarray(bias);

% fully connected
weights = iGlorotInitialize([1,4 * 4 * dim * 16]);
bias = zeros(1,1,"single");
discriminatorParameters.FC.Weights = dlarray(weights);
discriminatorParameters.FC.Bias = dlarray(bias);
end

Generator Weights Initializer

initializeGeneratorWeights initializes generator weights using the Glorot algorithm.

function generatorParameters = initializeGeneratorWeights

dim = 64;

% Dense 1
weights = iGlorotInitialize([dim*256,100]);
bias = zeros(dim*256,1,"single");
generatorParameters.FC.Weights = dlarray(weights);
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generatorParameters.FC.Bias = dlarray(bias);

filterSize = [5 5];

% Trans Conv2D
weights = iGlorotInitialize([filterSize(1) filterSize(2) 8*dim 16*dim]);
bias = zeros(1,1,dim*8,"single");
generatorParameters.Conv1.Weights = dlarray(weights);
generatorParameters.Conv1.Bias = dlarray(bias);

% Trans Conv2D
weights = iGlorotInitialize([filterSize(1) filterSize(2) 4*dim 8*dim]);
bias = zeros(1,1,dim*4,"single");
generatorParameters.Conv2.Weights = dlarray(weights);
generatorParameters.Conv2.Bias = dlarray(bias);

% Trans Conv2D
weights = iGlorotInitialize([filterSize(1) filterSize(2) 2*dim 4*dim]);
bias = zeros(1,1,dim*2,"single");
generatorParameters.Conv3.Weights = dlarray(weights);
generatorParameters.Conv3.Bias = dlarray(bias);

% Trans Conv2D
weights = iGlorotInitialize([filterSize(1) filterSize(2) dim 2*dim]);
bias = zeros(1,1,dim,"single");
generatorParameters.Conv4.Weights = dlarray(weights);
generatorParameters.Conv4.Bias = dlarray(bias);

% Trans Conv2D
weights = iGlorotInitialize([filterSize(1) filterSize(2) 1 dim]);
bias = zeros(1,1,1,"single");
generatorParameters.Conv5.Weights = dlarray(weights);
generatorParameters.Conv5.Bias = dlarray(bias);
end

Synthesize Drumbeat

synthesizeDrumBeat uses a pretrained network to synthesize drum beats.

function y = synthesizeDrumBeat

persistent pGeneratorParameters pMean pSTD
if isempty(pGeneratorParameters)
    % If the MAT file does not exist, download it
    filename = "drumGeneratorWeights.mat";
    load(filename,"SMean","SStd","generatorParameters");
    pMean = SMean;
    pSTD  = SStd;
    pGeneratorParameters = generatorParameters;
end

% Generate random vector
dlZ = dlarray(2 * ( rand(1,1,100,1,"single") - 0.5 ));

% Generate spectrograms
dlXGenerated = modelGenerator(dlZ,pGeneratorParameters);
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% Convert from dlarray to single
S = dlXGenerated.extractdata;

S = S.';
% Zero-pad to remove edge effects
S = [S ; zeros(1,128)];

% Reverse steps from training
S = S * 3;
S = (S.*pSTD) + pMean;
S = exp(S);

% Make it two-sided
S = [S ; S(end-1:-1:2,:)];
% Pad with zeros at end and start
S = [zeros(256,100) S zeros(256,100)];

% Reconstruct the signal using a fast Griffin-Lim algorithm.
myAudio = stftmag2sig(S,256, ...
    FrequencyRange="twosided", ...
    Window=hann(256,"periodic"), ...
    OverlapLength=128, ...
    MaxIterations=20, ...
    Method="fgla");
myAudio = myAudio./max(abs(myAudio),[],"all");
y = myAudio(128*100:end-128*100);
end

Utility Functions

function out = sigmoid_cross_entropy_with_logits(x,z)
out = max(x, 0) - x .* z + log(1 + exp(-abs(x)));
end

function w = iGlorotInitialize(sz)
if numel(sz) == 2
    numInputs = sz(2);
    numOutputs = sz(1);
else
    numInputs = prod(sz(1:3));
    numOutputs = prod(sz([1 2 4]));
end
multiplier = sqrt(2 / (numInputs + numOutputs));
w = multiplier * sqrt(3) * (2 * rand(sz,"single") - 1);
end

Reference

[1] Donahue, C., J. McAuley, and M. Puckette. 2019. "Adversarial Audio Synthesis." ICLR.
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Speaker Verification Using i-Vectors

Speaker verification, or authentication, is the task of confirming that the identity of a speaker is who
they purport to be. Speaker verification has been an active research area for many years. An early
performance breakthrough was to use a Gaussian mixture model and universal background model
(GMM-UBM) [1] on page 1-599 on acoustic features (usually mfcc). For an example, see “Speaker
Verification Using Gaussian Mixture Model” on page 1-522. One of the main difficulties of GMM-UBM
systems involves intersession variability. Joint factor analysis (JFA) was proposed to compensate for
this variability by separately modeling inter-speaker variability and channel or session variability [2]
on page 1-599 [3] on page 1-599. However, [4] on page 1-599 discovered that channel factors in
the JFA also contained information about the speakers, and proposed combining the channel and
speaker spaces into a total variability space. Intersession variability was then compensated for by
using backend procedures, such as linear discriminant analysis (LDA) and within-class covariance
normalization (WCCN), followed by a scoring, such as the cosine similarity score. [5] on page 1-599
proposed replacing the cosine similarity scoring with a probabilistic LDA (PLDA) model. [11] on page
1-600 and [12] on page 1-600 proposed a method to Gaussianize the i-vectors and therefore make
Gaussian assumptions in the PLDA, referred to as G-PLDA or simplified PLDA. While i-vectors were
originally proposed for speaker verification, they have been applied to many problems, like language
recognition, speaker diarization, emotion recognition, age estimation, and anti-spoofing [10] on page
1-599. Recently, deep learning techniques have been proposed to replace i-vectors with d-vectors or
x-vectors [8] on page 1-599 [6] on page 1-599.

Use an i-Vector System

Audio Toolbox provides ivectorSystem which encapsulates the ability to train an i-vector system,
enroll speakers or other audio labels, evaluate the system for a decision threshold, and identify or
verify speakers or other audio labels. See ivectorSystem for examples of using this feature and
applying it to several applications.

To learn more about how an i-vector system works, continue with the example.

Develop an i-Vector System

In this example, you develop a standard i-vector system for speaker verification that uses an LDA-
WCCN backend with either cosine similarity scoring or a G-PLDA scoring.
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Throughout the example, you will find live controls on tunable parameters. Changing the controls
does not rerun the example. If you change a control, you must rerun the example.

Data Set Management

This example uses the Pitch Tracking Database from Graz University of Technology (PTDB-TUG) [7]
on page 1-599. The data set consists of 20 English native speakers reading 2342 phonetically rich
sentences from the TIMIT corpus. Download and extract the data set. Depending on your system,
downloading and extracting the data set can take approximately 1.5 hours.

url = "https://www2.spsc.tugraz.at/databases/PTDB-TUG/SPEECH_DATA_ZIPPED.zip";
downloadFolder = tempdir;
datasetFolder = fullfile(downloadFolder,"PTDB-TUG");

if ~datasetExists(datasetFolder)
    disp("Downloading PTDB-TUG (3.9 G) ...")
    unzip(url,datasetFolder)
end

Create an audioDatastore object that points to the data set. The data set was originally intended
for use in pitch-tracking training and evaluation, and includes laryngograph readings and baseline
pitch decisions. Use only the original audio recordings.

ads = audioDatastore([fullfile(datasetFolder,"SPEECH DATA","FEMALE","MIC"),fullfile(datasetFolder,"SPEECH DATA","MALE","MIC")], ...
                     IncludeSubfolders=true, ...
                     FileExtensions=".wav");
fileNames = ads.Files;

The file names contain the speaker IDs. Decode the file names to set the labels on the
audioDatastore object.

speakerIDs = extractBetween(fileNames,"mic_","_");
ads.Labels = categorical(speakerIDs);
countEachLabel(ads)

ans=20×2 table
    Label    Count
    _____    _____

     F01      236 
     F02      236 
     F03      236 
     F04      236 
     F05      236 
     F06      236 
     F07      236 
     F08      234 
     F09      236 
     F10      236 
     M01      236 
     M02      236 
     M03      236 
     M04      236 
     M05      236 
     M06      236 
      ⋮
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Separate the audioDatastore object into training, evaluation, and test sets. The training set
contains 16 speakers. The evaluation set contains four speakers and is further divided into an
enrollment set and a set to evaluate the detection error tradeoff of the trained i-vector system, and a
test set.

developmentLabels = categorical(["M01","M02","M03","M04","M06","M07","M08","M09","F01","F02","F03","F04","F06","F07","F08","F09"]);
evaluationLabels = categorical(["M05","M10","F05","F10"]);

adsTrain = subset(ads,ismember(ads.Labels,developmentLabels));

adsEvaluate = subset(ads,ismember(ads.Labels,evaluationLabels));

numFilesPerSpeakerForEnrollment = ;
[adsEnroll,adsTest,adsDET] = splitEachLabel(adsEvaluate,numFilesPerSpeakerForEnrollment,2);

Display the label distributions of the resulting audioDatastore objects.

countEachLabel(adsTrain)

ans=16×2 table
    Label    Count
    _____    _____

     F01      236 
     F02      236 
     F03      236 
     F04      236 
     F06      236 
     F07      236 
     F08      234 
     F09      236 
     M01      236 
     M02      236 
     M03      236 
     M04      236 
     M06      236 
     M07      236 
     M08      236 
     M09      236 

countEachLabel(adsEnroll)

ans=4×2 table
    Label    Count
    _____    _____

     F05       3  
     F10       3  
     M05       3  
     M10       3  

countEachLabel(adsDET)

ans=4×2 table
    Label    Count
    _____    _____
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     F05      231 
     F10      231 
     M05      231 
     M10      231 

countEachLabel(adsTest)

ans=4×2 table
    Label    Count
    _____    _____

     F05       2  
     F10       2  
     M05       2  
     M10       2  

Read an audio file from the training data set, listen to it, and plot it. Reset the datastore.

[audio,audioInfo] = read(adsTrain);
fs = audioInfo.SampleRate;

t = (0:size(audio,1)-1)/fs;
sound(audio,fs)
plot(t,audio)
xlabel("Time (s)")
ylabel("Amplitude")
axis([0 t(end) -1 1])
title("Sample Utterance from Training Set")
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reset(adsTrain)

You can reduce the data set and the number of parameters used in this example to speed up the
runtime at the cost of performance. In general, reducing the data set is a good practice for
development and debugging.

speedUpExample = ;
if speedUpExample
    adsTrain = splitEachLabel(adsTrain,30);
    adsDET = splitEachLabel(adsDET,21);
end

Feature Extraction

Create an audioFeatureExtractor object to extract 20 MFCCs, 20 delta-MFCCs, and 20 delta-
delta MFCCs. Use a delta window length of 9. Extract features from 25 ms Hann windows with a 10
ms hop.

numCoeffs = ;

deltaWindowLength = ;
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windowDuration = ;

hopDuration = ;

windowSamples = round(windowDuration*fs);
hopSamples = round(hopDuration*fs);
overlapSamples = windowSamples - hopSamples;

afe = audioFeatureExtractor( ...
    SampleRate=fs, ...
    Window=hann(windowSamples,"periodic"), ...
    OverlapLength=overlapSamples, ...
    ...
    mfcc=true, ...
    mfccDelta=true, ...
    mfccDeltaDelta=true);
setExtractorParameters(afe,"mfcc",DeltaWindowLength=deltaWindowLength,NumCoeffs=numCoeffs)

Extract features from the audio read from the training datastore. Features are returned as a
numHops-by-numFeatures matrix.

features = extract(afe,audio);
[numHops,numFeatures] = size(features)

numHops = 797

numFeatures = 60

Training

Training an i-vector system is computationally expensive and time-consuming. If you have Parallel
Computing Toolbox™, you can spread the work across multiple cores to speed up the example.
Determine the optimal number of partitions for your system. If you do not have Parallel Computing
Toolbox™, use a single partition.

if ~isempty(ver("parallel")) && ~speedUpExample
    pool = gcp;
    numPar = numpartitions(adsTrain,pool);
else
    numPar = 1;
end

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

Feature Normalization Factors

Use the helper function, helperFeatureExtraction, to extract all features from the data set. The
helperFeatureExtraction on page 1-597 function extracts MFCC from regions of speech in the
audio. The speech detection is performed by the detectSpeech function.

featuresAll = {};
tic
parfor ii = 1:numPar
    adsPart = partition(adsTrain,numPar,ii);
    featuresPart = cell(0,numel(adsPart.Files));
    for iii = 1:numel(adsPart.Files)
        audioData = read(adsPart);
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        featuresPart{iii} = helperFeatureExtraction(audioData,afe,[]);
    end
    featuresAll = [featuresAll,featuresPart];
end
allFeatures = cat(2,featuresAll{:});
disp("Feature extraction from training set complete (" + toc + " seconds).")

Feature extraction from training set complete (64.0731 seconds).

Calculate the global mean and standard deviation of each feature. You will use these in future calls to
the helperFeatureExtraction function to normalize the features.

normFactors.Mean = mean(allFeatures,2,"omitnan");
normFactors.STD = std(allFeatures,[],2,"omitnan");

Universal Background Model (UBM)

Initialize the Gaussian mixture model (GMM) that will be the universal background model (UBM) in
the i-vector system. The component weights are initialized as evenly distributed. Systems trained on
the TIMIT data set usually contain around 2048 components.

numComponents = ;
if speedUpExample
    numComponents = 32;
end
alpha = ones(1,numComponents)/numComponents;
mu = randn(numFeatures,numComponents);
vari = rand(numFeatures,numComponents) + eps;
ubm = struct(ComponentProportion=alpha,mu=mu,sigma=vari);

Train the UBM using the expectation-maximization (EM) algorithm.

maxIter = ;
if speedUpExample
    maxIter = 2;
end
tic
for iter = 1:maxIter
    tic
    % EXPECTATION
    N = zeros(1,numComponents);
    F = zeros(numFeatures,numComponents);
    S = zeros(numFeatures,numComponents);
    L = 0;
    parfor ii = 1:numPar
        adsPart = partition(adsTrain,numPar,ii);
        while hasdata(adsPart)
            audioData = read(adsPart);
            
            % Extract features
            Y = helperFeatureExtraction(audioData,afe,normFactors);
 
            % Compute a posteriori log-liklihood
            logLikelihood = helperGMMLogLikelihood(Y,ubm);

            % Compute a posteriori normalized probability
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            amax = max(logLikelihood,[],1);
            logLikelihoodSum = amax + log(sum(exp(logLikelihood-amax),1));
            gamma = exp(logLikelihood - logLikelihoodSum)';
            
            % Compute Baum-Welch statistics
            n = sum(gamma,1);
            f = Y * gamma;
            s = (Y.*Y) * gamma;
            
            % Update the sufficient statistics over utterances
            N = N + n;
            F = F + f;
            S = S + s;
            
            % Update the log-likelihood
            L = L + sum(logLikelihoodSum);
        end
    end
    
    % Print current log-likelihood
    disp("Training UBM: " + iter + "/" + maxIter + " complete (" + round(toc) + " seconds), Log-likelihood = " + round(L))
    
    % MAXIMIZATION
    N = max(N,eps);
    ubm.ComponentProportion = max(N/sum(N),eps);
    ubm.ComponentProportion = ubm.ComponentProportion/sum(ubm.ComponentProportion);
    ubm.mu = F./N;
    ubm.sigma = max(S./N - ubm.mu.^2,eps);
end

Training UBM: 1/10 complete (57 seconds), Log-likelihood = -75180473
Training UBM: 2/10 complete (57 seconds), Log-likelihood = -75115244
Training UBM: 3/10 complete (57 seconds), Log-likelihood = -75064164
Training UBM: 4/10 complete (57 seconds), Log-likelihood = -75024270
Training UBM: 5/10 complete (57 seconds), Log-likelihood = -74994504
Training UBM: 6/10 complete (57 seconds), Log-likelihood = -74970605
Training UBM: 7/10 complete (55 seconds), Log-likelihood = -74950526
Training UBM: 8/10 complete (58 seconds), Log-likelihood = -74933181
Training UBM: 9/10 complete (58 seconds), Log-likelihood = -74917145
Training UBM: 10/10 complete (55 seconds), Log-likelihood = -74901292

Calculate Baum-Welch Statistics

The Baum-Welch statistics are the N (zeroth order) and F (first order) statistics used in the EM
algorithm, calculated using the final UBM.

Nc s = ∑
t

γt c

Fc s = ∑
t

γt c Yt

• Yt is the feature vector at time t.

• s ∈ s1, s2, . . . , sN , where N is the number of speakers. For the purposes of training the total
variability space, each audio file is considered a separate speaker (whether or not it belongs to a
physical single speaker).
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• γt c  is the posterior probability that the UBM component c accounts for the feature vector Yt.

Calculate the zeroth and first order Baum-Welch statistics over the training set.

numSpeakers = numel(adsTrain.Files);
Nc = {};
Fc = {};

tic
parfor ii = 1:numPar
    adsPart = partition(adsTrain,numPar,ii);
    numFiles = numel(adsPart.Files);
    
    Npart = cell(1,numFiles);
    Fpart = cell(1,numFiles);
    for jj = 1:numFiles
        audioData = read(adsPart);
        
        % Extract features
        Y = helperFeatureExtraction(audioData,afe,normFactors);
        
        % Compute a posteriori log-likelihood
        logLikelihood = helperGMMLogLikelihood(Y,ubm);
        
        % Compute a posteriori normalized probability
        amax = max(logLikelihood,[],1);
        logLikelihoodSum = amax + log(sum(exp(logLikelihood-amax),1));
        gamma = exp(logLikelihood - logLikelihoodSum)';
        
        % Compute Baum-Welch statistics
        n = sum(gamma,1);
        f = Y * gamma;
        
        Npart{jj} = reshape(n,1,1,numComponents);
        Fpart{jj} = reshape(f,numFeatures,1,numComponents);
    end
    Nc = [Nc,Npart];
    Fc = [Fc,Fpart];
end
disp("Baum-Welch statistics completed (" + toc + " seconds).")

Baum-Welch statistics completed (57.5179 seconds).

Expand the statistics into matrices and center F s , as described in [3] on page 1-599, such that

• N s  is a C F × C F diagonal matrix whose blocks are Nc s I c = 1, . . . C .
• F s  is a C F × 1 supervector obtained by concatenating Fc s c = 1, . . . C .
• C is the number of components in the UBM.
• F is the number of features in a feature vector.

N = Nc;
F = Fc;
muc = reshape(ubm.mu,numFeatures,1,[]);
for s = 1:numSpeakers
    N{s} = repelem(reshape(Nc{s},1,[]),numFeatures);
    F{s} = reshape(Fc{s} - Nc{s}.*muc,[],1);
end
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Because this example assumes a diagonal covariance matrix for the UBM, N are also diagonal
matrices, and are saved as vectors for efficient computation.

Total Variability Space

In the i-vector model, the ideal speaker supervector consists of a speaker-independent component
and a speaker-dependent component. The speaker-dependent component consists of the total
variability space model and the speaker's i-vector.

M = m + Tw

• M is the speaker utterance supervector
• m is the speaker- and channel-independent supervector, which can be taken to be the UBM

supervector.
• T is a low-rank rectangular matrix and represents the total variability subspace.
• w is the i-vector for the speaker

The dimensionality of the i-vector, w, is typically much lower than the C F -dimensional speaker
utterance supervector, making the i-vector, or i-vectors, a much more compact and tractable
representation.

To train the total variability space, T, first randomly initialize T, then perform these steps iteratively
[3] on page 1-599:

1 Calculate the posterior distribution of the hidden variable.

lT s = I + T′ × Σ−1 × N s × T

2. Accumulate statistics across the speakers.

Κ = ∑
s

F s × lT−1 s × T′ × Σ−1 × F s ′

Ac = ∑s Nc s lT−1 s

3. Update the total variability space.

Tc = Ac
−1 × Κ

T =

T1
T2

⋮
TC

[3] on page 1-599 proposes initializing Σ by the UBM variance, and then updating Σ according to the
equation:

Σ = ∑
s

N s
−1
∑
s

S s − diag Κ × T′

where S(s) is the centered second-order Baum-Welch statistic. However, updating Σ is often dropped
in practice as it has little effect. This example does not update Σ.
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Create the sigma variable.

Sigma = ubm.sigma(:);

Specify the dimension of the total variability space. A typical value used for the TIMIT data set is
1000.

numTdim = ;
if speedUpExample
    numTdim = 16;
end

Initialize T and the identity matrix, and preallocate cell arrays.

T = randn(numel(ubm.sigma),numTdim);
T = T/norm(T);

I = eye(numTdim);

Ey = cell(numSpeakers,1);
Eyy = cell(numSpeakers,1);
Linv = cell(numSpeakers,1);

Set the number of iterations for training. A typical value reported is 20.

numIterations = ;

Run the training loop.

for iterIdx = 1:numIterations
    tic
    
    % 1. Calculate the posterior distribution of the hidden variable
    TtimesInverseSSdiag = (T./Sigma)';
    parfor s = 1:numSpeakers
        L = (I + TtimesInverseSSdiag.*N{s}*T);
        Linv{s} = pinv(L);
        Ey{s} = Linv{s}*TtimesInverseSSdiag*F{s};
        Eyy{s} = Linv{s} + Ey{s}*Ey{s}';
    end
    
    % 2. Accumlate statistics across the speakers
    Eymat = cat(2,Ey{:});
    FFmat = cat(2,F{:});
    Kt = FFmat*Eymat';
    K = mat2cell(Kt',numTdim,repelem(numFeatures,numComponents));
    
    newT = cell(numComponents,1);
    for c = 1:numComponents
        AcLocal = zeros(numTdim);
        for s = 1:numSpeakers
            AcLocal = AcLocal + Nc{s}(:,:,c)*Eyy{s};
        end
        
    % 3. Update the Total Variability Space
        newT{c} = (pinv(AcLocal)*K{c})';
    end
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    T = cat(1,newT{:});

    disp("Training Total Variability Space: " + iterIdx + "/" + numIterations + " complete (" + round(toc,2) + " seconds).")
end

Training Total Variability Space: 1/5 complete (1.97 seconds).
Training Total Variability Space: 2/5 complete (1.69 seconds).
Training Total Variability Space: 3/5 complete (1.79 seconds).
Training Total Variability Space: 4/5 complete (1.56 seconds).
Training Total Variability Space: 5/5 complete (1.74 seconds).

i-Vector Extraction

Once the total variability space is calculated, you can calculate the i-vectors as [4] on page 1-599:

w = I + T′Σ−1 NT ′T′Σ−1 F

At this point, you are still considering each training file as a separate speaker. However, in the next
step, when you train a projection matrix to reduce dimensionality and increase inter-speaker
differences, the i-vectors must be labeled with the appropriate, distinct speaker IDs.

Create a cell array where each element of the cell array contains a matrix of i-vectors across files for
a particular speaker.

speakers = unique(adsTrain.Labels);
numSpeakers = numel(speakers);
ivectorPerSpeaker = cell(numSpeakers,1);
TS = T./Sigma;
TSi = TS';
ubmMu = ubm.mu;
tic
parfor speakerIdx = 1:numSpeakers
    
    % Subset the datastore to the speaker you are adapting.
    adsPart = subset(adsTrain,adsTrain.Labels==speakers(speakerIdx));
    numFiles = numel(adsPart.Files);
    
    ivectorPerFile = zeros(numTdim,numFiles);
    for fileIdx = 1:numFiles
        audioData = read(adsPart);
        
        % Extract features
        Y = helperFeatureExtraction(audioData,afe,normFactors);
        
        % Compute a posteriori log-likelihood
        logLikelihood = helperGMMLogLikelihood(Y,ubm);
        
        % Compute a posteriori normalized probability
        amax = max(logLikelihood,[],1);
        logLikelihoodSum = amax + log(sum(exp(logLikelihood-amax),1));
        gamma = exp(logLikelihood - logLikelihoodSum)';
        
        % Compute Baum-Welch statistics
        n = sum(gamma,1);
        f = Y * gamma - n.*(ubmMu);

        ivectorPerFile(:,fileIdx) = pinv(I + (TS.*repelem(n(:),numFeatures))' * T) * TSi * f(:);

1 Audio Toolbox Examples

1-586



    end
    ivectorPerSpeaker{speakerIdx} = ivectorPerFile;
end
disp("I-vectors extracted from training set (" + toc + " seconds).")

I-vectors extracted from training set (65.8347 seconds).

Projection Matrix

Many different backends have been proposed for i-vectors. The most straightforward and still well-
performing one is the combination of linear discriminant analysis (LDA) and within-class covariance
normalization (WCCN).

Create a matrix of the training vectors and a map indicating which i-vector corresponds to which
speaker. Initialize the projection matrix as an identity matrix.

w = ivectorPerSpeaker;
utterancePerSpeaker = cellfun(@(x)size(x,2),w);

ivectorsTrain = cat(2,w{:});
projectionMatrix = eye(size(w{1},1));

LDA attempts to minimize the intra-class variance and maximize the variance between speakers. It
can be calculated as outlined in [4] on page 1-599:

Given:

Sb = ∑
s = 1

S
ws−w‾ ws−w‾ ′

Sw = ∑
s = 1

S 1
ns
∑

i = 1

ns
wi

s−ws wi
s−ws ′

where

• ws = 1
ns
∑i = 1

ns wi
s is the mean of i-vectors for each speaker.

• w‾ = 1
N∑s = 1

S ∑i = 1
ns wi

s is the mean i-vector across all speakers.

• ns is the number of utterances for each speaker.

Solve the eigenvalue equation for the best eigenvectors:

Sbv = λ Swv

The best eigenvectors are those with the highest eigenvalues.

performLDA = ;
if performLDA
    tic

    numEigenvectors = ;

    Sw = zeros(size(projectionMatrix,1));
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    Sb = zeros(size(projectionMatrix,1));
    wbar = mean(cat(2,w{:}),2);
    for ii = 1:numel(w)
        ws = w{ii};
        wsbar = mean(ws,2);
        Sb = Sb + (wsbar - wbar)*(wsbar - wbar)';
        Sw = Sw + cov(ws',1);
    end
    
    [A,~] = eigs(Sb,Sw,numEigenvectors);
    A = (A./vecnorm(A))';

    ivectorsTrain = A * ivectorsTrain;
    
    w = mat2cell(ivectorsTrain,size(ivectorsTrain,1),utterancePerSpeaker);
    
    projectionMatrix = A * projectionMatrix;
    
    disp("LDA projection matrix calculated (" + round(toc,2) + " seconds).")
end

LDA projection matrix calculated (0.22 seconds).

WCCN attempts to scale the i-vector space inversely to the in-class covariance, so that directions of
high intra-speaker variability are de-emphasized in i-vector comparisons [9] on page 1-599.

Given the within-class covariance matrix:

W = 1
S ∑s = 1

S 1
ns
∑

i = 1

ns
wi

s−ws wi
s−ws ′

where

• ws = 1
ns
∑i = 1

ns wi
s is the mean of i-vectors for each speaker.

• ns is the number of utterances for each speaker.

Solve for B using Cholesky decomposition:

W−1 = BB′

performWCCN = ;
if performWCCN
    tic

    alpha = ;
    
    W = zeros(size(projectionMatrix,1));
    for ii = 1:numel(w)
        W = W + cov(w{ii}',1);
    end
    W = W/numel(w);
    
    W = (1 - alpha)*W + alpha*eye(size(W,1));
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    B = chol(pinv(W),"lower");
    
    projectionMatrix = B * projectionMatrix;
    
    disp("WCCN projection matrix calculated (" + round(toc,4) + " seconds).")
end

WCCN projection matrix calculated (0.0096 seconds).

The training stage is now complete. You can now use the universal background model (UBM), total
variability space (T), and projection matrix to enroll and verify speakers.

Train G-PLDA Model

Apply the projection matrix to the train set.

ivectors = cellfun(@(x)projectionMatrix*x,ivectorPerSpeaker,UniformOutput=false);

This algorithm implemented in this example is a Gaussian PLDA as outlined in [13] on page 1-600. In
the Gaussian PLDA, the i-vector is represented with the following equation:

ϕij = μ + Vyi + εij

yi ∼ Ν 0, Ι

εij ∼ Ν 0, Λ−1

where μ is a global mean of the i-vectors, Λ is a full precision matrix of the noise term εij, and V is the
factor loading matrix, also known as the eigenvoices.

Specify the number of eigenvoices to use. Typically numbers are between 10 and 400.

numEigenVoices = ;

Determine the number of disjoint persons, the number of dimensions in the feature vectors, and the
number of utterances per speaker.

K = numel(ivectors);
D = size(ivectors{1},1);
utterancePerSpeaker = cellfun(@(x)size(x,2),ivectors);

Find the total number of samples and center the i-vectors.

N = ∑
i = 1

K
ni

μ = 1
N∑i, j

ϕi, j

φij = ϕij− μ

ivectorsMatrix = cat(2,ivectors{:});
N = size(ivectorsMatrix,2);
mu = mean(ivectorsMatrix,2);
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ivectorsMatrix = ivectorsMatrix - mu;

Determine a whitening matrix from the training i-vectors and then whiten the i-vectors. Specify either
ZCA whitening, PCA whitening, or no whitening.

whiteningType = ;

if strcmpi(whiteningType,"ZCA")
    S = cov(ivectorsMatrix');
    [~,sD,sV] = svd(S);
    W = diag(1./(sqrt(diag(sD)) + eps))*sV';
    ivectorsMatrix = W * ivectorsMatrix;
elseif strcmpi(whiteningType,"PCA")
    S = cov(ivectorsMatrix');
    [sV,sD] = eig(S);
    W = diag(1./(sqrt(diag(sD)) + eps))*sV';
    ivectorsMatrix = W * ivectorsMatrix;
else
    W = eye(size(ivectorsMatrix,1));
end

Apply length normalization and then convert the training i-vector matrix back to a cell array.

ivectorsMatrix = ivectorsMatrix./vecnorm(ivectorsMatrix);

Compute the global second-order moment as

S = ∑
ij

φijφij
T

S = ivectorsMatrix*ivectorsMatrix';

Convert the training i-vector matrix back to a cell array.

ivectors = mat2cell(ivectorsMatrix,D,utterancePerSpeaker);

Sort persons according to the number of samples and then group the i-vectors by number of
utterances per speaker. Precalculate the first-order moment of the i-th person as

f i = ∑
j = 1

ni
φij

uniqueLengths = unique(utterancePerSpeaker);
numUniqueLengths = numel(uniqueLengths);

speakerIdx = 1;
f = zeros(D,K);
for uniqueLengthIdx = 1:numUniqueLengths
    idx = find(utterancePerSpeaker==uniqueLengths(uniqueLengthIdx));
    temp = {};
    for speakerIdxWithinUniqueLength = 1:numel(idx)
        rho = ivectors(idx(speakerIdxWithinUniqueLength));
        temp = [temp;rho]; %#ok<AGROW>

        f(:,speakerIdx) = sum(rho{:},2);
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        speakerIdx = speakerIdx+1;
    end
    ivectorsSorted{uniqueLengthIdx} = temp; %#ok<SAGROW> 
end

Initialize the eigenvoices matrix, V, and the inverse noise variance term, Λ.

V = randn(D,numEigenVoices);
Lambda = pinv(S/N);

Specify the number of iterations for the EM algorithm and whether or not to apply the minimum
divergence.

numIter = ;

minimumDivergence = ;

Train the G-PLDA model using the EM algorithm described in [13] on page 1-600.

for iter = 1:numIter
    % EXPECTATION
    gamma = zeros(numEigenVoices,numEigenVoices);
    EyTotal = zeros(numEigenVoices,K);
    R = zeros(numEigenVoices,numEigenVoices);
    
    idx = 1;
    for lengthIndex = 1:numUniqueLengths
        ivectorLength = uniqueLengths(lengthIndex);
        
        % Isolate i-vectors of the same given length
        iv = ivectorsSorted{lengthIndex};
        
        % Calculate M
        M = pinv(ivectorLength*(V'*(Lambda*V)) + eye(numEigenVoices)); % Equation (A.7) in [13]
        
        % Loop over each speaker for the current i-vector length
        for speakerIndex = 1:numel(iv)
            
            % First moment of latent variable for V
            Ey = M*V'*Lambda*f(:,idx); % Equation (A.8) in [13]
            
            % Calculate second moment.
            Eyy = Ey * Ey';
            
            % Update Ryy 
            R = R + ivectorLength*(M + Eyy); % Equation (A.13) in [13]
            
            % Append EyTotal
            EyTotal(:,idx) = Ey;
            idx = idx + 1;
            
            % If using minimum divergence, update gamma.
            if minimumDivergence
                gamma = gamma + (M + Eyy); % Equation (A.18) in [13]
            end
        end
    end
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    % Calculate T
    TT = EyTotal*f'; % Equation (A.12) in [13]
    
    % MAXIMIZATION
    V = TT'*pinv(R); % Equation (A.16) in [13]
    Lambda = pinv((S - V*TT)/N); % Equation (A.17) in [13]

    % MINIMUM DIVERGENCE
    if minimumDivergence
        gamma = gamma/K; % Equation (A.18) in [13]
        V = V*chol(gamma,'lower');% Equation (A.22) in [13]
    end
end

Once you've trained the G-PLDA model, you can use it to calculate a score based on the log-likelihood
ratio as described in [14] on page 1-600. Given two i-vectors that have been centered, whitened, and
length-normalized, the score is calculated as:

score w1, wt = w1
T wt

T Σ + VVT VVT

VVT Σ + VVT
w1 wt −w1

T Σ + VVT −1w1−wt
T Σ + VVT −1wt + C

where w1 and wt are the enrollment and test i-vectors, Σ is the variance matrix of the noise term, V is
the eigenvoice matrix. The C term are factored-out constants and can be dropped in practice.

speakerIdx = ;

utteranceIdx = ;
w1 = ivectors{speakerIdx}(:,utteranceIdx);

speakerIdx = ;

utteranceIdx = ;
wt = ivectors{speakerIdx}(:,utteranceIdx);

VVt = V*V';
SigmaPlusVVt = pinv(Lambda) + VVt;

term1 = pinv([SigmaPlusVVt VVt;VVt SigmaPlusVVt]);
term2 = pinv(SigmaPlusVVt);

w1wt = [w1;wt];
score = w1wt'*term1*w1wt - w1'*term2*w1 - wt'*term2*wt

score = 56.2336

In practice, the test i-vectors, and depending on your system, the enrollment ivectors, are not used in
the training of the G-PLDA model. In the following evaluation section, you use previously unseen data
for enrollment and verification. The supporting function, gpldaScore on page 1-598 encapsulates the
scoring steps above, and additionally performs centering, whitening, and normalization. Save the
trained G-PLDA model as a struct for use with the supporting function gpldaScore.

gpldaModel = struct(mu=mu, ...
                    WhiteningMatrix=W, ...
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                    EigenVoices=V, ...
                    Sigma=pinv(Lambda));

Enroll

Enroll new speakers that were not in the training data set.

Create i-vectors for each file for each speaker in the enroll set using the this sequence of steps:

1 Feature Extraction
2 Baum-Welch Statistics: Determine the zeroth and first order statistics
3 i-vector Extraction
4 Intersession compensation

Then average the i-vectors across files to create an i-vector model for the speaker. Repeat the for
each speaker.

speakers = unique(adsEnroll.Labels);
numSpeakers = numel(speakers);
enrolledSpeakersByIdx = cell(numSpeakers,1);
tic
parfor speakerIdx = 1:numSpeakers
    % Subset the datastore to the speaker you are adapting.
    adsPart = subset(adsEnroll,adsEnroll.Labels==speakers(speakerIdx));
    numFiles = numel(adsPart.Files);
    
    ivectorMat = zeros(size(projectionMatrix,1),numFiles);
    for fileIdx = 1:numFiles
        audioData = read(adsPart);
        
        % Extract features
        Y = helperFeatureExtraction(audioData,afe,normFactors);
        
        % Compute a posteriori log-likelihood
        logLikelihood = helperGMMLogLikelihood(Y,ubm);
        
        % Compute a posteriori normalized probability
        amax = max(logLikelihood,[],1);
        logLikelihoodSum = amax + log(sum(exp(logLikelihood-amax),1));
        gamma = exp(logLikelihood - logLikelihoodSum)';
        
        % Compute Baum-Welch statistics
        n = sum(gamma,1);
        f = Y * gamma - n.*(ubmMu);
        
        %i-vector Extraction
        w = pinv(I + (TS.*repelem(n(:),numFeatures))' * T) * TSi * f(:);

        % Intersession Compensation
        w = projectionMatrix*w;

        ivectorMat(:,fileIdx) = w;
    end
    % i-vector model
    enrolledSpeakersByIdx{speakerIdx} = mean(ivectorMat,2);
end
disp("Speakers enrolled (" + round(toc,2) + " seconds).")
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Speakers enrolled (0.44 seconds).

For bookkeeping purposes, convert the cell array of i-vectors to a structure, with the speaker IDs as
fields and the i-vectors as values

enrolledSpeakers = struct;
for s = 1:numSpeakers
    enrolledSpeakers.(string(speakers(s))) = enrolledSpeakersByIdx{s};
end

Verification

Specify either the CSS or G-PLDA scoring method.

scoringMethod = ;

False Rejection Rate (FRR)

The speaker false rejection rate (FRR) is the rate that a given speaker is incorrectly rejected. Create
an array of scores for enrolled speaker i-vectors and i-vectors of the same speaker.

speakersToTest = unique(adsDET.Labels);
numSpeakers = numel(speakersToTest);
scoreFRR = cell(numSpeakers,1);
tic
parfor speakerIdx = 1:numSpeakers
    adsPart = subset(adsDET,adsDET.Labels==speakersToTest(speakerIdx));
    numFiles = numel(adsPart.Files);
    
    ivectorToTest = enrolledSpeakers.(string(speakersToTest(speakerIdx))); %#ok<PFBNS> 
    
    score = zeros(numFiles,1);
    for fileIdx = 1:numFiles
        audioData = read(adsPart);
        
        % Extract features
        Y = helperFeatureExtraction(audioData,afe,normFactors);
        
        % Compute a posteriori log-likelihood
        logLikelihood = helperGMMLogLikelihood(Y,ubm);
        
        % Compute a posteriori normalized probability
        amax = max(logLikelihood,[],1);
        logLikelihoodSum = amax + log(sum(exp(logLikelihood-amax),1));
        gamma = exp(logLikelihood - logLikelihoodSum)';
        
        % Compute Baum-Welch statistics
        n = sum(gamma,1);
        f = Y * gamma - n.*(ubmMu);
        
        % Extract i-vector
        w = pinv(I + (TS.*repelem(n(:),numFeatures))' * T) * TSi * f(:);
        
        % Intersession Compensation
        w = projectionMatrix*w;
        
        % Score
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        if strcmpi(scoringMethod,"CSS")
            score(fileIdx) = dot(ivectorToTest,w)/(norm(w)*norm(ivectorToTest));
        else
            score(fileIdx) = gpldaScore(gpldaModel,w,ivectorToTest);
        end
    end
    scoreFRR{speakerIdx} = score;
end
disp("FRR calculated (" + round(toc,2) + " seconds).")

FRR calculated (20.77 seconds).

False Acceptance Rate (FAR)

The speaker false acceptance rate (FAR) is the rate that utterances not belonging to an enrolled
speaker are incorrectly accepted as belonging to the enrolled speaker. Create an array of scores for
enrolled speakers and i-vectors of different speakers.

speakersToTest = unique(adsDET.Labels);
numSpeakers = numel(speakersToTest);
scoreFAR = cell(numSpeakers,1);
tic
parfor speakerIdx = 1:numSpeakers
    adsPart = subset(adsDET,adsDET.Labels~=speakersToTest(speakerIdx));
    numFiles = numel(adsPart.Files);
    
    ivectorToTest = enrolledSpeakers.(string(speakersToTest(speakerIdx))); %#ok<PFBNS> 
    score = zeros(numFiles,1);
    for fileIdx = 1:numFiles
        audioData = read(adsPart);
        
        % Extract features
        Y = helperFeatureExtraction(audioData,afe,normFactors);
        
        % Compute a posteriori log-likelihood
        logLikelihood = helperGMMLogLikelihood(Y,ubm);
        
        % Compute a posteriori normalized probability
        amax = max(logLikelihood,[],1);
        logLikelihoodSum = amax + log(sum(exp(logLikelihood-amax),1));
        gamma = exp(logLikelihood - logLikelihoodSum)';
        
        % Compute Baum-Welch statistics
        n = sum(gamma,1);
        f = Y * gamma - n.*(ubmMu);
        
        % Extract i-vector
        w = pinv(I + (TS.*repelem(n(:),numFeatures))' * T) * TSi * f(:);
        
        % Intersession compensation
        w = projectionMatrix * w;
        
        % Score
        if strcmpi(scoringMethod,"CSS")
            score(fileIdx) = dot(ivectorToTest,w)/(norm(w)*norm(ivectorToTest));
        else
            score(fileIdx) = gpldaScore(gpldaModel,w,ivectorToTest);
        end
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    end
    scoreFAR{speakerIdx} = score;
end
disp("FAR calculated (" + round(toc,2) + " seconds).")

FAR calculated (58.14 seconds).

Equal Error Rate (EER)

To compare multiple systems, you need a single metric that combines the FAR and FRR performance.
For this, you determine the equal error rate (EER), which is the threshold where the FAR and FRR
curves meet. In practice, the EER threshold might not be the best choice. For example, if speaker
verification is used as part of a multi-authentication approach for wire transfers, FAR would most
likely be more heavily weighted than FRR.

amin = min(cat(1,scoreFRR{:},scoreFAR{:}));
amax = max(cat(1,scoreFRR{:},scoreFAR{:}));

thresholdsToTest = linspace(amin,amax,1000);

% Compute the FRR and FAR for each of the thresholds.
if strcmpi(scoringMethod,"CSS")
    % In CSS, a larger score indicates the enroll and test ivectors are
    % similar.
    FRR = mean(cat(1,scoreFRR{:})<thresholdsToTest);
    FAR = mean(cat(1,scoreFAR{:})>thresholdsToTest);
else
    % In G-PLDA, a smaller score indicates the enroll and test ivectors are
    % similar.
    FRR = mean(cat(1,scoreFRR{:})>thresholdsToTest);
    FAR = mean(cat(1,scoreFAR{:})<thresholdsToTest);
end

[~,EERThresholdIdx] = min(abs(FAR - FRR));
EERThreshold = thresholdsToTest(EERThresholdIdx);
EER = mean([FAR(EERThresholdIdx),FRR(EERThresholdIdx)]);

figure
plot(thresholdsToTest,FAR,"k", ...
     thresholdsToTest,FRR,"b", ...
     EERThreshold,EER,"ro",MarkerFaceColor="r")
title(["Equal Error Rate = " + round(EER,4),"Threshold = " + round(EERThreshold,4)])
xlabel("Threshold")
ylabel("Error Rate")
legend("False Acceptance Rate (FAR)","False Rejection Rate (FRR)","Equal Error Rate (EER)",Location="best")
grid on
axis tight
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Supporting Functions

Feature Extraction and Normalization
function [features,numFrames] = helperFeatureExtraction(audioData,afe,normFactors)
    % Input:
    % audioData   - column vector of audio data
    % afe         - audioFeatureExtractor object
    % normFactors - mean and standard deviation of the features used for normalization. 
    %               If normFactors is empty, no normalization is applied.
    %
    % Output
    % features    - matrix of features extracted
    % numFrames   - number of frames (feature vectors) returned
    
    % Normalize
    audioData = audioData/max(abs(audioData(:)));
    
    % Protect against NaNs
    audioData(isnan(audioData)) = 0;
    
    % Isolate speech segment
    idx = detectSpeech(audioData,afe.SampleRate);
    features = [];
    for ii = 1:size(idx,1)
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        f = extract(afe,audioData(idx(ii,1):idx(ii,2)));
        features = [features;f]; %#ok<AGROW> 
    end

    % Feature normalization
    if ~isempty(normFactors)
        features = (features-normFactors.Mean')./normFactors.STD';
    end
    features = features';
    
    % Cepstral mean subtraction (for channel noise)
    if ~isempty(normFactors)
        features = features - mean(features,"all");
    end
    
    numFrames = size(features,2);
end

Gaussian Multi-Component Mixture Log-Likelihood

function L = helperGMMLogLikelihood(x,gmm)
    xMinusMu = repmat(x,1,1,numel(gmm.ComponentProportion)) - permute(gmm.mu,[1,3,2]);
    permuteSigma = permute(gmm.sigma,[1,3,2]);
    
    Lunweighted = -0.5*(sum(log(permuteSigma),1) + sum(xMinusMu.*(xMinusMu./permuteSigma),1) + size(gmm.mu,1)*log(2*pi));
    
    temp = squeeze(permute(Lunweighted,[1,3,2]));
    if size(temp,1)==1
        % If there is only one frame, the trailing singleton dimension was
        % removed in the permute. This accounts for that edge case.
        temp = temp';
    end
    
    L = temp + log(gmm.ComponentProportion)';
end

G-PLDA Score

function score = gpldaScore(gpldaModel,w1,wt)
% Center the data
w1 = w1 - gpldaModel.mu;
wt = wt - gpldaModel.mu;

% Whiten the data
w1 = gpldaModel.WhiteningMatrix*w1;
wt = gpldaModel.WhiteningMatrix*wt;

% Length-normalize the data
w1 = w1./vecnorm(w1);
wt = wt./vecnorm(wt);

% Score the similarity of the i-vectors based on the log-likelihood.
VVt = gpldaModel.EigenVoices * gpldaModel.EigenVoices';
SVVt = gpldaModel.Sigma + VVt;

term1 = pinv([SVVt VVt;VVt SVVt]);
term2 = pinv(SVVt);
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w1wt = [w1;wt];
score = w1wt'*term1*w1wt - w1'*term2*w1 - wt'*term2*wt;
end

References

[1] Reynolds, Douglas A., et al. "Speaker Verification Using Adapted Gaussian Mixture Models."
Digital Signal Processing, vol. 10, no. 1–3, Jan. 2000, pp. 19–41. DOI.org (Crossref), doi:10.1006/
dspr.1999.0361.

[2] Kenny, Patrick, et al. "Joint Factor Analysis Versus Eigenchannels in Speaker Recognition." IEEE
Transactions on Audio, Speech and Language Processing, vol. 15, no. 4, May 2007, pp. 1435–47.
DOI.org (Crossref), doi:10.1109/TASL.2006.881693.

[3] Kenny, P., et al. "A Study of Interspeaker Variability in Speaker Verification." IEEE Transactions on
Audio, Speech, and Language Processing, vol. 16, no. 5, July 2008, pp. 980–88. DOI.org (Crossref),
doi:10.1109/TASL.2008.925147.

[4] Dehak, Najim, et al. "Front-End Factor Analysis for Speaker Verification." IEEE Transactions on
Audio, Speech, and Language Processing, vol. 19, no. 4, May 2011, pp. 788–98. DOI.org (Crossref),
doi:10.1109/TASL.2010.2064307.

[5] Matejka, Pavel, Ondrej Glembek, Fabio Castaldo, M.j. Alam, Oldrich Plchot, Patrick Kenny, Lukas
Burget, and Jan Cernocky. "Full-Covariance UBM and Heavy-Tailed PLDA in i-Vector Speaker
Verification." 2011 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2011. https://doi.org/10.1109/icassp.2011.5947436.

[6] Snyder, David, et al. "X-Vectors: Robust DNN Embeddings for Speaker Recognition." 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2018, pp.
5329–33. DOI.org (Crossref), doi:10.1109/ICASSP.2018.8461375.

[7] Signal Processing and Speech Communication Laboratory. Accessed December 12, 2019. https://
www.spsc.tugraz.at/databases-and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-
technology.html.

[8] Variani, Ehsan, et al. "Deep Neural Networks for Small Footprint Text-Dependent Speaker
Verification." 2014 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2014, pp. 4052–56. DOI.org (Crossref), doi:10.1109/ICASSP.2014.6854363.

[9] Dehak, Najim, Réda Dehak, James R. Glass, Douglas A. Reynolds and Patrick Kenny. “Cosine
Similarity Scoring without Score Normalization Techniques.” Odyssey (2010).

 Speaker Verification Using i-Vectors

1-599

https://www.spsc.tugraz.at/databases-and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html.
https://www.spsc.tugraz.at/databases-and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html.
https://www.spsc.tugraz.at/databases-and-tools/ptdb-tug-pitch-tracking-database-from-graz-university-of-technology.html.


[10] Verma, Pulkit, and Pradip K. Das. “I-Vectors in Speech Processing Applications: A Survey.”
International Journal of Speech Technology, vol. 18, no. 4, Dec. 2015, pp. 529–46. DOI.org (Crossref),
doi:10.1007/s10772-015-9295-3.

[11] D. Garcia-Romero and C. Espy-Wilson, “Analysis of I-vector Length Normalization in Speaker
Recognition Systems.” Interspeech, 2011, pp. 249–252.

[12] Kenny, Patrick. "Bayesian Speaker Verification with Heavy-Tailed Priors". Odyssey 2010 - The
Speaker and Language Recognition Workshop, Brno, Czech Republic, 2010.

[13] Sizov, Aleksandr, Kong Aik Lee, and Tomi Kinnunen. “Unifying Probabilistic Linear Discriminant
Analysis Variants in Biometric Authentication.” Lecture Notes in Computer Science Structural,
Syntactic, and Statistical Pattern Recognition, 2014, 464–75. https://doi.org/
10.1007/978-3-662-44415-3_47.

[14] Rajan, Padmanabhan, Anton Afanasyev, Ville Hautamäki, and Tomi Kinnunen. 2014. “From Single
to Multiple Enrollment I-Vectors: Practical PLDA Scoring Variants for Speaker Verification.” Digital
Signal Processing 31 (August): 93–101. https://doi.org/10.1016/j.dsp.2014.05.001.

1 Audio Toolbox Examples

1-600



i-vector Score Normalization

An i-vector system outputs a raw score specific to the data and parameters used to develop the
system. This makes interpreting the score and finding a consistent decision threshold for verification
tasks difficult.

To address these difficulties, researchers developed score normalization and score calibration
techniques.

• In score normalization, raw scores are normalized in relation to an 'imposter cohort'. Score
normalization occurs before evaluating the detection error tradeoff and can improve the accuracy
of a system and its ability to adapt to new data.

• In score calibration, raw scores are mapped to probabilities, which are used to better understand
the system's confidence in decisions.

In this example, you apply score normalization to an i-vector system. To learn about score calibration,
see “i-vector Score Calibration” on page 1-620.

For example purposes, you use cosine similarity scoring (CSS) throughout this example. Probabilistic
linear discriminant analysis (PLDA) scoring is also improved by normalization, although less
dramatically.

Download i-vector System and Data Set

To download a pretrained i-vector system suitable for speaker recognition, call
speakerRecognition. The ivectorSystem returned was trained on the LibriSpeech data set,
which consists of English-language 16 kHz recordings.

ivs = speakerRecognition();

The pretrained i-vector system achieves an equal error rate (EER) around 6.73% using CSS on the
LibriSpeech test set. The EER achieved using PLDA is considerably better. However, because CSS is
simpler, for the purposes of this example you investigate CSS only.

detectionErrorTradeoff(ivs)
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The error rate on the LibriSpeech test set, and the accompanying default decision threshold for
speaker verification, do not extend well to unseen data. To confirm this, download the PTDB-TUG [3]
on page 1-619 data set. The supporting function, loadDataset on page 1-612, downloads the data
set and then resamples it from 48 kHz to 16 kHz, which is the sample rate that the i-vector system
was trained on. The loadDataset function returns four audioDatastore objects:

• adsEnroll - Contains files to enroll speakers into i-vector system.
• adsTest - Contains files to spot-check performance of the i-vector system.
• adsDET - Contains a large set of files to analyze the detection error tradeoff of the i-vector system.
• adsImposter - Contains a set of speakers not included in the other datastores. This set is used for

score normalization.

targetSampleRate = ivs.SampleRate;
[adsEnroll,adsTest,adsDET,adsImposter] = loadDataset(targetSampleRate);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

Enroll speakers from the enrollment dataset. When you enroll speakers, an i-vector template is
created for each unique speaker label.

enroll(ivs,adsEnroll,adsEnroll.Labels)
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Extracting i-vectors ...done.
Enrolling i-vectors ...................done.
Enrollment complete.

enrolledLabels = categorical(ivs.EnrolledLabels.Properties.RowNames);

Spot-check the false rejection rate (FRR) and the false acceptance rate (FAR) using the verify
object function. The verify object function scores the i-vector derived from the audio input against
the i-vector template corresponding to the specified label. The function then compares the score to a
decision threshold and either accepts or rejects the proposition that the audio input belongs to the
specified speaker label. The default decision threshold corresponds to the equal error rate (EER)
determined the last time the detection error tradeoff was evaluated.

FA = 0;
FR = 0;
reset(adsTest)
numToSpotCheck = 50;
for ii = 1:numToSpotCheck
    [audioIn,fileInfo] = read(adsTest);
    targetLabel = fileInfo.Label;

    FR = FR + ~verify(ivs,audioIn,targetLabel,"css");

    nontargetIdx = find(~ismember(enrolledLabels,targetLabel));
    nontargetLabel = enrolledLabels(nontargetIdx(randperm(numel(nontargetIdx),1)));

    FA = FA + verify(ivs,audioIn,nontargetLabel,"css");
end
FRR = FR./numToSpotCheck;
FAR = FA./numToSpotCheck;
disp(["False Rejection Rate = " + round(100*FRR,2) + " (%)"; ...
    "False Acceptance Rate = " + round(100*FAR,2) + " (%)"])

    "False Rejection Rate = 0 (%)"
    "False Acceptance Rate = 38 (%)"

The performance on this new dataset does not match performance reported when training and
evaluating the i-vector system on the LibriSpeech data set. Also, the default decision threshold on the
LibriSpeech data set does not correspond to the equal error rate on the PTDB-TUG data set.

To better evaluate the system's performance, and to choose a new decision threshold, call
detectionErrorTradeoff again. This time call detectionErrorTradeoff with new evaluation
data that is more suited to the target application. The evaluation data should be as close as possible
to the data that your deployed system encounters in terms of vocabulary, prosody, signal duration,
noise level, noise type, accents, channel characteristics, and so on.

detectionErrorTradeoff(ivs,adsDET,adsDET.Labels,Scorer="css")

Extracting i-vectors ...done.
Scoring i-vector pairs ...done.
Detection error tradeoff evaluation complete.
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Spot-check the FAR and FRR of the updated system. The FAR and FRR are now reasonably close to
the EER reported in the detection error tradeoff analysis. Note that calling
detectionErrorTradeoff does not modify the i-vector extraction or scoring, only the default
decision threshold for speaker verification. In the following sections, you enhance an i-vector system
to perform score normalization. Score normalization helps an i-vector system extend to new datasets
without the need to reevaluate the detection error tradeoff. Score normalization also helps bridge the
performance gap between training a system and deploying it.

FA = 0;
FR = 0;
reset(adsTest)
for ii = 1:numToSpotCheck
    [audioIn,fileInfo] = read(adsTest);
    trueLabel = fileInfo.Label;

    FR = FR + ~verify(ivs,audioIn,trueLabel,"css");

    imposterIdx = find(~ismember(enrolledLabels,trueLabel));
    imposter = enrolledLabels(imposterIdx(randperm(numel(imposterIdx),1)));

    FA = FA + verify(ivs,audioIn,imposter,"css");
end
FRR = FR./numToSpotCheck;
FAR = FA./numToSpotCheck;
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disp(["False Rejection Rate = " + round(100*FRR,2) + " (%)"; ...
    "False Acceptance Rate = " + round(100*FAR,2) + " (%)"])

    "False Rejection Rate = 4 (%)"
    "False Acceptance Rate = 8 (%)"

Score Normalization

Score normalization is a common approach to make target and non-target score distributions across
speakers more similar. This enables a system to set a decision threshold that is closer to optimal for
more speakers. In this example, you explore adaptive symmetric normalization variant 1 (S-norm1)
[1] on page 1-618.

To motivate score normalization, first inspect the target and non-target score distributions for two
enrolled labels against the same test cohort.

Isolate two template i-vectors corresponding to two speakers.

enrolledIvecs = cat(2,ivs.EnrolledLabels.ivector{1},ivs.EnrolledLabels.ivector{9});
label_e = categorical([ivs.EnrolledLabels.Properties.RowNames(1),ivs.EnrolledLabels.Properties.RowNames(9)]);

Extract i-vectors from the test set. The test set labels overlap with the enrolled labels.

testIvecs = ivector(ivs,adsTest);
label_t = adsTest.Labels;

Create indexing vectors to keep track of which test i-vectors correspond to which enrolled label. In
the targets matrix, the columns correspond to the enrolled speakers, and the rows correspond to
the test files. If the test label corresponds to the enrolled label, the value in the matrix is true,
otherwise, the value is false.

targets = [ismember(label_t,label_e(1)),ismember(label_t,label_e(2))];

Score the template i-vectors against the target and non-target i-vectors. The supporting function,
scoreTargets on page 1-614, scores all combinations of the enrolled i-vectors against the test i-
vectors and returns the scores separated into target scores (when the test and enroll labels are the
same) and non-target scores (when the test and enroll labels are different).

[targetScores,nontargetScores] = scoreTargets(enrolledIvecs,testIvecs,targets);

Use the supporting function, plotScoreDistributions on page 1-615, to display the target and
non-target scores for each of the enrolled speakers. Note that the equal error rate (where the target
and non-target distributions cross) is different for the two speakers. That is, assuming the equal error
rate is the goal of the system, a single decision threshold cannot capture the equal error rate for both
speakers.

plotScoreDistributions(targetScores,nontargetScores,Analyze="label")
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Analyze the score distributions using an EER plot. EER plots reveal the relationship between a
decision threshold and the probability of a false alarm or false rejection and are often analyzed to
determine a decision threshold.

plotEER(targetScores,nontargetScores,Analyze="label")
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Analyze Score Normalization on Two Speakers

In this example, you use adaptive symmetric normalization variant 1 (S-norm1) [1] on page 1-618. S-
norm1 computes an average of normalized scores from Z-norm (zero score normalization) and T-norm
(test score normalization).

s e, t s− norm1 = 1
2 ⋅

s e, t − μ Se ξe
top

σ Se ξe
top +

s e, t − μ St ξt
top

σ St ξt
top

where

• s e, t  is the raw score based on the enrollment e and test t i-vectors.
• ξe

top is the set of the top-scoring imposter cohort with enrolled i-vector, e.
• ξt

top is the set of the top-scoring imposter cohort with test i-vector, t.

• Se = s e, εi i = 1
N , is the set of cohort scores formed by scoring enrollment utterance e with the

top files from imposter cohort ξ.
• Se ξe

top = s e, ε ∀ε ∈ ξe
top, is the set of the top scores between an enrolled i-vector and imposter i-

vectors.
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• St ξt
top = s e, ε ∀ε ∈ ξt

top, is the set of the top scores between a test i-vector and imposter i-
vectors.

• μ S  and σ S  are the mean and standard deviation of S.

To begin, extract i-vectors from the imposter cohort (ξ).

imposterIvecs = ivector(ivs,adsImposter);

Score the enrolled i-vectors against the imposter cohort (Se ξe ) and then isolate only the K best
scores (Se ξe

top ). [1] on page 1-618 suggests using the top 200-500 scoring files to create a speaker-

dependent cohort. Finally, calculate the mean (μ Se ξe
top ) and standard deviation (σ Se ξe

top ).

topK = ;

imposterScores = sort(cosineSimilarityScore(enrolledIvecs,imposterIvecs),"descend");
imposterScores = imposterScores(1:min(topK,size(imposterScores,1)),:);
mu_e = mean(imposterScores,1);
std_e = std(imposterScores,[],1);

Calculate μ St ξt
top  and σ St ξt

top  as above.

imposterScores = sort(cosineSimilarityScore(testIvecs,imposterIvecs),"descend");
imposterScores = imposterScores(1:min(topK,size(imposterScores,1)),:);
mu_t = mean(imposterScores,1);
std_t = std(imposterScores,[],1);

Score the test and enrollment i-vectors again, this time specifying the required normalization factors
to perform adaptive s-norm1. The supporting function, scoreTargets on page 1-614, applies the
normalization on the raw scores.

normFactorsSe = struct(mu=mu_e,std=std_e);
normFactorsSt = struct(mu=mu_t,std=std_t);

[targetScores,nontargetScores] = scoreTargets(enrolledIvecs,testIvecs,targets, ...
    NormFactorsSe=normFactorsSe,NormFactorsSt=normFactorsSt);

Plot the score distributions of the scores after applying adaptive s-norm1.

plotScoreDistributions(targetScores,nontargetScores,Analyze="label")
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Analyze the equal error rate plots after applying adaptive s-norm1. The thresholds corresponding to
the equal error rates for the two speakers are now closer together.

plotEER(targetScores,nontargetScores,Analyze="label")
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Analyze Score Normalization on Detection Error Tradeoff Set

Extract i-vectors from the DET set.

testIvecs = ivector(ivs,adsDET);

Place all of the enrolled i-vectors into a matrix.

enrolledIvecs = cat(2,ivs.EnrolledLabels.ivector{:});

Calculate the normalization statistics for each enrolled and test i-vector. The supporting function,
getNormFactors on page 1-618, performs the same operations as in Analyze Score Normalization on
Two Speakers on page 1-607.

topK = ;

normFactorsSe = getNormFactors(enrolledIvecs,imposterIvecs,TopK=topK);
normFactorsSt = getNormFactors(testIvecs,imposterIvecs,TopK=topK);

Create a targets matrix indicating which i-vector pairs have corresponding labels.

targets = true(numel(adsDET.Labels),height(ivs.EnrolledLabels));
for ii = 1:height(ivs.EnrolledLabels)
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    targets(:,ii) = ismember(adsDET.Labels,ivs.EnrolledLabels.Properties.RowNames(ii));
end

Score each enrollment i-vector against each test i-vector.

[targetScores,nontargetScores] = scoreTargets(enrolledIvecs,testIvecs,targets, ...
    NormFactorsSe=normFactorsSe,NormFactorsSt=normFactorsSt);

Plot the target and non-target score distributions for the group.

plotScoreDistributions(targetScores,nontargetScores,Analyze="group")

Plot the equal error rate of this new system. The equal error rate after applying adaptive s-norm1 is
approximately 5 %. The equal error rate prior to adaptive s-norm1 is approximately 8 %.

plotEER(targetScores,nontargetScores,Analyze="group")
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Supporting Functions

Load Dataset

function [adsEnroll,adsTest,adsDET,adsImposter] = loadDataset(targetSampleRate)
%LOADDATASET Load PTDB-TUG data set
% [adsEnroll,adsTest,adsDET,adsImposter] = loadDataset(targetSampleteRate)
% downloads the PTDB-TUG data set, resamples it to the specified target
% sample rate and save the results in your current folder. The function
% then creates and returns four audioDatastore objects. The enrollment set
% includes two utterances per speaker. The imposter set does not overlap
% with the other data sets.

% Copyright 2021 The MathWorks, Inc.

arguments
    targetSampleRate (1,1) {mustBeNumeric,mustBePositive}
end

url = "https://www2.spsc.tugraz.at/databases/PTDB-TUG/SPEECH_DATA_ZIPPED.zip";
dataFolder = tempdir;
dataset = fullfile(dataFolder,"PTDB-TUG");
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% Download and unzip the dataset if it doesn't exist
if ~datasetExists(dataset)
    disp("Downloading PTDB-TUG (3.9 G) ...")
    unzip(url,dataset)
end

% Resample the dataset and save to current folder if it doesn't already
% exist.
if ~isfolder(fullfile(pwd,"MIC"))
    ads = audioDatastore([fullfile(dataset,"SPEECH DATA","FEMALE","MIC"),fullfile(dataset,"SPEECH DATA","MALE","MIC")], ...
        IncludeSubfolders=true, ...
        FileExtensions=".wav", ...
        LabelSource="foldernames");
    reduceDataset = false;
    if reduceDataset
        ads = splitEachLabel(ads,55);
    end
    adsTransform = transform(ads,@(x,y)fileResampler(x,y,targetSampleRate),IncludeInfo=true);

    writeall(adsTransform,pwd,OutputFormat="flac",UseParallel=~isempty(ver("parallel")))

end

% Create a datastore that points to the resampled dataset. Use the folder
% names as the labels.
ads = audioDatastore(fullfile(pwd,"MIC"),IncludeSubfolders=true,LabelSource="foldernames");

% Split the data set into enrollment, test, DET, and imposter sets.
imposterLabels = categorical(["M05","M10","F05","F10"]);
adsImposter = subset(ads,ismember(ads.Labels,imposterLabels));

adsDev = subset(ads,~ismember(ads.Labels,imposterLabels));
rng default
numToEnroll = 2;
[adsEnroll,adsDev] = splitEachLabel(adsDev,numToEnroll);

numToTest = 50;
[adsTest,adsDET] = splitEachLabel(adsDev,numToTest);
end

File Resampler

function [audioOut,adsInfo] = fileResampler(audioIn,adsInfo,targetSampleRate)
%FILERESAMPLER Resample audio files
% [audioOut,adsInfo] = fileResampler(audioIn,adsInfo,targetSampleRate)
% resamples the input audio to the target sample rate and updates the info
% passed through the datastore.

% Copyright 2021 The MathWorks, Inc.

arguments
    audioIn (:,1) {mustBeA(audioIn,["single","double"])}
    adsInfo (1,1) {mustBeA(adsInfo,"struct")}
    targetSampleRate (1,1) {mustBeNumeric,mustBePositive}
end

% Isolate the original sample rate
originalSampleRate = adsInfo.SampleRate;
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% Resample if necessary
if originalSampleRate ~= targetSampleRate
    audioOut = resample(audioIn,targetSampleRate,originalSampleRate);
    amax = max(abs(audioOut));
    if max(amax>1)
        audioOut = audioOut./amax;
    end
end

% Update the info passed through the datastore
adsInfo.SampleRate = targetSampleRate;

end

Score Targets and Non-Targets

function [targetScores,nontargetScores] = scoreTargets(e,t,targetMap,nvargs)
%SCORETARGETS Score i-vector pairs
% [targetScores,nontargetScores] = scoreTargets(e,t,targetMap) exhaustively
% scores i-vectors in e against i-vectors in t. Specify e as an M-by-N
% matrix, where M corresponds to the i-vector dimension, and N corresponds
% to the number of i-vectors in e. Specify t as an M-by-P matrix, where P
% corresponds to the number of i-vectors in t. Specify targetMap as a
% P-by-N logical matrix that maps which i-vectors in e and t are target
% pairs (derived from the same speaker) and which i-vectors in e and t
% are non-target pairs (derived from different speakers). The
% outputs, targetScores and nontargetScores, are N-element cell arrays.
% Each cell contains a vector of scores between the i-vector in e and
% either all the targets or nontargets in t.
%
% [targetScores,nontargetScores] =
% scoreTargets(e,t,targetMap,NormFactorsSe=NFSe,NormFactorsSt=NFSt)
% normalizes the scores by the specified normalization statistics contained
% in structs NFSe and NFSt. If unspecified, no normalization is applied.

% Copyright 2021 The MathWorks, Inc.

arguments
    e (:,:) {mustBeA(e,["single","double"])}
    t (:,:) {mustBeA(t,["single","double"])}
    targetMap (:,:) {mustBeA(targetMap,"logical")}
    nvargs.NormFactorsSe = [];
    nvargs.NormFactorsSt = [];
end

% Score the i-vector pairs
scores = cosineSimilarityScore(e,t);

% Apply as-norm1 if normalization factors supplied
if ~isempty(nvargs.NormFactorsSe) && ~isempty(nvargs.NormFactorsSt)
    scores = 0.5*( (scores - nvargs.NormFactorsSe.mu)./nvargs.NormFactorsSe.std + (scores - nvargs.NormFactorsSt.mu')./nvargs.NormFactorsSt.std' );
end

% Separate the scores into targets and non-targets
targetScores = cell(size(targetMap,2),1);
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nontargetScores = cell(size(targetMap,2),1);
for ii = 1:size(targetMap,2)
    targetScores{ii} = scores(targetMap(:,ii),ii);
    nontargetScores{ii} = scores(~targetMap(:,ii),ii);
end
end

Cosine Similarity Score (CSS)
function scores = cosineSimilarityScore(a,b)
%COSINESIMILARITYSCORE Cosine similarity score
% scores = cosineSimilarityScore(a,b) scores matrix of i-vectors, a,
% against matrix of i-vectors b. Specify a as an M-by-N matrix of
% i-vectors. Specify b as an M-by-P matrix of i-vectors. scores is returned
% as a P-by-N matrix, where columns corresponds the i-vectors in a
% and rows corresponds to the i-vectors in b and the elements of the array
% are the cosine similarity scores between them.

% Copyright 2021 The MathWorks, Inc.

arguments
    a (:,:) {mustBeA(a,["single","double"])}
    b (:,:) {mustBeA(b,["single","double"])}
end

scores = squeeze(sum(a.*reshape(b,size(b,1),1,[]),1)./(vecnorm(a).*reshape(vecnorm(b),1,1,[])));
scores = scores';
end

Plot Score Distributions

function plotScoreDistributions(targetScores,nontargetScores,nvargs)
%PLOTSCOREDISTRIBUTIONS Plot target and non-target score distributions
% plotScoreDistribution(targetScores,nontargetScores) plots empirical
% estimations of the distribution for target scores and nontarget scores.
% Specify targetScores and nontargetScores as cell arrays where each
% element contains a vector of speaker-specific scores.
%
% plotScoreDistrubtions(targetScores,nontargetScores,Analyze=ANALYZE)
% specifies the scope for analysis as either 'label' or 'group'. If ANALYZE
% is set to 'label', then a score distribution plot is created for each
% label. If ANALYZE is set to 'group', then a score distribution plot is
% created for the entire group by combining scores across speakers. If
% unspecified, ANALYZE defaults to 'group'.

% Copyright 2021 The MathWorks, Inc.

arguments
    targetScores (1,:) cell
    nontargetScores (1,:) cell
    nvargs.Analyze (1,:) char {mustBeMember(nvargs.Analyze,{'label','group'})} = 'group'
end

% Combine all scores to determine good bins for analyzing both the target
% and non-target scores together.
allScores = cat(1,targetScores{:},nontargetScores{:});
[~,edges] = histcounts(allScores);
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% Determine the center of each bin for plotting purposes.
centers = movmedian(edges(:),2,Endpoints="discard");

if strcmpi(nvargs.Analyze,"group")
     % Plot the score distributions for the group.

    targetScoresBinCounts = histcounts(cat(1,targetScores{:}),edges);
    targetScoresBinProb = targetScoresBinCounts(:)./sum(targetScoresBinCounts);
    nontargetScoresBinCounts = histcounts(cat(1,nontargetScores{:}),edges);
    nontargetScoresBinProb = nontargetScoresBinCounts(:)./sum(nontargetScoresBinCounts);

    figure
    plot(centers,[targetScoresBinProb,nontargetScoresBinProb])
    title("Score Distributions")
    xlabel("Score")
    ylabel("Probability")
    legend(["target","non-target"],Location="northwest")
    axis tight

else

    % Create a tiled layout and plot the score distributions for each speaker.
    N = numel(targetScores);
    tiledlayout(N,1)
    for ii = 1:N
        targetScoresBinCounts = histcounts(targetScores{ii},edges);
        targetScoresBinProb = targetScoresBinCounts(:)./sum(targetScoresBinCounts);
        nontargetScoresBinCounts = histcounts(nontargetScores{ii},edges);
        nontargetScoresBinProb = nontargetScoresBinCounts(:)./sum(nontargetScoresBinCounts);

        nexttile
        hold on
        plot(centers,[targetScoresBinProb,nontargetScoresBinProb])
        title("Score Distribution for Speaker " + string(ii))
        xlabel("Score")
        ylabel("Probability")
        legend(["target","non-target"],Location="northwest")
        axis tight
    end
end
end

Plot Equal Error Rate (EER)

function plotEER(targetScores,nontargetScores,nvargs)
%PLOTEER Plot equal error rate (EER)
% plotEER(targetScores,nontargetScores) creates an equal error rate plot
% using the target scores and the non-target scores. Specify targetScores
% and nontargetScores as cell arrays where each element contains a vector
% of speaker-specific scores.
%
% plotEER(targetScores,nontargetScores,Analyze=ANALYZE) specifies the
% scope for analysis as either 'label' or 'group'. If ANALYZE is set to
% 'label', then an equal error rate plot is created for each label. If
% ANALYZE is set to 'group', then an equal error rate plot is created for
% the entire group by combining scores across speakers. If unspecified,
% ANALYZE defaults to 'group'.

1 Audio Toolbox Examples

1-616



% Copyright 2021 The MathWorks, Inc.

arguments
    targetScores (1,:) cell
    nontargetScores (1,:) cell
    nvargs.Analyze (1,:) char {mustBeMember(nvargs.Analyze,{'label','group'})} = 'group'
end

% Combine all scores to determine good bins for analyzing both the target
% and non-target scores together.
allScores = cat(1,targetScores{:},nontargetScores{:});
[~,edges] = histcounts(allScores,BinWidth=0.002);

% Determine the center of each bin for plotting purposes.
centers = movmedian(edges(:),2,Endpoints="discard");

if strcmpi(nvargs.Analyze,"group")
    % Plot the equal error rate for the group.

    targetScoresBinCounts = histcounts(cat(1,targetScores{:}),edges);
    targetScoresBinProb = targetScoresBinCounts(:)./sum(targetScoresBinCounts);
    nontargetScoresBinCounts = histcounts(cat(1,nontargetScores{:}),edges);
    nontargetScoresBinProb = nontargetScoresBinCounts(:)./sum(nontargetScoresBinCounts);

    targetScoresCDF = cumsum(targetScoresBinProb);
    nontargetScoresCDF = cumsum(nontargetScoresBinProb,"reverse");
    [~,idx] = min(abs(targetScoresCDF(:) - nontargetScoresCDF));

    figure
    plot(centers,[targetScoresCDF,nontargetScoresCDF])
    xline(centers(idx),"-",num2str(centers(idx),3),LabelOrientation="horizontal")
    legend(["FRR","FAR"],Location="best")
    xlabel("Threshold Score")
    ylabel("Error Rate")
    title(sprintf("Equal Error Plot, EER = %0.2f (%%)",100*mean([targetScoresCDF(idx);nontargetScoresCDF(idx)])))
    axis tight

else

    % Create a tiled layout and plot the equal error rate for each speaker.
    N = numel(targetScores);
    f = figure;
    tiledlayout(f,N,1,Padding="tight",TileSpacing="tight")
    for ii = 1:N
        targetScoresBinCounts = histcounts(targetScores{ii},edges);
        targetScoresBinProb = targetScoresBinCounts(:)./sum(targetScoresBinCounts);
        nontargetScoresBinCounts = histcounts(nontargetScores{ii},edges);
        nontargetScoresBinProb = nontargetScoresBinCounts(:)./sum(nontargetScoresBinCounts);

        targetScoresCDF = cumsum(targetScoresBinProb);
        nontargetScoresCDF = cumsum(nontargetScoresBinProb,"reverse");
        [~,idx] = min(abs(targetScoresCDF(:) - nontargetScoresCDF));

        nexttile
        plot(centers,[targetScoresCDF,nontargetScoresCDF])
        xline(centers(idx),"-",num2str(centers(idx),3),LabelOrientation="horizontal")
        legend(["FRR","FAR"],Location="southwest")
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        xlabel("Threshold Score")
        ylabel("Error Rate")
        title(sprintf("Equal Error Plot for Speaker " + string(ii) + ", EER = %0.2f (%%)", ...
            100*mean([targetScoresCDF(idx);nontargetScoresCDF(idx)])))
        axis tight
    end
end
end

Get Norm Factors

function normFactors = getNormFactors(w,imposterCohort,nvargs)
%GETNORMFACTORS Get norm factors
% normFactors = getNormFactors(w,imposterCohort) returns the mean and
% standard deviation of the scores between the i-vectors in w and the i-vectors
% in the imposter cohort. Specify w as a matrix of i-vectors. Specify
% imposterCohort as a matrix of i-vectors. Each column corresponds to an
% i-vector the same length as w.
%
% normFactors = getNormFactors(w,imposterCohort,TopK=TOPK) calculates the
% normalization statistics using only the top K highest scores. If
% unspecified, all scores are used.

% Copyright 2021 The MathWorks, Inc.

arguments
    w (:,:) {mustBeA(w,["single","double"])}
    imposterCohort (:,:) {mustBeA(imposterCohort,["single","double"])}
    nvargs.TopK (1,1) {mustBePositive} = inf
end
topK = min(ceil(nvargs.TopK),size(imposterCohort,2));

% Score the template i-vector against the imposter cohort.
imposterScores = cosineSimilarityScore(w,imposterCohort);

% Isolate the top K scores.
imposterScores = sort(imposterScores,"descend");
imposterScores = imposterScores(1:topK,:);

% Calculate the score normalization statistics
MU = mean(imposterScores,1);
STD = std(imposterScores,[],1);

% Return normalization statistics as a struct
normFactors = struct(mu=MU,std=STD);
end
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i-vector Score Calibration

An i-vector system outputs a raw score specific to the data and parameters used to develop the
system. This makes interpreting the score and finding a consistent decision threshold for verification
tasks difficult.

To address these difficulties, researchers developed score normalization and score calibration
techniques.

• In score normalization, raw scores are normalized in relation to an 'imposter cohort'. Score
normalization occurs before evaluating the detection error tradeoff and can improve the accuracy
of a system and its ability to adapt to new data.

• In score calibration, raw scores are mapped to probabilities, which in turn are used to better
understand the system's confidence in decisions.

In this example, you apply score calibration to an i-vector system. To learn about score normalization,
see “i-vector Score Normalization” on page 1-601.

For example purposes, you use cosine similarity scoring (CSS) throughout this example. The
interpretability of probabilistic linear discriminant analysis (PLDA) scoring is also improved by
calibration.

Starting in R2022a, you can use the calibrate method of ivectorSystem to calibrate both CSS
and PLDA scoring.

Download i-vector System and Data Set

To download a pretrained i-vector system suitable for speaker recognition, call
speakerRecognition. The ivectorSystem returned was trained on the LibriSpeech data set,
which consists of English-language 16 kHz recordings.

ivs = speakerRecognition;

Download the PTDB-TUG data set [1] on page 1-635. The supporting function, loadDataset on
page 1-627, downloads the data set and then resamples it from 48 kHz to 16 kHz, which is the
sample rate that the i-vector system was trained on. The loadDataset function returns these
audioDatastore objects:

• adsEnroll - Contains files to enroll speakers into the i-vector system.
• adsDev - Contains a large set of files to analyze the detection error tradeoff of the i-vector system,

and to spot-check performance.
• adsCalibrate - Contains a set of speakers used to calibrate the i-vector system. The calibration

set does not overlap with the enroll and dev sets.

targetSampleRate = ivs.SampleRate;
[adsEnroll,adsDev,adsCalibrate] = loadDataset(targetSampleRate);

Score Calibration

In score calibration, you apply a warping function to scores so that they are more easily and
consistently interpretable as measures of confidence. Generally, score calibration has no effect on the
performance of a verification system because the mapping is an affine transformation. The two most
popular approaches to calibration are Platt scaling and isotonic regression. Isotonic regression
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usually results in better performance, but is more prone to overfitting if the calibration data is too
small [2] on page 1-635.

In this example, you perform calibration using both Platt scaling and isotonic regression, and then
compare the calibrations using reliability diagrams.

Extract i-vectors

To properly calibrate a system, you must use data that does not overlap with the evaluation data.
Extract i-vectors from the calibration set. You will use these i-vectors to create a calibration warping
function.

calibrationIvecs = ivector(ivs,adsCalibrate);

Score i-vector Pairs

You will score each i-vector against each other i-vector to create a matrix of scores, some of which
correspond to target scores where both i-vectors belong to the same speaker, and some of which
correspond to non-target scores where the i-vectors belong to two different speakers. First, create a
targets matrix to keep track of which scores are target and which are non-target.

targets = true(size(calibrationIvecs,2),size(calibrationIvecs,2));
calibrationLabels = adsCalibrate.Labels;
for ii = 1:size(calibrationIvecs,2)
    targets(:,ii) = ismember(calibrationLabels,calibrationLabels(ii));
end

Discard the target scores that corresponds to the i-vector scored with itself by setting the
corresponding value in the target matrix to NaN. The supporting function, scoreTargets on page 1-
629, scores each valid i-vector pair and returns the results in cell arrays of target and non-target
scores.

targets = targets + diag(diag(targets)*nan);
[targetScores,nontargetScores] = scoreTargets(calibrationIvecs,calibrationIvecs,targets);

Use the supporting function, plotScoreDistrubtions on page 1-630, to plot the target and non-
target score distributions for the group. The scores range from around 0.64 to 1. In a properly
calibrated system, scores should range from 0 to 1. The job of calibrating a binary classification
system is to map the raw score to a score between 0 and 1. The calibrated score should be
interpretable as the probability that the score corresponds to a target pair.

plotScoreDistributions(targetScores,nontargetScores,Analyze="group")
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Platt Scaling

Platt scaling (also referred to as Platt calibration or logistic regression) works by fitting a logistic
regression model to a classifier's scores.

The supporting function logistic on page 1-633 implements a general logistic function defined as

p x = 1
1 + e B + Ax

where A and B are the scalar learned parameters.

The supporting function logRegCost on page 1-633 defines the cost function for logistic regression
as defined in [3] on page 1-635:

A, B
argmin

−∑
i

yilog pi + 1− yi log 1− pi

As described in [3] on page 1-635, the target values are modified from 0 and 1 to avoid overfitting:

y+ =
N+ + 1
N+ + 2; y− = 1

N−+ 2
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where y+ is the positive sample value and N+ is the number of positive samples, and y− is the
negative sample value and N− is the number of negative samples.

Create a vector of the raw target and non-target scores.

tS = cat(1,targetScores{:});
ntS = cat(1,nontargetScores{:});
x = [tS;ntS];

Create a vector of ideal target probabilities.

yplus = (numel(tS) + 1)./(numel(tS) + 2);
yminus = 1./(numel(ntS) + 2);
y = [yplus*ones(numel(tS),1);yminus*ones(numel(ntS),1)];

Use fminsearch to find the values of A and B that minimize the cost function.

init = [1,1];
AB = fminsearch(@(AB)logRegCost(y,x,AB),init);

Sort the scores in ascending order for visualization purposes.

[x,idx] = sort(x,"ascend");
trueLabel = [ones(numel(tS),1);zeros(numel(ntS),1)];
trueLabel = trueLabel(idx);

Use the supporting function calibrateScores on page 1-631 to calibrate the raw scores. Plot the
warping function that maps the raw scores to the calibrated scores. Also plot the target scores you
are modeling.

calibratedScores = calibrateScores(x,AB);

plot(x,trueLabel,"o")
hold on
plot(x,calibratedScores,LineWidth=1.5)
grid on
xlabel("Raw Score")
ylabel("Calibrated Score")
hold off
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Isotonic Regression

Isotonic regression fits a free-form line to observations with the only condition being that it is non-
decreasing (or non-increasing). The supporting function isotonicRegression on page 1-634 uses
the pool adjacent violators (PAV) algorithm [3] on page 1-635 for isotonic regression.

Call isotonicRegression with the raw score and true labels. The function outputs a struct
containing a map between raw scores and calibrated scores.

scoringMap = isotonicRegression(x,trueLabel);

Plot the raw score against the calibrated score. The line is the learned isotonic fit. The circles are the
data you are fitting.

plot(x,trueLabel,"o")
hold on
plot(scoringMap.Raw,scoringMap.Calibrated,LineWidth=1.5)
grid on
xlabel("Raw Score")
ylabel("Calibrated Score")
hold off
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Reliability Diagram

Reliability diagrams reveal reliability by plotting the mean of the predicted value against the known
fraction of positives. A system is reliable if the mean of the predicted value is equal to the fraction of
positives [4] on page 1-635.

Reliability must be assessed using a different data set than the one used to calibrate the system.
Extract i-vectors from the development data set, adsDev. The development data set has no speaker
overlap with the calibration data set.

devIvecs = ivector(ivs,adsDev);

Create a targets map and score all i-vector pairs.

devLabels = adsDev.Labels;
targets = true(size(devIvecs,2),size(devIvecs,2));
for ii = 1:size(devIvecs,2)
    targets(:,ii) = ismember(devLabels,devLabels(ii));
end
targets = targets + diag(diag(targets)*nan);

[targetScores,nontargetScores] = scoreTargets(devIvecs,devIvecs,targets);

Combine all the scores and labels for faster processing.
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ts = cat(1,targetScores{:});
nts = cat(1,nontargetScores{:});
scores = [ts;nts];
trueLabels = [true(numel(ts),1);false(numel(nts),1)];

Calibrate the scores using Platt scaling.

calibratedScoresPlattScaling = calibrateScores(scores,AB);

Calibrate the scores using isotonic regression.

calibratedScoresIsotonicRegression = calibrateScores(scores,scoringMap);

When interpreting the reliability diagram, values below the diagonal indicate that the system is
giving higher probability scores than it should be, and values above the diagonal indicate the system
is giving lower probability scores than it should. In both cases, increasing the amount of calibration
data, and using calibration data like the target application, should improve performance.

numBins = ;

Plot the reliability diagram for the i-vector system calibrated using Platt scaling.

reliabilityDiagram(trueLabels,calibratedScoresPlattScaling,numBins)

Plot the reliability diagram for the i-vector system calibrated using isotonic regression.
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reliabilityDiagram(trueLabels,calibratedScoresIsotonicRegression,numBins)

Supporting Functions

Load Dataset

function [adsEnroll,adsDev,adsCalibrate] = loadDataset(targetSampleRate)
%LOADDATASET Load PTDB-TUG data set
% [adsEnroll,adsDev,adsCalibrate] = loadDataset(targetSampleteRate)
% downloads the PTDB-TUG data set, resamples it to the specified target
% sample rate and save the results in your current folder. The function
% then creates and returns three audioDatastore objects. The enrollment set
% includes two utterances per speaker. The calibrate set does not overlap
% with the other data sets.

% Copyright 2021 The MathWorks, Inc.

rng(0)
url = "https://www2.spsc.tugraz.at/databases/PTDB-TUG/SPEECH_DATA_ZIPPED.zip";
dataFolder = tempdir;
dataset = fullfile(dataFolder,"PTDB-TUG");

% Download and unzip the dataset if it doesn't already exist.
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if ~datasetExists(dataset)
    disp("Downloading PTDB-TUG (3.9 G) ...")
    unzip(url,dataset)
end

% Resample the dataset and save to current folder if it doesn't already
% exist.
if ~isfolder(fullfile(pwd,"MIC"))
    ads = audioDatastore([fullfile(dataset,"SPEECH DATA","FEMALE","MIC"),fullfile(dataset,"SPEECH DATA","MALE","MIC")], ...
        IncludeSubfolders=true, ...
        FileExtensions=".wav", ...
        LabelSource="foldernames");
    reduceDataset = false;
    if reduceDataset
        ads = splitEachLabel(ads,10);
    end
    adsTransform = transform(ads,@(x,y)fileResampler(x,y,targetSampleRate),IncludeInfo=true);
    writeall(adsTransform,pwd,OutputFormat="flac",UseParallel=~isempty(ver("parallel")))
end

% Create a datastore that points to the resampled dataset. Use the folder
% names as the labels.
ads = audioDatastore(fullfile(pwd,"MIC"),IncludeSubfolders=true,LabelSource="foldernames");

% Split the data set into enrollment, development, and calibration sets.
calibrationLabels = categorical(["M01","M03","M05","M7","M9","F01","F03","F05","F07","F09"]);

adsCalibrate = subset(ads,ismember(ads.Labels,calibrationLabels));

adsDev = subset(ads,~ismember(ads.Labels,calibrationLabels));

numToEnroll = 2;
[adsEnroll,adsDev] = splitEachLabel(adsDev,numToEnroll);

end

File Resampler

function [audioOut,adsInfo] = fileResampler(audioIn,adsInfo,targetSampleRate)
%FILERESAMPLER Resample audio files
% [audioOut,adsInfo] = fileResampler(audioIn,adsInfo,targetSampleRate)
% resamples the input audio to the target sample rate and updates the info
% passed through the datastore.

% Copyright 2021 The MathWorks, Inc.

arguments
    audioIn (:,1) {mustBeA(audioIn,["single","double"])}
    adsInfo (1,1) {mustBeA(adsInfo,"struct")}
    targetSampleRate (1,1) {mustBeNumeric,mustBePositive}
end

% Isolate the original sample rate
originalSampleRate = adsInfo.SampleRate;

% Resample if necessary
if originalSampleRate ~= targetSampleRate
    audioOut = resample(audioIn,targetSampleRate,originalSampleRate);
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    amax = max(abs(audioOut));
    if max(amax>1)
        audioOut = audioOut./amax;
    end
end

% Update the info passed through the datastore
adsInfo.SampleRate = targetSampleRate;

end

Score Targets and Non-Targets

function [targetScores,nontargetScores] = scoreTargets(e,t,targetMap,nvargs)
%SCORETARGETS Score i-vector pairs
% [targetScores,nontargetScores] = scoreTargets(e,t,targetMap) exhaustively
% scores i-vectors in e against i-vectors in t. Specify e as an M-by-N
% matrix, where M corresponds to the i-vector dimension, and N corresponds
% to the number of i-vectors in e. Specify t as an M-by-P matrix, where P
% corresponds to the number of i-vectors in t. Specify targetMap as a
% P-by-N numeric matrix that maps which i-vectors in e and t are target
% pairs (derived from the same speaker) and which i-vectors in e and t are
% non-target pairs (derived from different speakers). Values in targetMap
% set to NaN are discarded. The outputs, targetScores and nontargetScores,
% are N-element cell arrays. Each cell contains a vector of scores between
% the i-vector in e and either all the targets or nontargets in t.
%
% [targetScores,nontargetScores] =
% scoreTargets(e,t,targetMap,NormFactorsSe=NFSe,NormFactorsSt=NFSt)
% normalizes the scores by the specified normalization statistics contained
% in structs NFSe and NFSt. If unspecified, no normalization is applied.

% Copyright 2021 The MathWorks, Inc.

arguments
    e (:,:) {mustBeA(e,["single","double"])}
    t (:,:) {mustBeA(t,["single","double"])}
    targetMap (:,:)
    nvargs.NormFactorsSe = [];
    nvargs.NormFactorsSt = [];
end

% Score the i-vector pairs
scores = cosineSimilarityScore(e,t);

% Apply as-norm1 if normalization factors supplied.
if ~isempty(nvargs.NormFactorsSe) && ~isempty(nvargs.NormFactorsSt)
    scores = 0.5*( (scores - nvargs.NormFactorsSe.mu)./nvargs.NormFactorsSe.std + (scores - nvargs.NormFactorsSt.mu')./nvargs.NormFactorsSt.std' );
end

% Separate the scores into targets and non-targets
targetScores = cell(size(targetMap,2),1);
nontargetScores = cell(size(targetMap,2),1);
removeIndex = isnan(targetMap);
for ii = 1:size(targetMap,2)
    localScores = scores(:,ii);
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    localMap = targetMap(:,ii);
    localScores(removeIndex(:,ii)) = [];
    localMap(removeIndex(:,ii)) = [];

    targetScores{ii} = localScores(logical(localMap));
    nontargetScores{ii} = localScores(~localMap);
end
end

Cosine Similarity Score (CSS)
function scores = cosineSimilarityScore(a,b)
%COSINESIMILARITYSCORE Cosine similarity score
% scores = cosineSimilarityScore(a,b) scores matrix of i-vectors, a,
% against matrix of i-vectors b. Specify a as an M-by-N matrix of
% i-vectors. Specify b as an M-by-P matrix of i-vectors. scores is returned
% as a P-by-N matrix, where columns corresponds the i-vectors in a
% and rows corresponds to the i-vectors in b and the elements of the array
% are the cosine similarity scores between them.

% Copyright 2021 The MathWorks, Inc.

arguments
    a (:,:) {mustBeA(a,["single","double"])}
    b (:,:) {mustBeA(b,["single","double"])}
end

scores = squeeze(sum(a.*reshape(b,size(b,1),1,[]),1)./(vecnorm(a).*reshape(vecnorm(b),1,1,[])));
scores = scores';
end

Plot Score Distributions

function plotScoreDistributions(targetScores,nontargetScores,nvargs)
%PLOTSCOREDISTRIBUTIONS Plot target and non-target score distributions
% plotScoreDistribution(targetScores,nontargetScores) plots empirical
% estimations of the distribution for target scores and nontarget scores.
% Specify targetScores and nontargetScores as cell arrays where each
% element contains a vector of speaker-specific scores.
%
% plotScoreDistrubtions(targetScores,nontargetScores,Analyze=ANALYZE)
% specifies the scope for analysis as either "label" or "group". If ANALYZE
% is set to "label", then a score distribution plot is created for each
% label. If ANALYZE is set to "group", then a score distribution plot is
% created for the entire group by combining scores across speakers. If
% unspecified, ANALYZE defaults to "group".

% Copyright 2021 The MathWorks, Inc.

arguments
    targetScores (1,:) cell
    nontargetScores (1,:) cell
    nvargs.Analyze (1,:) char {mustBeMember(nvargs.Analyze,["label","group"])} = "group"
end

% Combine all scores to determine good bins for analyzing both the target
% and non-target scores together.
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allScores = cat(1,targetScores{:},nontargetScores{:});
[~,edges] = histcounts(allScores);

% Determine the center of each bin for plotting purposes.
centers = movmedian(edges(:),2,Endpoints="discard");

if strcmpi(nvargs.Analyze,"group")
     % Plot the score distributions for the group.

    targetScoresBinCounts = histcounts(cat(1,targetScores{:}),edges);
    targetScoresBinProb = targetScoresBinCounts(:)./sum(targetScoresBinCounts);
    nontargetScoresBinCounts = histcounts(cat(1,nontargetScores{:}),edges);
    nontargetScoresBinProb = nontargetScoresBinCounts(:)./sum(nontargetScoresBinCounts);

    figure
    plot(centers,[targetScoresBinProb,nontargetScoresBinProb])
    title("Score Distributions")
    xlabel("Score")
    ylabel("Probability")
    legend(["target","non-target"],Location="northwest")
    axis tight

else

    % Create a tiled layout and plot the score distributions for each speaker.

    N = numel(targetScores);
    tiledlayout(N,1)
    for ii = 1:N
        targetScoresBinCounts = histcounts(targetScores{ii},edges);
        targetScoresBinProb = targetScoresBinCounts(:)./sum(targetScoresBinCounts);
        nontargetScoresBinCounts = histcounts(nontargetScores{ii},edges);
        nontargetScoresBinProb = nontargetScoresBinCounts(:)./sum(nontargetScoresBinCounts);
        nexttile
        hold on
        plot(centers,[targetScoresBinProb,nontargetScoresBinProb])
        title("Score Distribution for Speaker " + string(ii))
        xlabel("Score")
        ylabel("Probability")
        legend(["target","non-target"],Location="northwest")
        axis tight
    end
end
end

Calibrate Scores

function y = calibrateScores(score,scoreMapping)
%CALIBRATESCORES Calibrate scores
% y = calibrateScores(score,scoreMapping) maps the raw scores to calibrated
% scores, y, using the score mappinging information in scoreMapping.
% Specify score as a vector or matrix of raw scores. Specify score mapping
% as either struct or a two-element vector. If scoreMapping is specified as
% a struct, then it should have two fields: Raw and Calibrated, that
% together form a score mapping. If scoreMapping is specified as a vector,
% then the elements are used as the coefficients in the logistic function.
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% y is returned as vector or matrix the same size as the raw scores.

% Copyright 2021 The MathWorks, Inc.

arguments
    score (:,:) {mustBeA(score,["single","double"])}
    scoreMapping
end

if isstruct(scoreMapping)
    % Calibration using isotonic regression

    rawScore = scoreMapping.Raw;
    interpretedScore = scoreMapping.Calibrated;

    n = numel(score);

    % Find the index of the raw score in the mapping closest to the score provided.
    idx = zeros(n,1);
    for ii = 1:n
        [~,idx(ii)] = min(abs(score(ii)-rawScore));
    end

    % Get the calibrated score.
    y = interpretedScore(idx);

else

    % Calibration using logistic regression
    y = logistic(score,scoreMapping);

end
end

Reliability Diagram

function reliabilityDiagram(targets,predictions,numBins)
%RELIABILITYDIAGRAM Plot reliability diagram
% reliabilityDiagram(targets,predictions) plots a reliability diagram for
% targets and predictions. Specify targets an M-by-1 logical vector.
% Specify predictions as an M-by-1 numeric vector.
%
% reliabilityDiagram(targets,predictions,numBins) specifies the number of
% bins for the reliability diagram. If unspecified, numBins defaults to 10.

% Copyright 2021 The MathWorks, Inc.

arguments
    targets (:,1) {mustBeA(targets,"logical")}
    predictions (:,1) {mustBeA(predictions,["single","double"])}
    numBins (1,1) {mustBePositive,mustBeInteger} = 10;
end

% Bin the predictions into the requested number of bins. Count the number of
% predictions per bin.
[predictionsPerBin,~,predictionsInBin] = histcounts(predictions,numBins);

% Determine the mean of the predictions in the bin.
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meanPredictions = accumarray(predictionsInBin,predictions)./predictionsPerBin(:);

% Determine the mean of the targets per bin. This is the fraction of
% positives--the number of targets in the bin over the total number of
% predictions in the bin.
meanTargets = accumarray(predictionsInBin,targets)./predictionsPerBin(:);

plot([0,1],[0,1])
hold on
plot(meanPredictions,meanTargets,"o")
legend("Ideal Calibration",Location="best")
xlabel("Mean Predicted Value")
ylabel("Fraction of Positives")
title("Reliability Diagram")
grid on
hold off

end

Logistic Regression Cost Function

function cost = logRegCost(y,f,iparams)
%LOGREGCOST Logistic regression cost
% cost = logRegCost(y,f,iparams) calculates the cost of the logistic
% function given truth y, prediction f, and logistic params iparams.
% Specify y and f as column vectors. Specify iparams as a two-element row
% vector in the form [A,B], where A and B are the model parameters:
%
%                1
% p(x) = ------------------
%         1 + e^(-A*f - B)
%

% Copyright 2021 The MathWorks, Inc.

arguments
    y (:,1) {mustBeA(y,["single","double"])}
    f (:,1) {mustBeA(f,["single","double"])}
    iparams (1,2) {mustBeA(iparams,["single","double"])}
end
p = logistic(f,iparams);
cost = -sum(y.*log(p) + (1-y).*log(1-p));
end

Logistic Function

function p = logistic(f,iparams)
%LOGISTIC Logistic function
% p = logistic(f,iparams) applies the general logistic function to input f
% with parameters iparams. Specify f as a numeric array. Specify iparams as
% a two-element vector. p is returned as the same size as f.

% Copyright 2021 The MathWorks, Inc.

arguments
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    f
    iparams = [1 0];
end
p = 1./(1+exp(-iparams(1).*f - iparams(2)));
end

Isotonic Regression

function scoreMapping = isotonicRegression(x,y)
%ISOTONICREGRESSION Isotonic regression
% scoreMapping = isotonicRegression(x,y) fits a line yhat to data y under
% the monotonicity constraint that x(i)>x(j) -> yhat(i)>=yhat(j). That is,
% the values in yhat are monotontically non-decreasing with respect to x.
% The output, scoreMapping, is a struct containing the changepoints of yhat
% and the corresponding raw score in x.

% Copyright 2021, The MathWorks, Inc.

N = numel(x);

% Sort points in ascending order of x.
[x,idx] = sort(x(:),"ascend"); 
y = y(idx);

% Initialize fitted values to the given values.
m = y;

% Initialize blocks, one per point. These will merge and the number of
% blocks will reduce as the algorithm proceeds.
blockMap = 1:N;
w = ones(size(m));

while true

    diffs = diff(m);
    
    if all(diffs >= 0)

        % If all blocks are monotonic, end the loop.
        break;

    else

        % Find all positive changepoints. These are the beginnings of each
        % block.
        blockStartIndex = diffs>0;

        % Create group indices for each unique block.
        blockIndices = cumsum([1;blockStartIndex]);

        % Calculate the mean of each block and update the weights for the
        % blocks. We're merging all the points in the blocks here.
        m = accumarray(blockIndices,w.*m);
        w = accumarray(blockIndices,w);
        m = m ./ w;
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        % Map which block corresponds to which index.
        blockMap = blockIndices(blockMap);

    end
end

% Broadcast merged blocks out to original points.
m = m(blockMap);

% Find the changepoints
changepoints = find(diff(m)>0);
changepoints = [changepoints;changepoints+1];
changepoints = sort(changepoints);

% Remove all points that aren't changepoints.
a = m(changepoints);
b = x(changepoints);

scoreMapping = struct(Raw=b,Calibrated=a);
end
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Speaker Recognition Using x-vectors

Speaker recognition answers the question "Who is speaking?". Speaker recognition is usually divided
into two tasks: speaker identification and speaker verification. In speaker identification, a speaker is
recognized by comparing their speech to a closed set of templates. In speaker verification, a speaker
is recognized by comparing the likelihood that the speech belongs to a particular speaker against a
predetermined threshold. Traditional machine learning methods perform well at these tasks in ideal
conditions. For examples of speaker identification using traditional machine learning methods, see
“Speaker Identification Using Pitch and MFCC” on page 1-238 and “Speaker Verification Using i-
Vectors” on page 1-575. Audio Toolbox™ provides ivectorSystem which encapsulates the ability to
train an i-vector system, enroll speakers or other audio labels, evaluate the system for a decision
threshold, and identify or verify speakers or other audio labels.

In adverse conditions, the deep learning approach of x-vectors has been shown to achieve state-of-
the-art results for many scenarios and applications [1] on page 1-647. The x-vector system is an
evolution of i-vectors originally developed for the task of speaker verification.

In this example, you develop an x-vector system. First, you train a time-delay neural network (TDNN)
to perform speaker identification. Then you train the traditional backends for an x-vector-based
speaker verification system: an LDA projection matrix and a PLDA model. You then perform speaker
verification using the TDNN and the backend dimensionality reduction and scoring. The x-vector
system backend, or classifier, is the same as developed for i-vector systems. For details on the
backend, see “Speaker Verification Using i-Vectors” on page 1-575 and ivectorSystem.

In “Speaker Diarization Using x-vectors” on page 1-651, you use the x-vector system trained in this
example to perform speaker diarization. Speaker diarization answers the question, "Who spoke
when?".

Throughout this example, you will find live controls on tunable parameters. Changing the controls
does not rerun the example. If you change a control, you must rerun the example.

Data Set Management

This example uses a subset of the LibriSpeech Dataset [2] on page 1-647. The LibriSpeech Dataset is
a large corpus of read English speech sampled at 16 kHz. The data is derived from audiobooks read
from the LibriVox project. Download the 100-hour subset of the LibriSpeech training data, the clean
development set, and the clean test set.

dataFolder = tempdir;

datasetTrain = fullfile(dataFolder,"LibriSpeech","train-clean-100");
if ~datasetExists(datasetTrain)
    filename = "train-clean-100.tar.gz";
    url = "http://www.openSLR.org/resources/12/" + filename;
    gunzip(url,dataFolder);
    unzippedFile = fullfile(dataFolder,filename);
    untar(unzippedFile{1}(1:end-3),dataFolder);
end

datasetDev = fullfile(dataFolder,"LibriSpeech","dev-clean");
if ~datasetExists(datasetDev)
    filename = "dev-clean.tar.gz";
    url = "http://www.openSLR.org/resources/12/" + filename;
    gunzip(url,dataFolder);
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    unzippedFile = fullfile(dataFolder,filename);
    untar(unzippedFile{1}(1:end-3),dataFolder);
end

datasetTest = fullfile(dataFolder,"LibriSpeech","test-clean");
if ~datasetExists(datasetTest)
    filename = "test-clean.tar.gz";
    url = "http://www.openSLR.org/resources/12/" + filename;
    gunzip(url,dataFolder);
    unzippedFile = fullfile(dataFolder,filename);
    untar(unzippedFile{1}(1:end-3),dataFolder);
end

Create audioDatastore objects that point to the data. The speaker labels are encoded in the file
names. Split the datastore into train, validation, and test sets. You will use these sets to train,
validate, and test a TDNN.

adsTrain = audioDatastore(datasetTrain,IncludeSubfolders=true);
adsTrain.Labels = categorical(extractBetween(adsTrain.Files,fullfile(datasetTrain,filesep),filesep));

adsDev = audioDatastore(datasetDev,IncludeSubfolders=true);
adsDev.Labels = categorical(extractBetween(adsDev.Files,fullfile(datasetDev,filesep),filesep));

adsEvaluate = audioDatastore(datasetTest,IncludeSubfolders=true);
adsEvaluate.Labels = categorical(extractBetween(adsEvaluate.Files,fullfile(datasetTest,filesep),filesep));

Separate the audioDatastore objects into five sets:

• adsTrain - Contains training set for the TDNN and backend classifier.
• adsValidation - Contains validation set to evaluate TDNN training progress.
• adsTest - Contains test set to evaluate the TDNN performance for speaker identification.
• adsEnroll - Contains enrollment set to evaluate the detection error tradeoff of the x-vector

system for speaker verification.
• adsDET - Contains evaluation set used to determine the detection error tradeoff of the x-vector

system for speaker verification.

[adsTrain,adsValidation,adsTest] = splitEachLabel(adsTrain,0.8,0.1,0.1,"randomized");

[adsEnroll,adsLeftover] = splitEachLabel(adsEvaluate,3,"randomized");

adsDET = audioDatastore([adsLeftover.Files;adsDev.Files]);
adsDET.Labels = [adsLeftover.Labels;adsDev.Labels];

You can reduce the training and detection error trade-off datasets used in this example to speed up
the runtime at the cost of performance. In general, reducing the data set is a good practice for
development and debugging.

speedupExample = ;
if speedupExample
    adsTrain = splitEachLabel(adsTrain,5);
    adsValidation = splitEachLabel(adsValidation,2);
    adsDET = splitEachLabel(adsDET,5);
end
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Feature Extraction

Create an audioFeatureExtractor object to extract 30 MFCCs from 30 ms Hann windows with a
10 ms hop. The sample rate of the data set is 16 kHz.

fs = 16e3;

windowDuration = ;

hopDuration = ;
windowSamples = round(windowDuration*fs);
hopSamples = round(hopDuration*fs);
overlapSamples = windowSamples - hopSamples;

numCoeffs = ;
afe = audioFeatureExtractor( ...
    SampleRate=fs, ...
    Window=hann(windowSamples,"periodic"), ...
    OverlapLength=overlapSamples, ...
    mfcc=true);
setExtractorParameters(afe,"mfcc",NumCoeffs=numCoeffs)

Create a transform datastore that applies preprocessing to the audio and outputs features. The
supporting function, xVectorPreprocess on page 1-647, performs speech detection, extract features
from regions of speech. When the parameter Segment is set to false, the detect regions of speech
are concatenated together.

adsTrainTransform = transform(adsTrain,@(x)xVectorPreprocess(x,afe,Segment=false,MinimumDuration=0.5));
features = preview(adsTrainTransform)

features = 1×1 cell array
    {30×363 single}

In a loop, extract all features from the training set. If you have Parallel Computing Toolbox™, then the
computations are spread across multiple workers.

numPar = numpartitions(adsTrain);
features = cell(1,numPar);
parfor ii = 1:numPar
    adsPart = partition(adsTrainTransform,numPar,ii);
    N = numel(adsPart.UnderlyingDatastores{1}.Files);
    f = cell(1,N);
    for jj = 1:N
        f{jj} = read(adsPart);
    end
    features{ii} = cat(2,f{:});
end

Concatenate the features and then save the global mean and standard deviation in a struct. You will
use these factors to normalize features.

features = cat(2,features{:});
features = cat(2,features{:});
factors = struct("Mean",mean(features,2),"STD",std(features,0,2));
clear features f

Create a new transform datastore for the training set, this time specifying the normalization factors
and Segment as true. Now, features are normalized by the global mean and standard deviation, and
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then the file-level mean. The individual speech regions detected are not concatenated. The output is a
table with the first variable containing feature matrices and the second variable containing the label.

adsTrainTransform = transform(adsTrain,@(x,myInfo)xVectorPreprocess(x,afe,myInfo, ...
    Segment=true,Factors=factors,MinimumDuration=0.5), ...
    IncludeInfo=true);
featuresTable = preview(adsTrainTransform)

featuresTable=3×2 table
       features        labels
    _______________    ______

    {30×142 single}     1034 
    {30×64  single}     1034 
    {30×157 single}     1034 

Apply the same transformation to the validation, test, enrollment, and DET sets.

adsValidationTransform = transform(adsValidation,@(x,myInfo)xVectorPreprocess(x,afe,myInfo, ...
    Segment=true,Factors=factors,MinimumDuration=0.5), ...
    IncludeInfo=true);
adsTestTransform = transform(adsTest,@(x,myInfo)xVectorPreprocess(x,afe,myInfo, ...
    Segment=true,Factors=factors,MinimumDuration=0.5), ...
    IncludeInfo=true);
adsEnrollTransform = transform(adsEnroll,@(x,myInfo)xVectorPreprocess(x,afe,myInfo, ...
    Segment=true,Factors=factors,MinimumDuration=0.5), ...
    IncludeInfo=true);
adsDETTransform = transform(adsDET,@(x,myInfo)xVectorPreprocess(x,afe,myInfo, ...
    Segment=true,Factors=factors,MinimumDuration=0.5), ...
    IncludeInfo=true);

x-vector Feature Extraction Model

In this example, you define the x-vector feature extractor model [1] on page 1-647 as a layer graph
and train it using a custom training loop. This paradigm enables you to preprocess the mini-batches
and trim the sequences to a consistent length.

The table summarizes the architecture of the network described in [1] on page 1-647 and
implemented in this example. T is the total number of frames (feature vectors over time) in an audio
signal. N is the number of classes (speakers) in the training set.
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Define the network. You can change the model size by increasing or decreasing the numFilters
parameter.

numFilters = ;
dropProb = 0.2;
numClasses = numel(unique(adsTrain.Labels));
layers = [
    sequenceInputLayer(afe.FeatureVectorLength,MinLength=15,Name="input")

    convolution1dLayer(5,numFilters,DilationFactor=1,Name="conv_1")
    batchNormalizationLayer(Name="BN_1")
    dropoutLayer(dropProb,Name="drop_1")
    reluLayer(Name="act_1")

    convolution1dLayer(3,numFilters,DilationFactor=2,Name="conv_2")
    batchNormalizationLayer(Name="BN_2")
    dropoutLayer(dropProb,Name="drop_2")
    reluLayer(Name="act_2")

    convolution1dLayer(3,numFilters,DilationFactor=3,Name="conv_3")
    batchNormalizationLayer(Name="BN_3")
    dropoutLayer(dropProb,Name="drop_3")
    reluLayer(Name="act_3")

    convolution1dLayer(1,numFilters,DilationFactor=1,Name="conv_4")
    batchNormalizationLayer(Name="BN_4")
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    dropoutLayer(dropProb,Name="drop_4")
    reluLayer(Name="act_4")

    convolution1dLayer(1,1500,DilationFactor=1,Name="conv_5")
    batchNormalizationLayer(Name="BN_5")
    dropoutLayer(dropProb,Name="drop_5")
    reluLayer(Name="act_5")

    statisticsPooling1dLayer(Name="statistics_pooling")

    fullyConnectedLayer(numFilters,Name="fc_1")
    batchNormalizationLayer(Name="BN_6")
    dropoutLayer(dropProb,Name="drop_6")
    reluLayer(Name="act_6")

    fullyConnectedLayer(numFilters,Name="fc_2")
    batchNormalizationLayer(Name="BN_7")
    dropoutLayer(dropProb,Name="drop_7")
    reluLayer(Name="act_7")

    fullyConnectedLayer(numClasses,Name="fc_3")
    softmaxLayer(Name="softmax")
    ];

dlnet = dlnetwork(layerGraph(layers));

The model requires statistical pooling which is implemented as a custom layer and placed in your
current folder when you open this example. Display the contents of the custom layer.

type("statisticsPooling1dLayer.m")

classdef statisticsPooling1dLayer < nnet.layer.Layer & nnet.layer.Formattable
    % This class is only for use in this example. It may be changed or
    % removed in a future release. 

    methods
        function this = statisticsPooling1dLayer(options)
            arguments
                options.Name = ''
            end
            this.Name = options.Name;
        end
        
        function X = predict(~, X)
            X = dlarray(stripdims([mean(X,3);std(X,0,3)]),"CB");
        end
        function X = forward(~, X)
            X = X + 0.0001*rand(size(X),"single");
            X = dlarray(stripdims([mean(X,3);std(X,0,3)]),"CB");
        end
    end
    
end

Train Model

Use minibatchqueue (Deep Learning Toolbox) to create a mini-batch queue for the training data.
Set the mini-batch size as appropriate for your hardware.
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miniBatchSize = ;
mbq = minibatchqueue(adsTrainTransform, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFormat=["CTB",""], ...
    MiniBatchFcn=@preprocessMiniBatch, ...
    OutputEnvironment="auto");

Set the number of training epochs, the initial learn rate, the learn rate drop period, the learn rate
drop factor, and the validations per epoch.

numEpochs = ;

learnRate = ;
gradDecay = 0.5;
sqGradDecay = 0.999;
trailingAvg = [];
trailingAvgSq = [];

LearnRateDropPeriod = ;

LearnRateDropFactor = ;

To display training progress, initialize the supporting object progressPlotter. The supporting
object, progressPlotter, is placed in your current folder when you open this example.

Run the training loop.

classes = unique(adsTrain.Labels);
pp = progressPlotter(string(classes));

iteration = 0;
for epoch = 1:numEpochs
    
    % Shuffle mini-batch queue
    shuffle(mbq)
    
    while hasdata(mbq)
        
        % Update iteration counter
        iteration = iteration + 1;
        
        % Get mini-batch from mini-batch queue
        [dlX,Y] = next(mbq);

        % Evaluate the model gradients, state, and loss using dlfeval and the modelGradients function
        [gradients,dlnet.State,loss,predictions] = dlfeval(@modelGradients,dlnet,dlX,Y);

        % Update the network parameters using the Adam optimizer
        [dlnet,trailingAvg,trailingAvgSq] = adamupdate(dlnet,gradients, ...
            trailingAvg,trailingAvgSq,iteration,learnRate,gradDecay,sqGradDecay,eps("single"));

        % Update the training progress plot
        updateTrainingProgress(pp,Epoch=epoch,Iteration=iteration,LearnRate=learnRate,Predictions=predictions,Targets=Y,Loss=loss)

    end
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    % Pass validation data through model
    [predictionValidation,labelsValidation] = predictBatch(dlnet,adsValidationTransform);
    predictionValidation = onehotdecode(predictionValidation,string(classes),1);

    % Update the training progress plot with validation results
    updateValidation(pp,Iteration=iteration,Predictions=predictionValidation,Targets=labelsValidation)

    % Update learn rate
    if rem(epoch,LearnRateDropPeriod)==0
        learnRate = learnRate*LearnRateDropFactor;
    end
    
end

Evaluate the TDNN speaker recognition accuracy using the held-out test set. The supporting
function, predictBatch, parallelizes the prediction computation if you have Parallel Computing
Toolbox™. Decode the predictions and then compute the prediction accuracy.

[predictionTest,targetTest] = predictBatch(dlnet,adsTestTransform);

predictionTest = onehotdecode(predictionTest,string(classes),1);

accuracy = mean(targetTest(:)==predictionTest(:))

accuracy = 0.9460
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Train x-vector System Backend

In the x-vector system for speaker verification, the TDNN you just trained is used to output an
embedding layer. The output from the embedding layer ("fc_1" in this example) are the "x-vectors"
in an x-vector system.

The backend (or classifier) of an x-vector system is the same as the backend of an i-vector system. For
details on the algorithms, see ivectorSystem and “Speaker Verification Using i-Vectors” on page 1-
575.
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Extract x-vectors from the train set.

[xvecsTrain,labelsTrain] = predictBatch(dlnet,adsTrainTransform,Outputs="fc_1");

Create a linear discriminant analysis (LDA) projection matrix to reduce the dimensionality of the x-
vectors. LDA attempts to minimize the intra-class variance and maximize the variance between
speakers.

numEigenvectors = ;

projMat = helperTrainProjectionMatrix(xvecsTrain,labelsTrain,numEigenvectors);

Apply the LDA projection matrix to the x-vectors.

xvecsTrainP = projMat*xvecsTrain;

Train a G-PLDA model to perform scoring.

numIterations = ;

numDimensions = ;
plda = helperTrainPLDA(xvecsTrainP,labelsTrain,numIterations,numDimensions);

Evaluate x-vector System

Speaker verification systems verify that a speaker is who they purport to be. Before a speaker can be
verified, they must be enrolled in the system. Enrollment in the system means that the system has a
template x-vector representation of the speaker.

Enroll Speakers

Extract x-vectors from the held-out data set, adsEnroll.

[xvecsEnroll,labelsEnroll] = predictBatch(dlnet,adsEnrollTransform,Outputs="fc_1");

Apply the LDA projection matrix to the x-vectors.

xvecsEnrollP = projMat*xvecsEnroll;

Create template x-vectors for each speaker by averaging the x-vectors of individual speakers across
enrollment files.

uniqueLabels = unique(labelsEnroll);
enrollmentTable = cell2table(cell(0,2),VariableNames=["xvector","NumSamples"]);
for ii = 1:numel(uniqueLabels)
    idx = uniqueLabels(ii)==labelsEnroll;
    wLocalMean = mean(xvecsEnrollP(:,idx),2);
    localTable = table({wLocalMean},(sum(idx)), ...
        VariableNames=["xvector","NumSamples"], ...
        RowNames=string(uniqueLabels(ii)));
    enrollmentTable = [enrollmentTable;localTable]; %#ok<AGROW>
end

Speaker verification systems require you to set a threshold that balances the probability of a false
acceptance (FA) and the probability of a false rejection (FR), according to the requirements of your
application. To determine the threshold that meets your FA/FR requirements, evaluate the detection
error tradeoff of the system.
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[xvecsDET,labelsDET] = predictBatch(dlnet,adsDETTransform,Outputs="fc_1");

xvecsDETP = projMat*xvecsDET;

detTable = helperDetectionErrorTradeoff(xvecsDETP,labelsDET,enrollmentTable,plda);

Plot the results of the detection error tradeoff evaluation for both PLDA scoring and cosine similarity
scoring (CSS).

figure
plot(detTable.PLDA.Threshold,detTable.PLDA.FAR, ...
    detTable.PLDA.Threshold,detTable.PLDA.FRR)
eer = helperEqualErrorRate(detTable.PLDA);
title(["Speaker Verification","Detection Error Tradeoff","PLDA Scoring","Equal Error Rate = " + eer]);
xlabel("Threshold")
ylabel("Error Rate")
legend(["FAR","FRR"])

figure
plot(detTable.CSS.Threshold,detTable.CSS.FAR, ...
    detTable.CSS.Threshold,detTable.CSS.FRR)
eer = helperEqualErrorRate(detTable.CSS);
title(["Speaker Verification","Detection Error Tradeoff","Cosine Similarity Scoring","Equal Error Rate = " + eer]);
xlabel("Threshold")
ylabel("Error Rate")
legend(["FAR","FRR"])

1 Audio Toolbox Examples

1-646



References

[1] Snyder, David, et al. "x-vectors: Robust DNN Embeddings for Speaker Recognition." 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2018, pp.
5329–33. DOI.org (Crossref), doi:10.1109/ICASSP.2018.8461375.

[2] V. Panayotov, G. Chen, D. Povey and S. Khudanpur, "Librispeech: An ASR corpus based on public
domain audio books," 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Brisbane, QLD, 2015, pp. 5206-5210, doi: 10.1109/ICASSP.2015.7178964

Supporting Functions

Feature Extraction and Normalization

function [output,myInfo] = xVectorPreprocess(audioData,afe,myInfo,nvargs)
% This function is only for use in this example. It may be changed or
% removed in a future release.
arguments
    audioData
    afe
    myInfo = []
    nvargs.Factors = []
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    nvargs.Segment = true;
    nvargs.MinimumDuration = 1;
    nvargs.UseGPU = false;
end

% Place on GPU if requested
if nvargs.UseGPU
    audioData = gpuArray(audioData);
end

% Scale
audioData = audioData/max(abs(audioData(:)));

% Protect against NaNs
audioData(isnan(audioData)) = 0;

% Determine regions of speech
mergeDur = 0.2; % seconds
idx = detectSpeech(audioData,afe.SampleRate,MergeDistance=afe.SampleRate*mergeDur);

% If a region is less than MinimumDuration seconds, drop it.
if nvargs.Segment
    idxToRemove = (idx(:,2)-idx(:,1))<afe.SampleRate*nvargs.MinimumDuration;
    idx(idxToRemove,:) = [];
end

% Extract features
numSegments = size(idx,1);
features = cell(numSegments,1);
for ii = 1:numSegments
    temp = (single(extract(afe,audioData(idx(ii,1):idx(ii,2)))))';
    if isempty(temp)
        temp = zeros(30,15,"single");
    end
    features{ii} = temp;
end

% Standardize features
if ~isempty(nvargs.Factors)
    features = cellfun(@(x)(x-nvargs.Factors.Mean)./nvargs.Factors.STD,features,UniformOutput=false);
end

% Cepstral mean subtraction (for channel noise)
if ~isempty(nvargs.Factors)
    fileMean = mean(cat(2,features{:}),"all");
    features = cellfun(@(x)x - fileMean,features,UniformOutput=false);
end

if ~nvargs.Segment
    features = {cat(2,features{:})};
end
if isempty(myInfo)
    output = features;
else
    labels = repelem(myInfo.Label,numel(features),1);

    output = table(features,labels);
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end
end

Calculate Model Gradients and Updated State

function [gradients,state,loss,YPred] = modelGradients(dlnet,X,Y)
% This function is only for use in this example. It may be changed or
% removed in a future release.

[YPred,state] = forward(dlnet,X);

loss = crossentropy(YPred,Y);
gradients = dlgradient(loss,dlnet.Learnables);

loss = double(gather(extractdata(loss)));

end

Preprocess Mini-Batch

function [sequences,labels] = preprocessMiniBatch(sequences,labels)
% This function is only for use in this example. It may be changed or
% removed in a future release.

trimDimension = 2;
lengths = cellfun(@(x)size(x,trimDimension),sequences);
minLength = min(lengths);
sequences = cellfun(@(x)randomTruncate(x,trimDimension,minLength),sequences,UniformOutput=false);
sequences = cat(3,sequences{:});
        
labels = cat(2,labels{:});
labels = onehotencode(labels,1);
labels(isnan(labels)) = 0;
end

Randomly Truncate Audio Signals to Specified Length

function y = randomTruncate(x,dim,minLength)
% This function is only for use in this example. It may be changed or
% removed in a future release.
N = size(x,dim);
if N > minLength
    start = randperm(N-minLength,1);
    if dim==1
        y = x(start:start+minLength-1,:);
    elseif dim ==2
        y = x(:,start:start+minLength-1);
    end
else
    y = x;
end
end

Predict Batch

function [xvecs,labels] = predictBatch(dlnet,ds,nvargs)
arguments
    dlnet
    ds
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    nvargs.Outputs = [];
end
if ~isempty(ver("parallel"))
    pool = gcp;
    numPartition = numpartitions(ds,pool);
else
    numPartition = 1;
end
xvecs = [];
labels = [];
outputs = nvargs.Outputs;
parfor partitionIndex = 1:numPartition
    dsPart = partition(ds,numPartition,partitionIndex);
    partitionFeatures = [];
    partitionLabels = [];
    while hasdata(dsPart)
        atable = read(dsPart);
        F = atable.features;
        L = atable.labels;
        for kk = 1:numel(L)
            if isempty(outputs)
                f = gather(extractdata(predict(dlnet,(dlarray(F{kk},"CTB")))));
            else
                f = gather(extractdata(predict(dlnet,(dlarray(F{kk},"CTB")),Outputs=outputs)));
            end
            l = L(kk);
            partitionFeatures = [partitionFeatures,f];
            partitionLabels = [partitionLabels,l];
        end
    end
    xvecs = [xvecs,partitionFeatures];
    labels = [labels,partitionLabels];
end
end
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Speaker Diarization Using x-vectors

Speaker diarization is the process of partitioning an audio signal into segments according to speaker
identity. It answers the question "who spoke when" without prior knowledge of the speakers and,
depending on the application, without prior knowledge of the number of speakers.

Speaker diarization has many applications, including: enhancing speech transcription by structuring
text according to active speaker, video captioning, content retrieval (what did Jane say?) and speaker
counting (how many speakers were present in the meeting?).

In this example, you perform speaker diarization using a pretrained x-vector system [1] on page 1-
664 to characterize regions of audio and agglomerative hierarchical clustering (AHC) to group
similar regions of audio [2] on page 1-664. To see how the x-vector system was defined and trained,
see “Speaker Recognition Using x-vectors” on page 1-636.

Download Pretrained Speaker Diarization System

Download the pretrained speaker diarization system and supporting files. The total size is
approximately 22 MB.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","SpeakerDiarization.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
netFolder = fullfile(dataFolder,"SpeakerDiarization");

addpath(netFolder)

Load an audio signal and a table containing ground truth annotations. The signal consists of five
speakers. Listen to the audio signal and plot its time-domain waveform.

[audioIn,fs] = audioread("exampleconversation.flac");
load("exampleconversationlabels.mat")
audioIn = audioIn./max(abs(audioIn));
sound(audioIn,fs)

t = (0:size(audioIn,1)-1)/fs;

figure(1)
plot(t,audioIn)
xlabel("Time (s)")
ylabel("Amplitude")
axis tight
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Extract x-vectors

In this example, you used a pretrained x-vector system based on [1] on page 1-664. To see how the x-
vector system was defined and trained, see “Speaker Recognition Using x-vectors” on page 1-636.

Load Pretrained x-Vector System

Load the lightweight pretrained x-vector system. The x-vector system consists of:

• afe - an audioFeatureExtractor object to extract mel frequency cepstral coefficients
(MFCCs).

• factors - a struct containing the mean and standard deviation of MFCCs determined from a
representative data set. These factors are used to standardize the MFCCs.

• dlnet - a trained dlnetwork. The network is used to extract x-vectors from the MFCCs.
• projMat - a trained projection matrix to reduce the dimensionality of x-vectors.
• plda - a trained PLDA model for scoring x-vectors.

xvecsys = load("xvectorSystem.mat");

Extract Standardized Acoustic Features

Extract standardized MFCC features from the audio data. View the feature distributions to confirm
that the standardization factors learned from a separate data set approximately standardize the
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features derived in this example. A standard distribution has a mean of zero and a standard deviation
of 1.

features = single((extract(xvecsys.afe,audioIn)-xvecsys.factors.Mean')./xvecsys.factors.STD');

figure(2)
histogram(features)
xlabel("Standardized MFCC")

Extract x-Vectors

Each acoustic feature vector represents approximately 0.01 seconds of audio data. Group the
features into approximately 2 second segments with 0.1 second hops between segments.

featureVectorHopDur = (numel(xvecsys.afe.Window) - xvecsys.afe.OverlapLength)/xvecsys.afe.SampleRate;

segmentDur = ;

segmentHopDur = ;

segmentLength = round(segmentDur/featureVectorHopDur);
segmentHop = round(segmentHopDur/featureVectorHopDur);

idx = 1:segmentLength;
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featuresSegmented = [];
while idx(end) < size(features,1)
    featuresSegmented = cat(3,featuresSegmented,features(idx,:));
    idx = idx + segmentHop;
end

Extract x-vectors from each segment. x-vectors correspond to the output from the first fully-
connected layer in the x-vector model trained in “Speaker Recognition Using x-vectors” on page 1-
636. The first fully-connected layer is the first segment-level layer after statistics are calculated for
the time-dilated frame-level layers. Visualize the x-vectors over time.

xvecs = zeros(512,size(featuresSegmented,3));
for sample = 1:size(featuresSegmented,3)
    dlX = dlarray(featuresSegmented(:,:,sample),"TCB");
    xvecs(:,sample) = predict(xvecsys.dlnet,dlX,Outputs="fc_1");
end

figure(3)
surf(xvecs',EdgeColor="none")
view([90,-90])
axis([1 size(xvecs,1) 1 size(xvecs,2)])
xlabel("Features")
ylabel("Segment")
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Apply the pretrained linear discriminant analysis (LDA) projection matrix to reduce the
dimensionality of the x-vectors and then visualize the x-vectors over time.

x = xvecsys.projMat*xvecs;

figure(4)
surf(x',EdgeColor="none")
view([90,-90])
axis([1 size(x,1) 1 size(x,2)])
xlabel("Features")
ylabel("Segment")

Cluster x-vectors

An x-vector system learns to extract compact representations (x-vectors) of speakers. Cluster the x-
vectors to group similar regions of audio using either agglomerative hierarchical clustering
(clusterdata (Statistics and Machine Learning Toolbox)) or k-means clustering (kmeans (Statistics
and Machine Learning Toolbox)). [2] on page 1-664 suggests using agglomerative heirarchical
clustering with PLDA scoring as the distance measurement. K-means clustering using a cosine
similarity score is also commonly used. Assume prior knowledge of the the number of speakers in the
audio. Set the maximum clusters to the number of known speakers + 1 so that the background is
clustered independently.
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knownNumberOfSpeakers = numel(unique(groundTruth.Label));
maxclusters = knownNumberOfSpeakers + 1;

clusterMethod = ;
switch clusterMethod
    case "agglomerative - PLDA scoring"
        T = clusterdata(x',Criterion="distance",distance=@(a,b)helperPLDAScorer(a,b,xvecsys.plda),linkage="average",maxclust=maxclusters);
    case "agglomerative - CSS scoring"
        T = clusterdata(x',Criterion="distance",distance="cosine",linkage="average",maxclust=maxclusters);
    case "kmeans - CSS scoring"
        T = kmeans(x',maxclusters,Distance="cosine");
end

Plot the cluster decisions over time.

figure(5)
tiledlayout(2,1)

nexttile
plot(t,audioIn)
axis tight
ylabel("Amplitude")
xlabel("Time (s)")

nexttile
plot(T)
axis tight
ylabel("Cluster Index")
xlabel("Segment")
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To isolate segments of speech corresponding to clusters, map the segments back to audio samples.
Plot the results.

mask = zeros(size(audioIn,1),1);
start = round((segmentDur/2)*fs);

segmentHopSamples = round(segmentHopDur*fs);

mask(1:start) = T(1);
start = start + 1;
for ii = 1:numel(T)
    finish = start + segmentHopSamples;
    mask(start:start + segmentHopSamples) = T(ii);
    start = finish + 1;
end
mask(finish:end) = T(end);

figure(6)
tiledlayout(2,1)

nexttile
plot(t,audioIn)
axis tight
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nexttile
plot(t,mask)
ylabel("Cluster Index")
axis tight
xlabel("Time (s)")

Use detectSpeech to determine speech regions. Use sigroi2binmask to convert speech regions
to a binary voice activity detection (VAD) mask. Call detectSpeech a second time without any
arguments to plot the detected speech regions.

mergeDuration = ;
VADidx = detectSpeech(audioIn,fs,MergeDistance=fs*mergeDuration);

VADmask = sigroi2binmask(VADidx,numel(audioIn));

figure(7)
detectSpeech(audioIn,fs,MergeDistance=fs*mergeDuration)
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Apply the VAD mask to the speaker mask and plot the results. A cluster index of 0 indicates a region
of no speech.

mask = mask.*VADmask;

figure(8)
tiledlayout(2,1)

nexttile
plot(t,audioIn)
axis tight

nexttile
plot(t,mask)
ylabel("Cluster Index")
axis tight
xlabel("Time (s)")
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In this example, you assume each detected speech region belongs to a single speaker. If more than
two labels are present in a speech region, merge them to the most frequently occuring label.

maskLabels = zeros(size(VADidx,1),1);
for ii = 1:size(VADidx,1)
    maskLabels(ii) = mode(mask(VADidx(ii,1):VADidx(ii,2)),"all");
    mask(VADidx(ii,1):VADidx(ii,2)) = maskLabels(ii);
end

figure(9)
tiledlayout(2,1)

nexttile
plot(t,audioIn)
axis tight

nexttile
plot(t,mask)
ylabel("Cluster Index")
axis tight
xlabel("Time (s)")
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Count the number of remaining speaker clusters.

uniqueSpeakerClusters = unique(maskLabels);
numSpeakers = numel(uniqueSpeakerClusters)

numSpeakers = 5

Visualize Diarization Results

Create a signalMask object and then plot the speaker clusters. Label the plot with the ground truth
labels. The cluster labels are color coded with a key on the right of the plot. The true labels are
printed above the plot.

msk = signalMask(table(VADidx,categorical(maskLabels)));

figure(10)
plotsigroi(msk,audioIn,true)
axis([0 numel(audioIn) -1 1])

trueLabel = groundTruth.Label;
for ii = 1:numel(trueLabel)  
    text(VADidx(ii,1),1.1,trueLabel(ii),FontWeight="bold")
end
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Choose a cluster to inspect and then use binmask to isolate the speaker. Plot the isolated speech
signal and listen to the speaker cluster.

speakerToInspect = ;

cutOutSilenceFromAudio = ;

bmsk = binmask(msk,numel(audioIn));

audioToPlay = audioIn;
if cutOutSilenceFromAudio
    audioToPlay(~bmsk(:,speakerToInspect)) = [];
end
sound(audioToPlay,fs)

figure(11)
tiledlayout(2,1)

nexttile
plot(t,audioIn)
axis tight
ylabel("Amplitude")

nexttile
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plot(t,audioIn.*bmsk(:,speakerToInspect))
axis tight
xlabel("Time (s)")
ylabel("Amplitude")
title("Speaker Group "+speakerToInspect)

Diarization System Evaluation

The common metric for speaker diarization systems is the diarization error rate (DER). The DER is
the sum of the miss rate (classifying speech as non-speech), the false alarm rate (classifying non-
speech as speech) and the speaker error rate (confusing one speaker's speech for another).

In this simple example, the miss rate and false alarm rate are trivial problems. You evaluate the
speaker error rate only.

Map each true speaker to the corresponding best-fitting speaker cluster. To determine the speaker
error rate, count the number of mismatches between the true speakers and the best-fitting speaker
clusters, and then divide by the number of true speaker regions.

uniqueLabels = unique(trueLabel);
guessLabels = maskLabels;
uniqueGuessLabels = unique(guessLabels);

totalNumErrors = 0;
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for ii = 1:numel(uniqueLabels)
    isSpeaker = uniqueLabels(ii)==trueLabel;
    minNumErrors = inf;
    
    for jj = 1:numel(uniqueGuessLabels)
        groupCandidate = uniqueGuessLabels(jj) == guessLabels;
        numErrors = nnz(isSpeaker - groupCandidate);
        if numErrors < minNumErrors
            minNumErrors = numErrors;
            bestCandidate = jj;
        end
        minNumErrors = min(minNumErrors,numErrors);
    end
    uniqueGuessLabels(bestCandidate) = [];
    totalNumErrors = totalNumErrors + minNumErrors;
    if isempty(uniqueGuessLabels)
        break
    end
end
SpeakerErrorRate = totalNumErrors/numel(trueLabel)

SpeakerErrorRate = 0
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Train Spoken Digit Recognition Network Using Out-of-Memory
Features

This example trains a spoken digit recognition network on out-of-memory auditory spectrograms
using a transformed datastore. In this example, you extract auditory spectrograms from audio using
audioDatastore and audioFeatureExtractor, and you write them to disk. You then use a
signalDatastore to access the features during training. The workflow is useful when the training
features do not fit in memory. In this workflow, you only extract features once, which speeds up your
workflow if you are iterating on the deep learning model design.

Data

Download the Free Spoken Digit Data Set (FSDD). FSDD consists of 2000 recordings of four speakers
saying the numbers 0 through 9 in English.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","FSDD.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
dataset = fullfile(dataFolder,"FSDD");

Create an audioDatastore that points to the dataset.

ads = audioDatastore(dataset,IncludeSubfolders=true);

Display the classes and the number of examples in each class.

[~,filenames] = fileparts(ads.Files);
ads.Labels = categorical(extractBefore(filenames,'_'));
summary(ads.Labels)

     0      200 
     1      200 
     2      200 
     3      200 
     4      200 
     5      200 
     6      200 
     7      200 
     8      200 
     9      200 

Split the FSDD into training and test sets. Allocate 80% of the data to the training set and retain 20%
for the test set. You use the training set to train the model and the test set to validate the trained
model.

rng default
ads = shuffle(ads);
[adsTrain,adsTest] = splitEachLabel(ads,0.8);
countEachLabel(adsTrain)

ans=10×2 table
    Label    Count
    _____    _____

      0       160 
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      1       160 
      2       160 
      3       160 
      4       160 
      5       160 
      6       160 
      7       160 
      8       160 
      9       160 

countEachLabel(adsTest)

ans=10×2 table
    Label    Count
    _____    _____

      0       40  
      1       40  
      2       40  
      3       40  
      4       40  
      5       40  
      6       40  
      7       40  
      8       40  
      9       40  

Reduce Training Dataset

To train the network with the entire dataset and achieve the highest possible accuracy, set
speedupExample to false. To run this example quickly, set speedupExample to true.

speedupExample = ;
if speedupExample
    adsTrain = splitEachLabel(adsTrain,2);
    adsTest = splitEachLabel(adsTest,2);
end

Set up Auditory Spectrogram Extraction

The CNN accepts mel-frequency spectrograms.

Define parameters used to extract mel-frequency spectrograms. Use 220 ms windows with 10 ms
hops between windows. Use a 2048-point DFT and 40 frequency bands.

fs = 8000;

frameDuration = 0.22;
frameLength = round(frameDuration*fs);

hopDuration = 0.01;
hopLength = round(hopDuration*fs);

segmentLength = 8192;
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numBands = 40;
fftLength = 2048;

Create an audioFeatureExtractor object to compute mel-frequency spectrograms from input
audio signals.

afe = audioFeatureExtractor(melSpectrum=true,SampleRate=fs, ...
    Window=hamming(frameLength,"periodic"),OverlapLength=frameLength - hopLength, ...
    FFTLength=fftLength);

Set the parameters for the mel-frequency spectrogram.

setExtractorParameters(afe,"melSpectrum",NumBands=numBands,FrequencyRange=[50 fs/2],WindowNormalization=true);

Create a transformed datastore that computes mel-frequency spectrograms from audio data. The
supporting function, getSpeechSpectrogram on page 1-670, standardizes the recording length
and normalizes the amplitude of the audio input. getSpeechSpectrogram uses the
audioFeatureExtractor object afe to obtain the log-based mel-frequency spectrograms.

adsSpecTrain = transform(adsTrain,@(x)getSpeechSpectrogram(x,afe,segmentLength));

Write Auditory Spectrograms to Disk

Use writeall to write auditory spectrograms to disk. Set UseParallel to true to perform writing
in parallel.

outputLocation = fullfile(tempdir,"FSDD_Features");
writeall(adsSpecTrain,outputLocation,WriteFcn=@myCustomWriter,UseParallel=true);

Set up Training Signal Datastore

Create a signalDatastore that points to the out-of-memory features. The read function returns a
spectrogram/label pair.

sds = signalDatastore(outputLocation,IncludeSubfolders=true, ...
    SignalVariableNames=["spec","label"],ReadOutputOrientation="row");

Validation Data

The validation dataset fits into memory. Precompute validation features.

adsTestT = transform(adsTest,@(x){getSpeechSpectrogram(x,afe,segmentLength)});
XTest = readall(adsTestT);
XTest = cat(4,XTest{:});

Get the validation labels.

YTest = adsTest.Labels;

Define CNN Architecture

Construct a small CNN as an array of layers. Use convolutional and batch normalization layers, and
downsample the feature maps using max pooling layers. To reduce the possibility of the network
memorizing specific features of the training data, add a small amount of dropout to the input to the
last fully connected layer.

sz = size(XTest);
specSize = sz(1:2);
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imageSize = [specSize 1];

numClasses = numel(categories(YTest));

dropoutProb = 0.2;
numF = 12;
layers = [
    imageInputLayer(imageSize,Normalization="none")

    convolution2dLayer(5,numF,Padding="same")
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,Stride=2,Padding="same")

    convolution2dLayer(3,2*numF,Padding="same")
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,Stride=2,Padding="same")

    convolution2dLayer(3,4*numF,Padding="same")
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,Stride=2,Padding="same")

    convolution2dLayer(3,4*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,4*numF,Padding="same")
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(2)

    dropoutLayer(dropoutProb)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer(Classes=categories(YTest));
    ];

Set the hyperparameters to use in training the network. Use a mini-batch size of 50 and a learning
rate of 1e-4. Specify 'adam' optimization. To use the parallel pool to read the transformed datastore,
set DispatchInBackground to true. For more information, see trainingOptions (Deep Learning
Toolbox).

miniBatchSize = 50;
options = trainingOptions("adam", ...
    InitialLearnRate=1e-4, ...
    MaxEpochs=30, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropFactor=0.1, ...
    LearnRateDropPeriod=15, ...
    MiniBatchSize=miniBatchSize, ...
    Shuffle="every-epoch", ...
    Plots="training-progress", ...
    Verbose=false, ...
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    ValidationData={XTest,YTest}, ...
    ValidationFrequency=ceil(numel(adsTrain.Files)/miniBatchSize), ...
    ExecutionEnvironment="auto", ...
    DispatchInBackground=true);

Train the network by passing the training datastore to trainNetwork.

trainedNet = trainNetwork(sds,layers,options);

Use the trained network to predict the digit labels for the test set.

[Ypredicted,probs] = classify(trainedNet,XTest);
cnnAccuracy = sum(Ypredicted==YTest)/numel(YTest)*100

cnnAccuracy = 96

Summarize the performance of the trained network on the test set with a confusion chart. Display the
precision and recall for each class by using column and row summaries. The table at the bottom of
the confusion chart shows the precision values. The table to the right of the confusion chart shows
the recall values.

figure(Units="normalized",Position=[0.2 0.2 1.5 1.5]);
confusionchart(YTest,Ypredicted, ...
    Title="Confusion Chart for DCNN", ...
    ColumnSummary="column-normalized",RowSummary="row-normalized");
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Supporting Functions

Get Speech Spectrograms

function X = getSpeechSpectrogram(x,afe,segmentLength)
% getSpeechSpectrogram(x,afe,params) computes a speech spectrogram for the
% signal x using the audioFeatureExtractor afe.

x = scaleAndResize(single(x),segmentLength);

spec = extract(afe,x).';

X = log10(spec + 1e-6);

end

Scale and Resize

function x = scaleAndResize(x,segmentLength)
% scaleAndResize(x,segmentLength) scales x by its max absolute value and forces
% its length to be segmentLength by trimming or zero-padding.

L = segmentLength;
N = size(x,1);
if N > L
    x = x(1:L,:);
elseif N < L
    pad = L - N;
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    prepad = floor(pad/2);
    postpad = ceil(pad/2);
    x = [zeros(prepad,1);x;zeros(postpad,1)];
end
x = x./max(abs(x));

end

Custom Write Function

function myCustomWriter(spec,writeInfo,~)
% myCustomWriter(spec,writeInfo,~) writes an auditory spectrogram/label
% pair to MAT files.

filename = strrep(writeInfo.SuggestedOutputName,".wav",".mat");
label = writeInfo.ReadInfo.Label;
save(filename,"label","spec");

end
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Train Spoken Digit Recognition Network Using Out-of-Memory
Audio Data

This example trains a spoken digit recognition network on out-of-memory audio data using a
transformed datastore. In this example, you apply a random pitch shift to audio data used to train a
convolutional neural network (CNN). For each training iteration, the audio data is augmented using
the audioDataAugmenter object and then features are extracted using the
audioFeatureExtractor object. The workflow in this example applies to any random data
augmentation used in a training loop. The workflow also applies when the underlying audio data set
or training features do not fit in memory.

Data

Download the Free Spoken Digit Data Set (FSDD). FSDD consists of 2000 recordings of four speakers
saying the numbers 0 through 9 in English.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","FSDD.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
dataset = fullfile(dataFolder,"FSDD");

Create an audioDatastore that points to the dataset.

ads = audioDatastore(dataset,IncludeSubfolders=true);

Decode the file names to set the labels on the datastore. Display the classes and the number of
examples in each class.

[~,filenames] = fileparts(ads.Files);
ads.Labels = categorical(extractBefore(filenames,'_'));
summary(ads.Labels)

     0      200 
     1      200 
     2      200 
     3      200 
     4      200 
     5      200 
     6      200 
     7      200 
     8      200 
     9      200 

Split the FSDD into training and test sets. Allocate 80% of the data to the training set and retain 20%
for the test set. You use the training set to train the model and the test set to validate the trained
model.

rng default
ads = shuffle(ads);
[adsTrain,adsTest] = splitEachLabel(ads,0.8);
countEachLabel(adsTrain)

ans=10×2 table
    Label    Count
    _____    _____
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      0       160 
      1       160 
      2       160 
      3       160 
      4       160 
      5       160 
      6       160 
      7       160 
      8       160 
      9       160 

countEachLabel(adsTest)

ans=10×2 table
    Label    Count
    _____    _____

      0       40  
      1       40  
      2       40  
      3       40  
      4       40  
      5       40  
      6       40  
      7       40  
      8       40  
      9       40  

Reduce Training Dataset

To train the network with the entire dataset and achieve the highest possible accuracy, set
speedupExample to false. To run this example quickly, set speedupExample to true.

speedupExample = ;
if speedupExample
    adsTrain = splitEachLabel(adsTrain,2);
    adsTest = splitEachLabel(adsTest,2);
end

Transformed Training Datastore

Data Augmentation

Augment the training data by applying pitch shifting with an audioDataAugmenter object.

Create an audioDataAugmenter. The augmenter applies pitch shifting on an input audio signal with
a 0.5 probability. The augmenter selects a random pitch shifting value in the range [–12 12]
semitones.

augmenter = audioDataAugmenter( ...
    PitchShiftProbability=0.5, ...
    SemitoneShiftRange=[-12 12], ...
    TimeShiftProbability=0, ...
    VolumeControlProbability=0, ...
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    AddNoiseProbability=0, ...
    TimeShiftProbability=0);

Set custom pitch-shifting parameters. Use identity phase locking and preserve formants using
spectral envelope estimation with 30th order cepstral analysis.

setAugmenterParams(augmenter,"shiftPitch",LockPhase=true,PreserveFormants=true,CepstralOrder=30);

Create a transformed datastore that applies data augmentation to the training data.

fs = 8000;
adsAugTrain = transform(adsTrain,@(y)deal(augment(augmenter,y,fs).Audio{1}));

Mel Spectrogram Feature Extraction

The CNN accepts mel-frequency spectrograms.

Define parameters used to extract mel-frequency spectrograms. Use 220 ms windows with 10 ms
hops between windows. Use a 2048-point DFT and 40 frequency bands.

frameDuration = 0.22;
frameLength = round(frameDuration*fs);

hopDuration = 0.01;
hopLength = round(hopDuration*fs);

segmentLength = 8192;

numBands = 40;
fftLength = 2048;

Create an audioFeatureExtractor object to compute mel-frequency spectrograms from input
audio signals.

afe = audioFeatureExtractor(melSpectrum=true,SampleRate=fs, ...
    Window=hamming(frameLength,"periodic"),OverlapLength=frameLength - hopLength, ...
    FFTLength=fftLength);

Set the parameters for the mel-frequency spectrogram.

setExtractorParameters(afe,"melSpectrum",NumBands=numBands,FrequencyRange=[50 fs/2],WindowNormalization=true);

Create a transformed datastore that computes mel-frequency spectrograms from pitch-shifted audio
data. The supporting function, getSpeechSpectrogram on page 1-677, standardizes the recording
length and normalizes the amplitude of the audio input. getSpeechSpectrogram uses the
audioFeatureExtractor object (afe) to obtain the log-based mel-frequency spectrograms.

adsSpecTrain = transform(adsAugTrain,@(x)getSpeechSpectrogram(x,afe,segmentLength));

Training Labels

Use an arrayDatastore to hold the training labels.

labelsTrain = arrayDatastore(adsTrain.Labels);

Combined Training Datastore

Create a combined datastore that points to the mel-frequency spectrogram data and the
corresponding labels.
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tdsTrain = combine(adsSpecTrain,labelsTrain);

Validation Data

The validation dataset fits into memory. Precompute validation features.

adsTestT = transform(adsTest,@(x){getSpeechSpectrogram(x,afe,segmentLength)});
XTest = readall(adsTestT);
XTest = cat(4,XTest{:});

Get the validation labels.

YTest = adsTest.Labels;

Define CNN Architecture

Construct a small CNN as an array of layers. Use convolutional and batch normalization layers, and
downsample the feature maps using max pooling layers. To reduce the possibility of the network
memorizing specific features of the training data, add a small amount of dropout to the input to the
last fully connected layer.

sz = size(XTest);
specSize = sz(1:2);
imageSize = [specSize 1];

numClasses = numel(categories(YTest));

dropoutProb = 0.2;
numF = 12;
layers = [
    imageInputLayer(imageSize,Normalization="none")

    convolution2dLayer(5,numF,Padding="same")
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,Stride=2,Padding="same")

    convolution2dLayer(3,2*numF,Padding="same")
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,Stride=2,Padding="same")

    convolution2dLayer(3,4*numF,Padding="same")
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(3,Stride=2,Padding="same")

    convolution2dLayer(3,4*numF,Padding="same")
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,4*numF,Padding="same")
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer(2)
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    dropoutLayer(dropoutProb)
    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer(Classes=categories(YTest));
    ];

Set the hyperparameters to use in training the network. Use a mini-batch size of 128 and a learning
rate of 1e-4. Specify 'adam' optimization. To use the parallel pool to read the transformed datastore,
set DispatchInBackground to true. For more information, see trainingOptions (Deep Learning
Toolbox).

miniBatchSize = 128;
options = trainingOptions("adam", ...
    InitialLearnRate=1e-4, ...
    MaxEpochs=60, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropFactor=0.1, ...
    LearnRateDropPeriod=30, ...
    MiniBatchSize=miniBatchSize, ...
    Shuffle="every-epoch", ...
    Plots="training-progress", ...
    Verbose=false, ...
    ValidationData={XTest,YTest}, ...
    ValidationFrequency=ceil(numel(adsTrain.Files)/miniBatchSize), ...
    ValidationPatience=5, ...
    ExecutionEnvironment="auto", ...
    DispatchInBackground=true);

Train the network by passing the transformed training datastore to trainNetwork.

trainedNet = trainNetwork(tdsTrain,layers,options);
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Use the trained network to predict the digit labels for the test set.

[Ypredicted,probs] = classify(trainedNet,XTest);
cnnAccuracy = sum(Ypredicted==YTest)/numel(YTest)*100

cnnAccuracy = 95.5000

Summarize the performance of the trained network on the test set with a confusion chart. Display the
precision and recall for each class by using column and row summaries. The table at the bottom of
the confusion chart shows the precision values. The table to the right of the confusion chart shows
the recall values.

figure(Units="normalized",Position=[0.2 0.2 0.5 0.5]);
confusionchart(YTest,Ypredicted, ...
    Title="Confusion Chart for DCNN", ...
    ColumnSummary="column-normalized",RowSummary="row-normalized");

Supporting Functions

Get Speech Spectrograms

function X = getSpeechSpectrogram(x,afe,segmentLength)
% getSpeechSpectrogram(x,afe,params) computes a speech spectrogram for the
% signal x using the audioFeatureExtractor afe.

x = scaleAndResize(single(x),segmentLength);

spec = extract(afe,x).';
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X = log10(spec + 1e-6);

end

Normalize and Resize

function x = scaleAndResize(x,segmentLength)
% scaleAndResize(x,segmentLength) scales x by its max absolute value and forces
% its length to be segmentLength by trimming or zero-padding.

L = segmentLength;
N = size(x,1);
if N > L
    x = x(1:L,:);
elseif N < L
    pad = L - N;
    prepad = floor(pad/2);
    postpad = ceil(pad/2);
    x = [zeros(prepad,1);x;zeros(postpad,1)];
end
x = x./max(abs(x));

end
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Keyword Spotting in Noise Code Generation with Intel MKL-
DNN

This example demonstrates code generation for keyword spotting using a Bidirectional Long Short-
Term Memory (BiLSTM) network and mel frequency cepstral coefficient (MFCC) feature extraction.
MATLAB® Coder™ with Deep Learning Support enables the generation of a standalone executable
(.exe) file. Communication between the MATLAB® (.mlx) file and the generated executable file
occurs over asynchronous User Datagram Protocol (UDP). The incoming speech signal is displayed
using a timescope. A mask is shown as a blue rectangle surrounding spotted instances of the
keyword, YES. For more details on MFCC feature extraction and deep learning network training, visit
“Keyword Spotting in Noise Using MFCC and LSTM Networks” on page 1-496.

Example Requirements

• MATLAB® Coder Interface for Deep Learning Support Package
• Intel® Xeon® processor with support for Intel Advanced Vector Extensions 2 (Intel AVX2)
• Intel Math Kernel Library for Deep Neural Networks (MKL-DNN)
• Environment variables for Intel MKL-DNN

For supported versions of libraries and for information about setting up environment variables, see
“Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder).

Pretrained Network Keyword Spotting Using MATLAB and Streaming Audio from
Microphone

The sample rate of the pretrained network is 16 kHz. Set the window length to 512 samples, with an
overlap length of 384 samples, and a hop length defined as the difference between the window and
overlap lengths. Define the rate at which the mask is estimated. A mask is generated once for every
numHopsPerUpdate audio frames.

fs = 16e3;
windowLength = 512;
overlapLength = 384;
hopLength = windowLength - overlapLength;
numHopsPerUpdate = 16;
maskLength = hopLength*numHopsPerUpdate;

Create an audioFeatureExtractor object to perform MFCC feature extraction.

afe = audioFeatureExtractor('SampleRate',fs, ...
                            'Window',hann(windowLength,'periodic'), ...
                            'OverlapLength',overlapLength, ...
                            'mfcc',true, ...
                            'mfccDelta',true, ...
                            'mfccDeltaDelta',true);   

Download and load the pretrained network, as well as the mean (M) and the standard deviation (S)
vectors used for Feature Standardization.

url = 'http://ssd.mathworks.com/supportfiles/audio/KeywordSpotting.zip';
downloadNetFolder = './';
netFolder = fullfile(downloadNetFolder,'KeywordSpotting');
if ~exist(netFolder,'dir')
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    disp('Downloading pretrained network and audio files (4 files - 7 MB) ...')
    unzip(url,downloadNetFolder)
end
load(fullfile(netFolder,'KWSNet.mat'),"KWSNet","M","S");

Call generateMATLABFunction on the audioFeatureExtractor object to create the feature
extraction function. You will use this function in the processing loop.

generateMATLABFunction(afe,'generateKeywordFeatures','IsStreaming',true);

Define an Audio Device Reader that can read audio from your microphone. Set the frame length equal
to the hop length. This enables you to compute a new set of features for every new audio frame from
the microphone.

frameLength = hopLength;
adr = audioDeviceReader('SampleRate',fs, ...
                        'SamplesPerFrame',frameLength);

Create a Time Scope to visualize the speech signals and estimated mask.

scope = timescope('SampleRate',fs, ...
                  'TimeSpanSource','property', ...
                  'TimeSpan',5, ...
                  'TimeSpanOverrunAction','Scroll', ...
                  'BufferLength',fs*5*2, ...
                  'ShowLegend',true, ...
                  'ChannelNames',{'Speech','Keyword Mask'}, ...
                  'YLimits',[-1.2 1.2], ...
                  'Title','Keyword Spotting');

Initialize a buffer for the audio data, a buffer for the computed features, and a buffer to plot the input
audio and the output speech mask.

dataBuff = dsp.AsyncBuffer(windowLength);
featureBuff = dsp.AsyncBuffer(numHopsPerUpdate);
plotBuff = dsp.AsyncBuffer(numHopsPerUpdate*windowLength);

Perform keyword spotting on speech received from your microphone. To run the loop indefinitely, set
timeLimit to Inf. To stop the simulation, close the scope.

timeLimit = 20;
show(scope);
tic
while toc < timeLimit && isVisible(scope)
    
    data = adr();
    write(dataBuff,data);
    write(plotBuff,data);  
        
    frame = read(dataBuff,windowLength,overlapLength);
    features = generateKeywordFeatures(frame,fs);
    write(featureBuff,features.');

    if featureBuff.NumUnreadSamples == numHopsPerUpdate
        
        featureMatrix = read(featureBuff);
        featureMatrix(~isfinite(featureMatrix)) = 0;       
        featureMatrix = (featureMatrix - M)./S;
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        [keywordNet, v] = classifyAndUpdateState(KWSNet,featureMatrix.');
                
        v = double(v) - 1;
        v = repmat(v,hopLength,1);
        v = v(:);
        v = mode(v);
        predictedMask = repmat(v,numHopsPerUpdate*hopLength,1);
        
        data = read(plotBuff);        
        scope([data,predictedMask]);
        
        drawnow limitrate;
    end
end

release(adr)
hide(scope)

The helperKeywordSpotting supporting function encapsulates capturing the audio, feature
extraction and network prediction process demonstrated previously. To make feature extraction
compatible with code generation, feature extraction is handled by the generated
generateKeywordFeatures function. To make the network compatible with code generation, the
supporting function uses the coder.loadDeepLearningNetwork (MATLAB Coder) (MATLAB
Coder) function to load the network.

The supporting function uses a dsp.UDPSender System object to send the input data along with the
output mask predicted by the network to MATLAB. The MATLAB script uses the dsp.UDPReceiver
System object to receive the input data along with the output mask predicted by the network running
in the supporting function.

Generate Executable on Desktop

Create a code generation configuration object to generate an executable. Specify the target language
as C++.

cfg = coder.config('exe');
cfg.TargetLang = 'C++';

Create a configuration object for deep learning code generation with the MKL-DNN library. Attach
the deep learning configuration object to the code generation configuration object.

dlcfg = coder.DeepLearningConfig('mkldnn');
cfg.DeepLearningConfig = dlcfg;

Generate the C++ main file required to produce the standalone executable.

cfg.GenerateExampleMain = 'GenerateCodeAndCompile';

Generate helperKeywordSpotting, a supporting function that encapsulates the audio capture,
feature extraction, and network prediction processes. You get a warning in the code generation logs
that you can disregard because helperKeywordSpotting has an infinite loop that continously looks
for an audio frame from MATLAB.

codegen helperKeywordSpotting -config cfg -report

Warning: Function 'helperKeywordSpotting' does not terminate due to an infinite loop.
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Warning in ==> helperKeywordSpotting Line: 73 Column: 1
Code generation successful (with warnings): View report

Prepare Dependencies and Run the Generated Executable

In this section, you generate all the required dependency files and put them into a single folder.
During the build process, MATLAB Coder generates buildInfo.mat, a file that contains the
compilation and run-time dependency information for the standalone executable.

Set the project name to helperKeywordSpotting.

projName = 'helperKeywordSpotting';
packageName = [projName,'Package'];
if ispc
    exeName = [projName,'.exe'];
else
    exeName = projName;
end

Load buildinfo.mat and use packNGo (MATLAB Coder) to produce a .zip package.

load(['codegen',filesep,'exe',filesep,projName,filesep,'buildInfo.mat']);
packNGo(buildInfo,'fileName',[packageName,'.zip'],'minimalHeaders',false);

Unzip the package and place the executable file in the unzipped directory.

unzip([packageName,'.zip'],packageName);
copyfile(exeName, packageName,'f');

To invoke a standalone executable that depends on the MKL-DNN Dynamic Link Library, append the
path to the MKL-DNN library location to the environment variable PATH.

setenv('PATH',[getenv('INTEL_MKLDNN'),filesep,'lib',pathsep,getenv('PATH')]);

Run the generated executable.

if ispc
    system(['start cmd /k "title ',packageName,' && cd ',packageName,' && ',exeName]);
else
    cd(packageName);
    system(['./',exeName,' &']);
    cd ..;
end

Perform Keyword Spotting Using Deployed Code

Create a dsp.UDPReceiver System object to receive speech data and the predicted speech mask
from the standalone executable. Each UDP packet received from the executable consists of
maskLength mask samples and speech samples. The maximum message length for the
dsp.UDPReceiver object is 65507 bytes. Calculate the buffer size to accommodate the maximum
number of UDP packets.

sizeOfFloatInBytes = 4;
speechDataLength = maskLength; 
numElementsPerUDPPacket = maskLength + speechDataLength;

maxUDPMessageLength = floor(65507/sizeOfFloatInBytes);
samplesPerPacket = 1 + numElementsPerUDPPacket; 
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numPackets = floor(maxUDPMessageLength/samplesPerPacket);
bufferSize = numPackets*samplesPerPacket*sizeOfFloatInBytes;

UDPReceive = dsp.UDPReceiver('LocalIPPort',20000, ...
    'MessageDataType','single', ...
    'MaximumMessageLength',samplesPerPacket, ...
    'ReceiveBufferSize',bufferSize);

To run the keyword spotting indefinitely, set timelimit to Inf. To stop the simulation, close the
scope.

tic;
timelimit = 20;
show(scope);

while toc < timelimit && isVisible(scope)
    data = UDPReceive();
    if ~isempty(data)
        plotMask = data(1:maskLength);
        plotAudio = data(maskLength+1 : maskLength+speechDataLength);
        scope([plotAudio,plotMask]);
    end
    drawnow limitrate;
end

hide(scope);

Release the system objects and terminate the standalone executable.

release(UDPReceive);
release(scope);
if ispc
    system(['taskkill /F /FI "WindowTitle eq ',projName,'* " /T']);
else
    system(['killall ',exeName]);
end

SUCCESS: The process with PID 4644 (child process of PID 21188) has been terminated. 
SUCCESS: The process with PID 20052 (child process of PID 21188) has been terminated. 
SUCCESS: The process with PID 21188 (child process of PID 22940) has been terminated. 

Evaluate Execution Time Using Alternative MEX Function Workflow

A similar workflow involves using a MEX file instead of the standalone executable. Perform MEX
profiling to measure the computation time for the workflow.

Create a code generation configuration object to generate the MEX function. Specify the target
language as C++.

cfg = coder.config('mex');
cfg.TargetLang = 'C++';

Create a configuration object for deep learning code generation with the MKL-DNN library. Attach
the deep learning configuration object to the code generation configuration object.

dlcfg = coder.DeepLearningConfig('mkldnn');
cfg.DeepLearningConfig = dlcfg;

Call codegen to generate the MEX function for profileKeywordSpotting.
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inputAudioFrame = ones(hopLength,1,'single');
codegen profileKeywordSpotting -config cfg -args {inputAudioFrame} -report

Code generation successful: View report

Measure the execution time of the MATLAB code.

x = pinknoise(hopLength,1,'single');
numPredictCalls = 100;
totalNumCalls = numPredictCalls*numHopsPerUpdate;
exeTimeStart = tic;
for call = 1:totalNumCalls
    [outputMask,inputData,plotFlag] = profileKeywordSpotting(x);
end
exeTime = toc(exeTimeStart);
fprintf('MATLAB execution time per %d ms of audio = %0.4f ms\n',int32(1000*numHopsPerUpdate*hopLength/fs),(exeTime/numPredictCalls)*1000);

MATLAB execution time per 128 ms of audio = 24.9238 ms

Measure the execution time of the MEX function.

exeTimeMexStart = tic; 
for call = 1:totalNumCalls
    [outputMask,inputData,plotFlag] = profileKeywordSpotting_mex(x);
end
exeTimeMex = toc(exeTimeMexStart);
fprintf('MEX execution time per %d ms of audio = %0.4f ms\n',int32(1000*numHopsPerUpdate*hopLength/fs),(exeTimeMex/numPredictCalls)*1000);

MEX execution time per 128 ms of audio = 5.2710 ms

Compare total execution time of the standalone executable approach with the MEX function
approach. This performance test is done on a machine using an NVIDIA Quadro® P620 (Version 26)
GPU and an Intel Xeon W-2133 CPU running at 3.60 GHz.

PerformanceGain = exeTime/exeTimeMex

PerformanceGain = 4.7285
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Keyword Spotting in Noise Code Generation on Raspberry Pi

This example demonstrates code generation for keyword spotting using a Bidirectional Long Short-
Term Memory (BiLSTM) network and mel frequency cepstral coefficient (MFCC) feature extraction on
Raspberry Pi™. MATLAB® Coder™ with Deep Learning Support enables the generation of a
standalone executable (.elf) file on Raspberry Pi. Communication between MATLAB® (.mlx) file and
the generated executable file occurs over asynchronous User Datagram Protocol (UDP). The incoming
speech signal is displayed using a timescope. A mask is shown as a blue rectangle surrounding
spotted instances of the keyword, YES. For more details on MFCC feature extraction and deep
learning network training, visit “Keyword Spotting in Noise Using MFCC and LSTM Networks” on
page 1-496.

Example Requirements

• MATLAB® Coder Interface for Deep Learning Support Package
• ARM processor that supports the NEON extension
• ARM Compute Library version 20.02.1 (on the target ARM hardware)
• Environment variables for the compilers and libraries

For supported versions of libraries and for information about setting up environment variables, see
“Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder).

Pretrained Network Keyword Spotting Using MATLAB® and Streaming Audio from
Microphone

The sample rate of the pretrained network is 16 kHz. Set the window length to 512 samples, with an
overlap length of 384 samples, and a hop length defined as the difference between the window and
overlap lengths. Define the rate at which the mask is estimated. A mask is generated once for every
numHopsPerUpdate audio frames.

fs = 16e3;
windowLength = 512;
overlapLength = 384;
hopLength = windowLength - overlapLength;

numHopsPerUpdate = 16;
maskLength = hopLength * numHopsPerUpdate;

Create an audioFeatureExtractor object to perform MFCC feature extraction.

afe = audioFeatureExtractor('SampleRate',fs, ...
                            'Window',hann(windowLength,'periodic'), ...
                            'OverlapLength',overlapLength, ...
                            'mfcc',true, ...
                            'mfccDelta',true, ...
                            'mfccDeltaDelta',true); 

Download and load the pretrained network, as well as the mean (M) and the standard deviation (S)
vectors used for feature standardization.

url = 'http://ssd.mathworks.com/supportfiles/audio/KeywordSpotting.zip';
downloadNetFolder = './';
netFolder = fullfile(downloadNetFolder,'KeywordSpotting');
if ~exist(netFolder,'dir')
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    disp('Downloading pretrained network and audio files (4 files - 7 MB) ...')
    unzip(url,downloadNetFolder)
end
load(fullfile(netFolder,'KWSNet.mat'),"KWSNet","M","S");

Call generateMATLABFunction on the audioFeatureExtractor object to create the feature
extraction function.

generateMATLABFunction(afe,'generateKeywordFeatures','IsStreaming',true);

Define an Audio Device Reader System object™ to read audio from your microphone. Set the frame
length equal to the hop length. This enables the computation of a new set of features for every new
audio frame received from the microphone.

frameLength = hopLength;
adr = audioDeviceReader('SampleRate',fs, ...
                        'SamplesPerFrame',frameLength,'OutputDataType','single');

Create a Time Scope to visualize the speech signals and estimated mask.

scope = timescope('SampleRate',fs, ...
                  'TimeSpanSource','property', ...
                  'TimeSpan',5, ...
                  'TimeSpanOverrunAction','Scroll', ...
                  'BufferLength',fs*5*2, ...
                  'ShowLegend',true, ...
                  'ChannelNames',{'Speech','Keyword Mask'}, ...
                  'YLimits',[-1.2 1.2], ...
                  'Title','Keyword Spotting');

Initialize a buffer for the audio data, a buffer for the computed features, and a buffer to plot the input
audio and the output speech mask.

dataBuff = dsp.AsyncBuffer(windowLength);
featureBuff = dsp.AsyncBuffer(numHopsPerUpdate);
plotBuff = dsp.AsyncBuffer(numHopsPerUpdate*windowLength);

Perform keyword spotting on speech received from your microphone. To run the loop indefinitely, set
timeLimit to Inf. To stop the simulation, close the scope.

show(scope);
timeLimit = 20;
tic
while toc < timeLimit && isVisible(scope)
    
    data = adr();
    write(dataBuff,data);
    write(plotBuff,data);
    
    frame = read(dataBuff,windowLength,overlapLength);
    features = generateKeywordFeatures(frame,fs);
    write(featureBuff,features.');

    if featureBuff.NumUnreadSamples == numHopsPerUpdate
        
        featureMatrix = read(featureBuff);
        featureMatrix(~isfinite(featureMatrix)) = 0;
        featureMatrix = (featureMatrix - M)./S;
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        [keywordNet,v] = classifyAndUpdateState(KWSNet,featureMatrix.');
        
        v = double(v) - 1;
        v = repmat(v,hopLength,1);
        v = v(:);
        v = mode(v);
        v = repmat(v,numHopsPerUpdate * hopLength,1);
        
        data = read(plotBuff);
        scope([data,v]);
        
        drawnow limitrate;
    end
end
hide(scope)

The helperKeywordSpottingRaspi supporting function encapsulates the feature extraction and
network prediction process demonstrated previously. To make feature extraction compatible with
code generation, feature extraction is handled by the generated generateKeywordFeatures
function. To make the network compatible with code generation, the supporting function uses the
coder.loadDeepLearningNetwork (MATLAB Coder) function to load the network.

The supporting function uses a dsp.UDPReceiver System object to receive the captured audio from
MATLAB® and uses a dsp.UDPSender System object to send the input speech signal along with the
estimated mask predicted by the network to MATLAB®. Similarly, the MATLAB® live script uses the
dsp.UDPSender System object to send the captured speech signal to the executable running on
Raspberry Pi and the dsp.UDPReceiver System object to receive the speech signal and estimated
mask from Raspberry Pi.

Generate Executable on Raspberry Pi

Replace the hostIPAddress with your machine's address. Your Raspberry Pi sends the input speech
signal and estimated mask to the specified IP address.

hostIPAddress = coder.Constant('172.18.230.30');

Create a code generation configuration object to generate an executable program. Specify the target
language as C++.

cfg = coder.config('exe');
cfg.TargetLang = 'C++';

Create a configuration object for deep learning code generation with the ARM compute library that is
on your Raspberry Pi. Specify the architecture of the Raspberry Pi and attach the deep learning
configuration object to the code generation configuration object.

dlcfg = coder.DeepLearningConfig('arm-compute');
dlcfg.ArmArchitecture = 'armv7';
dlcfg.ArmComputeVersion = '20.02.1';
cfg.DeepLearningConfig = dlcfg;

Use the Raspberry Pi Support Package function, raspi, to create a connection to your Raspberry Pi.
In the following code, replace:

• raspiname with the name of your Raspberry Pi
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• pi with your user name
• password with your password

r = raspi('raspiname','pi','password');

Create a coder.hardware (MATLAB Coder) object for Raspberry Pi and attach it to the code
generation configuration object.

hw = coder.hardware('Raspberry Pi');
cfg.Hardware = hw;

Specify the build folder on the Raspberry Pi.

buildDir = '~/remoteBuildDir';
cfg.Hardware.BuildDir = buildDir;

Generate the C++ main file required to produce the standalone executable.

cfg.GenerateExampleMain = 'GenerateCodeAndCompile';

Generate C++ code for helperKeywordSpottingRaspi on your Raspberry Pi.

codegen -config cfg helperKeywordSpottingRaspi -args {hostIPAddress} -report 

 Deploying code. This may take a few minutes. 
Warning: Function 'helperKeywordSpottingRaspi' does not terminate due to an infinite loop.

Warning in ==> helperKeywordSpottingRaspi Line: 78 Column: 1
Code generation successful (with warnings): View report

Perform Keyword Spotting Using Deployed Code

Create a command to open the helperKeywordSpottingRaspi application on Raspberry Pi. Use
system to send the command to your Raspberry Pi.

applicationName = 'helperKeywordSpottingRaspi';

applicationDirPaths = raspi.utils.getRemoteBuildDirectory('applicationName',applicationName);
targetDirPath = applicationDirPaths{1}.directory;

exeName = strcat(applicationName,'.elf');
command = ['cd ',targetDirPath,'; ./',exeName,' &> 1 &'];

system(r,command);

Create a dsp.UDPSender System object to send audio captured in MATLAB® to your Raspberry Pi.
Update the targetIPAddress for your Raspberry Pi. Raspberry Pi receives the captured audio from
the same port using the dsp.UDPReceiver System object.

targetIPAddress = '172.18.231.92';
UDPSend = dsp.UDPSender('RemoteIPPort',26000,'RemoteIPAddress',targetIPAddress); 

Create a dsp.UDPReceiver System object to receive speech data and the predicted speech mask
from your Raspberry Pi. Each UDP packet received from the Raspberry Pi consists of maskLength
mask and speech samples. The maximum message length for the dsp.UDPReceiver object is 65507
bytes. Calculate the buffer size to accommodate the maximum number of UDP packets.

sizeOfFloatInBytes = 4;
speechDataLength = maskLength; 
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numElementsPerUDPPacket = maskLength + speechDataLength;
maxUDPMessageLength = floor(65507/sizeOfFloatInBytes);
numPackets = floor(maxUDPMessageLength/numElementsPerUDPPacket);
bufferSize = numPackets*numElementsPerUDPPacket*sizeOfFloatInBytes;

UDPReceive = dsp.UDPReceiver("LocalIPPort",21000, ...  
    "MessageDataType","single", ...
    "MaximumMessageLength",1+numElementsPerUDPPacket, ...
    "ReceiveBufferSize",bufferSize);

Spot the keyword as long as time scope is open or until the time limit is reached. To stop the live
detection before the time limit is reached, close the time scope.

tic;
show(scope);
timelimit = 20;
while toc < timelimit && isVisible(scope)
    x = adr();
    UDPSend(x);
    data = UDPReceive(); 
    if ~isempty(data)
        mask = data(1:maskLength);
        dataForPlot = data(maskLength + 1 : numElementsPerUDPPacket);
        scope([dataForPlot,mask]);        
    end
    drawnow limitrate;
end 

Release the system objects and terminate the standalone executable.

hide(scope)
release(UDPSend)
release(UDPReceive)
release(scope)
release(adr)
stopExecutable(codertarget.raspi.raspberrypi,exeName)

Evaluate Execution Time Using Alternative PIL Function Workflow

To evaluate execution time taken by standalone executable on Raspberry Pi, use a PIL (processor-in-
loop) workflow. To perform PIL profiling, generate a PIL function for the supporting function
profileKeywordSpotting. The profileKeywordSpotting is equivalent to
helperKeywordSpottingRaspi, except that the former returns the speech and predicted speech
mask while the latter sends the same parameters using UDP. The time taken by the UDP calls is less
than 1 ms, which is relatively small compared to the overall execution time.

Create a code generation configuration object to generate the PIL function.

cfg = coder.config('lib','ecoder',true);
cfg.VerificationMode = 'PIL';

Set the ARM compute library and architecture.

dlcfg = coder.DeepLearningConfig('arm-compute');
cfg.DeepLearningConfig = dlcfg ;
cfg.DeepLearningConfig.ArmArchitecture = 'armv7';
cfg.DeepLearningConfig.ArmComputeVersion = '20.02.1';
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Set up the connection with your target hardware.

if (~exist('r','var'))
  r = raspi('raspiname','pi','password');
end
hw = coder.hardware('Raspberry Pi');
cfg.Hardware = hw;

Set the build directory and target language.

buildDir = '~/remoteBuildDir';
cfg.Hardware.BuildDir = buildDir;
cfg.TargetLang = 'C++';

Enable profiling and generate the PIL code. A MEX file named profileKeywordSpotting_pil is
generated in your current folder.

cfg.CodeExecutionProfiling = true;
codegen -config cfg profileKeywordSpotting -args {pinknoise(hopLength,1,'single')} -report

 Deploying code. This may take a few minutes. 
### Connectivity configuration for function 'profileKeywordSpotting': 'Raspberry Pi'
Location of the generated elf : /home/pi/remoteBuildDir/MATLAB_ws/R2022a/W/Ex/ExampleManager/sporwal.Bdoc22a.j1844576/deeplearning_shared-ex18742368/codegen/lib/profileKeywordSpotting/pil
Code generation successful: View report

Evaluate Raspberry Pi Execution Time

Call the generated PIL function multiple times to get the average execution time.

numPredictCalls = 10;
totalCalls = numHopsPerUpdate * numPredictCalls;

x = pinknoise(hopLength,1,'single');
for k = 1:totalCalls
    [maskReceived,inputSignal,plotFlag] = profileKeywordSpotting_pil(x);
end

### Starting application: 'codegen\lib\profileKeywordSpotting\pil\profileKeywordSpotting.elf'
    To terminate execution: clear profileKeywordSpotting_pil
### Launching application profileKeywordSpotting.elf...
    Execution profiling data is available for viewing. Open Simulation Data Inspector.
    Execution profiling report available after termination.

Terminate the PIL execution.

clear profileKeywordSpotting_pil

### Host application produced the following standard output (stdout) and standard error (stderr) messages:

    Execution profiling report: report(getCoderExecutionProfile('profileKeywordSpotting'))

Generate an execution profile report to evaluate execution time.

executionProfile = getCoderExecutionProfile('profileKeywordSpotting');
report(executionProfile, ...
       'Units','Seconds', ...
       'ScaleFactor','1e-03', ...
       'NumericFormat','%0.4f')
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ans = 
'W:\Ex\ExampleManager\sporwal.Bdoc22a.j1844576\deeplearning_shared-ex18742368\codegen\lib\profileKeywordSpotting\html\orphaned\ExecutionProfiling_d43d66431b443d29.html'
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Plot the Execution Time of each frame from the generated report.

Processing of the first frame took ~20 ms due to initialization overhead costs. The spikes in the time
graph at every 16th frame (numHopsPerUpdate) correspond to the computationally intensive predict
function called every 16th frame. The maximum execution time is ~30 ms, which is below the 128 ms
budget for real-time streaming. The performance is measuerd on Raspberry Pi 4 Model B Rev 1.1.
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Dereverberate Speech Using Deep Learning Networks

This example shows how to train a U-Net fully convolutional network (FCN) [1] on page 1-716 to
dereverberate a speech signals.

Introduction

Reverberation occurs when a speech signal is reflected off objects in space, causing multiple
reflections to build up and eventually leads to degradation of speech quality. Dereverberation is the
process of reducing the reverberation effects in a speech signal.

Dereverberate Speech Signal Using Pretrained Network

Before going into the training process in detail, use a pretrained network to dereverberate a speech
signal.

Download the pretrained network. This network was trained on 56-speaker versions of the training
datasets. The example walks through training on the 28-speaker version.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","dereverbnet.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
netFolder = fullfile(dataFolder,"derevernet");
load(fullfile(netFolder,"dereverbNet.mat"));

Listen to a clean speech signal sampled at 16 kHz.

[cleanAudio,fs] = audioread("clean_speech_signal.wav");

sound(cleanAudio,fs)

An acoustic path can be modelled using a room impulse response. You can model reverberation by
convolving an anechoic signal with a room impulse response.

Load and plot a room impulse response.

[rirAudio,fsR] = audioread("room_impulse_response.wav");

tAxis = (1/fsR)*(0:numel(rirAudio)-1);

figure
plot(tAxis,rirAudio)
xlabel("Time (s)")
ylabel("Amplitude")
grid on
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Convolve the clean speech with the room impulse response to obtain reverberated speech. Align the
lengths and amplitudes of the reverberated and clean speech signals.

revAudio = conv(cleanAudio,rirAudio);

revAudio = revAudio(1:numel(cleanAudio));
revAudio = revAudio.*(max(abs(cleanAudio))/max(abs(revAudio)));

Listen to the reverberated speech signal.

sound(revAudio,fs)

The input to the pretrained network is the log-magnitude short-time Fourier transform (STFT) of the
reverberant audio. The network predicts the log-magnitude STFT of the dereverberated input. To
estimate the original time-domain audio signal, you perform an inverse STFT and assume the phase
of the reverberant audio.

Use the following parameters to compute the STFT.

params.WindowdowLength = 512;
params.Window = hamming(params.WindowdowLength,"periodic");
params.OverlapLength = round(0.75*params.WindowdowLength);
params.FFTLength = params.WindowdowLength;
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Use stft to compute the one-sided log-magnitude STFT. Use single precision when computing
features to better utilize memory usage and to speed up the training. Even though the one-sided
STFT yields 257 frequency bins, consider only 256 bins and ignore the highest frequency bin.

revAudio = single(revAudio);    
audioSTFT = stft(revAudio,Window=params.Window,OverlapLength=params.OverlapLength, ...
                FFTLength=params.FFTLength,FrequencyRange="onesided"); 
Eps = realmin("single");
reverbFeats = log(abs(audioSTFT(1:end-1,:)) + Eps);

Extract the phase of the STFT.

phaseOriginal = angle(audioSTFT(1:end-1,:));

Each input will have dimensions 256-by-256 (frequency bins by time steps). Split the log-magnitude
STFT into segments of 256 time-steps.

params.NumSegments = 256;
params.NumFeatures = 256;
totalFrames = size(reverbFeats,2);
chunks = ceil(totalFrames/params.NumSegments);
reverbSTFTSegments = mat2cell(reverbFeats,params.NumFeatures, ...
    [params.NumSegments*ones(1,chunks - 1),(totalFrames - (chunks-1)*params.NumSegments)]);
reverbSTFTSegments{chunks} = reverbFeats(:,end-params.NumSegments + 1:end);

Scale the segmented features to the range [-1,1]. Retain the minimum and maximum values used to
scale for reconstructing the dereverberated signal.

minVals = num2cell(cellfun(@(x)min(x,[],"all"),reverbSTFTSegments));
maxVals = num2cell(cellfun(@(x)max(x,[],"all"),reverbSTFTSegments));

featNorm = cellfun(@(feat,minFeat,maxFeat)2.*(feat - minFeat)./(maxFeat - minFeat) - 1, ...
    reverbSTFTSegments,minVals,maxVals,UniformOutput=false);

Reshape the features so that chunks are along the fourth dimension.

featNorm = reshape(cell2mat(featNorm),params.NumFeatures,params.NumSegments,1,chunks);

Predict the log-magnitude spectra of the reverberated speech signal using the pretrained network.

predictedSTFT4D = predict(dereverbNet,featNorm);

Reshape to 3-dimensions and scale the predicted STFTs to the original range using the saved
minimum-maximum pairs.

predictedSTFT = squeeze(mat2cell(predictedSTFT4D,params.NumFeatures,params.NumSegments,1,ones(1,chunks)))';
featDeNorm = cellfun(@(feat,minFeat,maxFeat) (feat + 1).*(maxFeat-minFeat)./2 + minFeat, ...
    predictedSTFT,minVals,maxVals,UniformOutput=false);

Reverse the log-scaling.

predictedSTFT = cellfun(@exp,featDeNorm,UniformOutput=false);

Concatenate the predicted 256-by-256 magnitude STFT segments to obtain the magnitude
spectrogram of original length.

predictedSTFTAll = predictedSTFT(1:chunks - 1);
predictedSTFTAll = cat(2,predictedSTFTAll{:});
predictedSTFTAll(:,totalFrames - params.NumSegments + 1:totalFrames) = predictedSTFT{chunks};
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Before taking the inverse STFT, append zeros to the predicted log-magnitude spectrum and the phase
in lieu of the highest frequency bin which was excluded when preparing input features.

nCount = size(predictedSTFTAll,3);
predictedSTFTAll = cat(1,predictedSTFTAll,zeros(1,totalFrames,nCount));
phase = cat(1,phaseOriginal,zeros(1,totalFrames,nCount));

Use the inverse STFT function to reconstruct the dereverberated time-domain speech signal using
the predicted log-magnitude STFT and the phase of reverberant speech signal.

oneSidedSTFT = predictedSTFTAll.*exp(1j*phase);
dereverbedAudio = istft(oneSidedSTFT, ...
    Window=params.Window,OverlapLength=params.OverlapLength, ...
    FFTLength=params.FFTLength,ConjugateSymmetric=true, ...
    FrequencyRange="onesided");

dereverbedAudio = dereverbedAudio./max(abs([dereverbedAudio;revAudio]));
dereverbedAudio = [dereverbedAudio;zeros(length(revAudio) - numel(dereverbedAudio), 1)];

Listen to the dereverberated audio signal.

sound(dereverbedAudio,fs)

Plot the clean, reverberant, and dereverberated speech signals.

t = (1/fs)*(0:numel(cleanAudio)-1);

figure
tiledlayout(3,1)

nexttile
plot(t,cleanAudio)
xlabel("Time (s)")
grid on
subtitle("Clean Speech Signal")

nexttile
plot(t,revAudio)
xlabel("Time (s)")
grid on
subtitle("Revereberated Speech Signal")

nexttile
plot(t,dereverbedAudio)
xlabel("Time (s)")
grid on
subtitle("Derevereberated Speech Signal")
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Visualize the spectrograms of the clean, reverberant, and dereverberated speech signals.

figure(Position=[100,100,800,800])

tiledlayout(3,1)

nexttile
spectrogram(cleanAudio,params.Window,params.OverlapLength,params.FFTLength,fs,"yaxis");
subtitle("Clean")

nexttile
spectrogram(revAudio,params.Window,params.OverlapLength,params.FFTLength,fs,"yaxis");  
subtitle("Reverberated")
 
nexttile
spectrogram(dereverbedAudio,params.Window,params.OverlapLength,params.FFTLength,fs,"yaxis");  
subtitle("Predicted (Dereverberated)")
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Download the Dataset

This example uses the Reverberant Speech Database [2] on page 1-716 and the corresponding Clean
Speech Database [3] on page 1-716 to train the network.

Download the clean speech data set.

url1 = "https://datashare.is.ed.ac.uk/bitstream/handle/10283/2791/clean_trainset_28spk_wav.zip";
url2 = "https://datashare.is.ed.ac.uk/bitstream/handle/10283/2791/clean_testset_wav.zip";
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downloadFolder = tempdir;
cleanDataFolder = fullfile(downloadFolder,"DS_10283_2791");

if ~datasetExists(cleanDataFolder)
    disp("Downloading data set (6 GB) ...")
    unzip(url1,cleanDataFolder)
    unzip(url2,cleanDataFolder)
end

Downloading data set (6 GB) ...

Download the reverberated speech dataset.

url3 = "https://datashare.is.ed.ac.uk/bitstream/handle/10283/2031/reverb_trainset_28spk_wav.zip";
url4 = "https://datashare.is.ed.ac.uk/bitstream/handle/10283/2031/reverb_testset_wav.zip";
downloadFolder = tempdir;
reverbDataFolder = fullfile(downloadFolder,"DS_10283_2031");

if ~datasetExists(reverbDataFolder)
    disp("Downloading data set (6 GB) ...")
    unzip(url3,reverbDataFolder)
    unzip(url4,reverbDataFolder)
end

Downloading data set (6 GB) ...

Data Preprocessing and Feature Extraction

Once the data is downloaded, preprocess the downloaded data and extract features before training
the DNN model:

1 Synthetically generate reverberant data using the reverberator object
2 Split each speech signal into small segments of 2.072s duration
3 Discard segments which contain significant silent regions
4 Extract log-magnitude STFTs as predictor and target features
5 Scale and reshape features

First, create two audioDatastore objects that point to the clean and reverberant speech datasets.

adsCleanTrain = audioDatastore(fullfile(cleanDataFolder,"clean_trainset_28spk_wav"),IncludeSubfolders=true);
adsReverbTrain = audioDatastore(fullfile(reverbDataFolder,"reverb_trainset_28spk_wav"),IncludeSubfolders=true);

Synthetic Reverberant Speech Data Generation

The amount of reverberation in the original data is relatively small. You will augment the reverberant
speech data with significant reverberation effects using the reverberator object.

Create an audioDatastore that points to the clean speech dataset allocated for synthetic
reverberant data generation.

adsSyntheticCleanTrain = subset(adsCleanTrain,10e3+1:length(adsCleanTrain.Files));
adsCleanTrain = subset(adsCleanTrain,1:10e3);
adsReverbTrain = subset(adsReverbTrain,1:10e3);

Resample from 48 kHz to 16 kHz.
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adsSyntheticCleanTrain = transform(adsSyntheticCleanTrain,@(x)resample(x,16e3,48e3));
adsCleanTrain = transform(adsCleanTrain,@(x)resample(x,16e3,48e3));
adsReverbTrain = transform(adsReverbTrain,@(x)resample(x,16e3,48e3));

Combine the two audio datastores, maintaining the correspondence between the clean and
reverberant speech samples.

adsCombinedTrain = combine(adsCleanTrain,adsReverbTrain);

The applyReverb on page 1-711 function creates a reverberator object, updates the pre delay,
decay factor, and wet-dry mix parameters as specified, and then applies reverberation. Use
audioDataAugmenter to create synthetically generated reverberant data.

augmenter = audioDataAugmenter(AugmentationMode="independent",NumAugmentations=1,ApplyAddNoise=0, ...
    ApplyTimeStretch=0,ApplyPitchShift=0,ApplyVolumeControl=0,ApplyTimeShift=0);
algorithmHandle = @(y,preDelay,decayFactor,wetDryMix,samplingRate) ...
    applyReverb(y,preDelay,decayFactor,wetDryMix,samplingRate);

addAugmentationMethod(augmenter,"Reverb",algorithmHandle, ...
    AugmentationParameter={'PreDelay','DecayFactor','WetDryMix','SamplingRate'}, ...
    ParameterRange={[0.15,0.25],[0.2,0.5],[0.3,0.45],[16000,16000]})

augmenter.ReverbProbability = 1;
disp(augmenter)

  audioDataAugmenter with properties:

               AugmentationMode: "independent"
    AugmentationParameterSource: 'random'
               NumAugmentations: 1
               ApplyTimeStretch: 0
                ApplyPitchShift: 0
             ApplyVolumeControl: 0
                  ApplyAddNoise: 0
                 ApplyTimeShift: 0
                    ApplyReverb: 1
                  PreDelayRange: [0.1500 0.2500]
               DecayFactorRange: [0.2000 0.5000]
                 WetDryMixRange: [0.3000 0.4500]
              SamplingRateRange: [16000 16000]

Create a new audioDatastore corresponding to synthetically generated reverberant data by calling
transform to apply data augmentation.

adsSyntheticReverbTrain = transform(adsSyntheticCleanTrain,@(y)deal(augment(augmenter,y,16e3).Audio{1}));

Combine the two audio datastores.

adsSyntheticCombinedTrain = combine(adsSyntheticCleanTrain,adsSyntheticReverbTrain);

Next, based on the dimensions of the input features to the network, segment the audio into chunks of
2.072 s duration with an overlap of 50%.

Having too many silent segments can adversely affect the DNN model training. Remove the segments
which are mostly silent (more than 50% of the duration) and exclude those from the model training.
Do not completely remove silence because the model will not be robust to silent regions and slight
reverberation effects could be identified as silence. detectSpeech can identify the start and end
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points of silent regions. After these two steps, the feature extraction process can be carried out as
explained in the first section. helperFeatureExtract on page 1-712 implements these steps.

Define the feature extraction parameters. By setting speedupExample to true, you choose a small
subset of the datasets to perform the subsequent steps.

speedupExample = ;
params.fs = 16000;
params.WindowdowLength = 512;
params.Window = hamming(params.WindowdowLength,"periodic");
params.OverlapLength = round(0.75*params.WindowdowLength);
params.FFTLength = params.WindowdowLength;
samplesPerMs = params.fs/1000;
params.samplesPerImage = (24+256*8)*samplesPerMs;
params.shiftImage = params.samplesPerImage/2;
params.NumSegments = 256;
params.NumFeatures = 256

params = struct with fields:
    WindowdowLength: 512
             Window: [512×1 double]
      OverlapLength: 384
          FFTLength: 512
        NumSegments: 256
        NumFeatures: 256
                 fs: 16000
    samplesPerImage: 33152
         shiftImage: 16576

To speed up processing, distribute the preprocessing and feature extraction task across multiple
workers using parfor.

Determine the number of partitions for the dataset. If you do not have Parallel Computing Toolbox™,
use a single partition.

if ~isempty(ver("parallel"))
    pool = gcp;
    numPar = numpartitions(adsCombinedTrain,pool);
else
    numPar = 1;
end

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

For each partition, read from the datastore, preprocess the audio signal, and then extract the
features.

if speedupExample
    adsCombinedTrain = shuffle(adsCombinedTrain); %#ok
    adsCombinedTrain = subset(adsCombinedTrain,1:200);
    
    adsSyntheticCombinedTrain = shuffle(adsSyntheticCombinedTrain);
    adsSyntheticCombinedTrain = subset(adsSyntheticCombinedTrain,1:200);
end
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allCleanFeatures = cell(1,numPar);
allReverbFeatures = cell(1,numPar);

parfor iPartition = 1:numPar
    combinedPartition = partition(adsCombinedTrain,numPar,iPartition);
    combinedSyntheticPartition = partition(adsSyntheticCombinedTrain,numPar,iPartition);
        
    cPartitionSize = numel(combinedPartition.UnderlyingDatastores{1}.UnderlyingDatastores{1}.Files);
    cSyntheticPartitionSize = numel(combinedSyntheticPartition.UnderlyingDatastores{1}.UnderlyingDatastores{1}.Files);
    partitionSize = cPartitionSize + cSyntheticPartitionSize;
    
    cleanFeaturesPartition = cell(1,partitionSize);    
    reverbFeaturesPartition = cell(1,partitionSize);  
    
    for idx = 1:partitionSize
        if idx <= cPartitionSize
            audios = read(combinedPartition);
        else
            audios = read(combinedSyntheticPartition);
        end
        cleanAudio = single(audios(:,1));
        reverbAudio = single(audios(:,2));
        [featuresClean,featuresReverb] = helperFeatureExtract(cleanAudio,reverbAudio,false,params);
        cleanFeaturesPartition{idx} = featuresClean;
        reverbFeaturesPartition{idx} = featuresReverb;
    end
    allCleanFeatures{iPartition} = cat(2,cleanFeaturesPartition{:});
    allReverbFeatures{iPartition} = cat(2,reverbFeaturesPartition{:});
end

Analyzing and transferring files to the workers ...done.

allCleanFeatures = cat(2,allCleanFeatures{:});
allReverbFeatures = cat(2,allReverbFeatures{:});

Normalize the extracted features to the range [-1,1] and then reshape as explained in the first
section, using the featureNormalizeAndReshape on page 1-713 function.

trainClean = featureNormalizeAndReshape(allCleanFeatures);
trainReverb = featureNormalizeAndReshape(allReverbFeatures);

Now that you have extracted the log-magnitude STFT features from the training datasets, follow the
same procedure to extract features from the validation datasets. For reconstruction purposes, retain
the phase of the reverberant speech samples of the validation dataset. In addition, retain the audio
data for both the clean and reverberant speech samples in the validation set to use in the evaluation
process (next section).

adsCleanVal = audioDatastore(fullfile(cleanDataFolder,"clean_testset_wav"),IncludeSubfolders=true);
adsReverbVal = audioDatastore(fullfile(reverbDataFolder,"reverb_testset_wav"),IncludeSubfolders=true);

Resample from 48 kHz to 16 kHz.

adsCleanVal = transform(adsCleanVal,@(x)resample(x,16e3,48e3));
adsReverbVal = transform(adsReverbVal,@(x)resample(x,16e3,48e3));

adsCombinedVal = combine(adsCleanVal,adsReverbVal); 
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if speedupExample
    adsCombinedVal = shuffle(adsCombinedVal);%#ok
    adsCombinedVal = subset(adsCombinedVal,1:50);
end

allValCleanFeatures = cell(1,numPar);
allValReverbFeatures = cell(1,numPar);
allValReverbPhase = cell(1,numPar);
allValCleanAudios = cell(1,numPar);
allValReverbAudios = cell(1,numPar);

parfor iPartition = 1:numPar
    combinedPartition = partition(adsCombinedVal,numPar,iPartition);
    
    partitionSize = numel(combinedPartition.UnderlyingDatastores{1}.UnderlyingDatastores{1}.Files);
    
    cleanFeaturesPartition = cell(1,partitionSize);    
    reverbFeaturesPartition = cell(1,partitionSize);  
    reverbPhasePartition = cell(1,partitionSize); 
    cleanAudiosPartition = cell(1,partitionSize); 
    reverbAudiosPartition = cell(1,partitionSize);

    for idx = 1:partitionSize
        audios = read(combinedPartition);
        
        cleanAudio = single(audios(:,1));
        reverbAudio = single(audios(:,2));
        
        [a,b,c,d,e] = helperFeatureExtract(cleanAudio,reverbAudio,true,params);
        
        cleanFeaturesPartition{idx} = a;
        reverbFeaturesPartition{idx} = b;  
        reverbPhasePartition{idx} = c;
        cleanAudiosPartition{idx} = d;
        reverbAudiosPartition{idx} = e;
    end
    allValCleanFeatures{iPartition} = cat(2,cleanFeaturesPartition{:});
    allValReverbFeatures{iPartition} = cat(2,reverbFeaturesPartition{:});
    allValReverbPhase{iPartition} = cat(2,reverbPhasePartition{:});
    allValCleanAudios{iPartition} = cat(2,cleanAudiosPartition{:});
    allValReverbAudios{iPartition} = cat(2,reverbAudiosPartition{:});
end

allValCleanFeatures = cat(2,allValCleanFeatures{:});
allValReverbFeatures = cat(2,allValReverbFeatures{:});
allValReverbPhase = cat(2,allValReverbPhase{:});
allValCleanAudios = cat(2,allValCleanAudios{:});
allValReverbAudios = cat(2,allValReverbAudios{:});

valClean = featureNormalizeAndReshape(allValCleanFeatures);

Retain the minimum and maximum values of each feature of the reverberant validation set. You will
use these values in the reconstruction process.

[valReverb,valMinMaxPairs] = featureNormalizeAndReshape(allValReverbFeatures);
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Define Neural Network Architecture

A fully convolutional network architecture named U-Net was adapted for this speech dereverberation
task as proposed in [1] on page 1-716. "U-Net" is an encoder-decoder network with skip
connections. In the U-Net model, each layer downsamples its input (stride of 2) until a bottleneck
layer is reached (encoding path). In subsequent layers, the input is upsampled by each layer until the
output is returned to the original shape (decoding path). To minimize the loss of low-level information
during the downsampling process, connections are made between the mirrored layers by directly
concatenating outputs of corresponding layers (skip connections).

Define the network architecture and return the layer graph with connections.

params.WindowdowLength = 512;
params.FFTLength = params.WindowdowLength;
params.NumFeatures = params.FFTLength/2;
params.NumSegments = 256;
    
filterH = 6;
filterW = 6;
numChannels = 1;
nFilters = [64,128,256,512,512,512,512,512];

inputLayer = imageInputLayer([params.NumFeatures,params.NumSegments,numChannels], ...
    Normalization="none",Name="input");
layers = inputLayer;

% U-Net squeezing path
layers = [layers;
    convolution2dLayer([filterH,filterW],nFilters(1),Stride=2,Padding="same",Name="conv"+string(1));
    leakyReluLayer(0.2,Name="leaky-relu"+string(1))];
        
for ii = 2:8
    layers =  [layers;
        convolution2dLayer([filterH,filterW],nFilters(ii),Stride=2,Padding="same",Name="conv"+string(ii));
        batchNormalizationLayer(Name="batchnorm"+string(ii))];%#ok
    if ii ~= 8
        layers = [layers;leakyReluLayer(0.2,Name="leaky-relu"+string(ii))];%#ok
    else
        layers = [layers;reluLayer(Name="relu"+string(ii))];%#ok
    end
end

% U-Net expanding path
for ii = 7:-1:0
    nChannels = numChannels;
    if ii > 0
        nChannels = nFilters(ii);
    end
    layers = [layers;
        transposedConv2dLayer([filterH,filterW],nChannels,Stride=2,Cropping="same",Name="deconv"+string(ii))];%#ok
    if ii > 0
        layers = [layers;batchNormalizationLayer(Name="de-batchnorm"+string(ii))];%#ok
    end
    if ii > 4
        layers = [layers;dropoutLayer(0.5,Name="de-dropout"+string(ii))];%#ok
    end
    if ii > 0

1 Audio Toolbox Examples

1-704



        layers = [layers;
            reluLayer(Name="de-relu"+string(ii));
            concatenationLayer(3,2,Name="concat"+string(ii))];%#ok
    else
        layers = [layers;tanhLayer(Name="de-tanh"+string(ii))];%#ok
    end
end

layers = [layers;regressionLayer(Name="output")];

unetLayerGraph = layerGraph(layers); 

% Define skip-connections
for ii = 1:7
    unetLayerGraph = connectLayers(unetLayerGraph,"leaky-relu"+string(ii),"concat"+string(ii)+"/in2");
end

Use analyzeNetwork to view the model architecture. This is a good way to visualize the connections
between layers.

analyzeNetwork(unetLayerGraph); 

Train the Network

You will use the mean squared error (MSE) between the log-magnitude spectra of the dereverberated
speech sample (output of the model) and the corresponding clean speech sample (target) as the loss
function. Use the adam optimizer and a mini-batch size of 128 for the training. Allow the model to
train for a maximum of 50 epochs. If the validation loss doesn't improve for 5 consecutive epochs,
terminate the training process. Reduce the learning rate by a factor of 10 every 15 epochs.

Define the training options as below. Change the execution environment and whether to perform
background dispatching depending on your hardware availability and whether you have access to
Parallel Computing Toolbox™.

initialLearnRate = 8e-4;
miniBatchSize = 64;

options = trainingOptions("adam", ...
        MaxEpochs=50, ...
        InitialLearnRate=initialLearnRate, ...
        MiniBatchSize=miniBatchSize, ...
        Shuffle="every-epoch", ...
        Plots="training-progress", ...
        Verbose=false, ...
        ValidationFrequency=max(1,floor(size(trainReverb,4)/miniBatchSize)), ...
        ValidationPatience=5, ...
        LearnRateSchedule="piecewise", ...
        LearnRateDropFactor=0.1, ... 
        LearnRateDropPeriod=15, ...
        ExecutionEnvironment="gpu", ...
        DispatchInBackground=true, ...
        ValidationData={valReverb,valClean});

Train the network.

dereverbNet = trainNetwork(trainReverb,trainClean,unetLayerGraph,options);
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Evaluate Network Performance

Prediction and Reconstruction

Predict the log-magnitude spectra of the validation set.

predictedSTFT4D = predict(dereverbNet,valReverb);

Use the helperReconstructPredictedAudios on page 1-713 function to reconstruct the predicted
speech. This function performs actions outlined in the first section.

params.WindowdowLength = 512;
params.Window = hamming(params.WindowdowLength,"periodic");
params.OverlapLength = round(0.75*params.WindowdowLength);
params.FFTLength = params.WindowdowLength;
params.fs = 16000;

dereverbedAudioAll = helperReconstructPredictedAudios(predictedSTFT4D,valMinMaxPairs,allValReverbPhase,allValReverbAudios,params);

Visualize the log-magnitude STFTs of the clean, reverberant, and corresponding dereverberated
speech signals.

figure(Position=[100,100,1024,1200])

tiledlayout(3,1)

nexttile
imagesc(squeeze(allValCleanFeatures{1}))    
set(gca,Ydir="normal")
subtitle("Clean")
xlabel("Time")
ylabel("Frequency")
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colorbar

nexttile
imagesc(squeeze(allValReverbFeatures{1}))
set(gca,Ydir="normal")
subtitle("Reverberated")
xlabel("Time")
ylabel("Frequency")
colorbar

nexttile
imagesc(squeeze(predictedSTFT4D(:,:,:,1)))
set(gca,Ydir="normal")
subtitle("Predicted (Dereverberated)")
xlabel("Time")
ylabel("Frequency")
caxis([-1,1])
colorbar
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Evaluation Metrics

You will use a subset of objective measures used in [1] on page 1-716 to evaluate the performance of
the network. These metrics are computed on the time-domain signals.

• Cepstrum distance (CD) - Provides an estimate of the log spectral distance between two spectra
(predicted and clean). Smaller values indicate better quality.

• Log likelihood ratio (LLR) - Linear predictive coding (LPC) based objective measurement. Smaller
values indicate better quality.

Compute these measurements for the reverberant speech and the dereverberated speech signals.

[summaryMeasuresReconstructed,allMeasuresReconstructed] = calculateObjectiveMeasures(dereverbedAudioAll,allValCleanAudios,params.fs);
[summaryMeasuresReverb,allMeasuresReverb] = calculateObjectiveMeasures(allValReverbAudios,allValCleanAudios,params.fs);
disp(summaryMeasuresReconstructed)

       avgCdMean: 3.8310
     avgCdMedian: 3.3536
      avgLlrMean: 0.9103
    avgLlrMedian: 0.8007

disp(summaryMeasuresReverb)

       avgCdMean: 4.2591
     avgCdMedian: 3.6336
      avgLlrMean: 0.9726
    avgLlrMedian: 0.8714

The histograms illustrate the distribution of mean CD, mean SRMR and mean LLR of the reverberant
and dereverberated data.

figure(Position=[50,50,1100,1300])

tiledlayout(2,1)

nexttile
histogram(allMeasuresReverb.cdMean,10)
hold on
histogram(allMeasuresReconstructed.cdMean,10)
subtitle("Mean Cepstral Distance Distribution")
ylabel("Count")
xlabel("Mean CD")
legend("Reverberant (Original)","Dereverberated (Predicted)")

nexttile
histogram(allMeasuresReverb.llrMean,10)
hold on
histogram(allMeasuresReconstructed.llrMean,10)
subtitle("Mean Log Likelihood Ratio Distribution")
ylabel("Count")
xlabel("Mean LLR")
legend("Reverberant (Original)","Dereverberated (Predicted)")
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Supporting Functions

Apply Reverberation

function yOut = applyReverb(y,preDelay,decayFactor,wetDryMix,fs)
% This function generates reverberant speech data using the reverberator
% object
%
% inputs:
% y                                - clean speech sample
% preDelay, decayFactor, wetDryMix - reverberation parameters
% fs                               - sampling rate of y
%
% outputs:
% yOut - corresponding reveberated speech sample

revObj = reverberator(SampleRate=fs, ...
    DecayFactor=decayFactor, ...
    WetDryMix=wetDryMix, ...
    PreDelay=preDelay);
yOut = revObj(y);
yOut = yOut(1:length(y),1);
end

Extract Features Batch

function [featuresClean,featuresReverb,phaseReverb,cleanAudios,reverbAudios] ...
    = helperFeatureExtract(cleanAudio,reverbAudio,isVal,params)
% This function performs the preprocessing and features extraction task on
% the audio files used for dereverberation model training and testing.
%
% inputs:
% cleanAudio  - the clean audio file (reference)
% reverbAudio - corresponding reverberant speech file
% isVal       - Boolean flag indicating if it is the validation set
% params      - a structure containing feature extraction parameters
%
% outputs:
% featuresClean  - log-magnitude STFT features of clean audio
% featuresReverb - log-magnitude STFT features of reverberant audio
% phaseReverb    - phase of STFT of reverberant audio
% cleanAudios    - 2.072s-segments of clean audio file used for feature extraction
% reverbAudios   - 2.072s-segments of corresponding reverberant audio

assert(length(cleanAudio) == length(reverbAudio));
nSegments = floor((length(reverbAudio) - (params.samplesPerImage - params.shiftImage))/params.shiftImage);

featuresClean = {};
featuresReverb = {};
phaseReverb = {};
cleanAudios = {};
reverbAudios = {};
nGood = 0;
nonSilentRegions = detectSpeech(reverbAudio, params.fs);
nonSilentRegionIdx = 1;
totalRegions = size(nonSilentRegions, 1);
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for cid = 1:nSegments
    start = (cid - 1)*params.shiftImage + 1;
    en = start + params.samplesPerImage - 1;

    nonSilentSamples = 0;
    while nonSilentRegionIdx < totalRegions && nonSilentRegions(nonSilentRegionIdx, 2) < start
        nonSilentRegionIdx = nonSilentRegionIdx + 1;
    end

    nonSilentStart = nonSilentRegionIdx;
    while nonSilentStart <= totalRegions && nonSilentRegions(nonSilentStart, 1) <= en
        nonSilentDuration = min(en, nonSilentRegions(nonSilentStart,2)) - max(start,nonSilentRegions(nonSilentStart,1)) + 1;
        nonSilentSamples = nonSilentSamples + nonSilentDuration;
        nonSilentStart = nonSilentStart + 1;
    end

    nonSilentPerc = nonSilentSamples * 100 / (en - start + 1);
    silent = nonSilentPerc < 50;

    reverbAudioSegment = reverbAudio(start:en);
    if ~silent
        nGood = nGood + 1;
        cleanAudioSegment = cleanAudio(start:en);
        assert(length(cleanAudioSegment)==length(reverbAudioSegment),"Lengths do not match after chunking")

        % Clean Audio
        [featsUnit, ~] = featureExtract(cleanAudioSegment, params);
        featuresClean{nGood} = featsUnit; %#ok

        % Reverb Audio
        [featsUnit, phaseUnit] = featureExtract(reverbAudioSegment, params);
        featuresReverb{nGood} = featsUnit; %#ok
        if isVal
            phaseReverb{nGood} = phaseUnit; %#ok
            reverbAudios{nGood} = reverbAudioSegment;%#ok
            cleanAudios{nGood} = cleanAudioSegment;%#ok
        end
    end
end
end

Extract Features

function [features, phase, lastFBin] = featureExtract(audio, params)
% Function to extract features for a speech file
audio = single(audio);

audioSTFT = stft(audio,Window=params.Window,OverlapLength=params.OverlapLength, ...
    FFTLength=params.FFTLength,FrequencyRange="onesided");

phase = single(angle(audioSTFT(1:end-1,:)));
features = single(log(abs(audioSTFT(1:end-1,:)) + 10e-30));
lastFBin = audioSTFT(end,:);

end
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Normalize and Reshape Features

function [featNorm,minMaxPairs] = featureNormalizeAndReshape(feats)
% function to normalize features - range [-1, 1] and reshape to 4
% dimensions
%
% inputs:
% feats - 3-dimensional array of extracted features
%
% outputs:
% featNorm - normalized and reshaped features
% minMaxPairs - array of original min and max pairs used for normalization

nSamples = length(feats);
minMaxPairs = zeros(nSamples,2,"single");
featNorm = zeros([size(feats{1}),nSamples],"single");
parfor i = 1:nSamples
    feat = feats{i};
    maxFeat = max(feat,[],"all");
    minFeat = min(feat,[],"all");
    featNorm(:,:,i) = 2.*(feat - minFeat)./(maxFeat - minFeat) - 1;
    minMaxPairs(i,:) = [minFeat,maxFeat];
end
featNorm = reshape(featNorm,size(featNorm,1),size(featNorm,2),1,size(featNorm,3));
end

Reconstruct Predicted Audio

function dereverbedAudioAll = helperReconstructPredictedAudios(predictedSTFT4D,minMaxPairs,reverbPhase,reverbAudios,params)
% This function will reconstruct the 2.072s long audios predicted by the
% model using the predicted log-magnitude spectrogram and the phase of the
% reverberant audio file
%
% inputs:
% predictedSTFT4D - Predicted 4-dimensional STFT log-magnitude features
% minMaxPairs     - Original minimum/maximum value pairs used in normalization
% reverbPhase     - Array of phases of STFT of reverberant audio files
% reverbAudios    - 2.072s-segments of corresponding reverberant audios
% params          - Structure containing feature extraction parameters

predictedSTFT = squeeze(predictedSTFT4D);
denormalizedFeatures = zeros(size(predictedSTFT),"single");
for ii = 1:size(predictedSTFT,3)
    feat = predictedSTFT(:,:,ii);
    maxFeat = minMaxPairs(ii,2);
    minFeat = minMaxPairs(ii,1);
    denormalizedFeatures(:,:,ii) = (feat + 1).*(maxFeat-minFeat)./2 + minFeat;
end

predictedSTFT = exp(denormalizedFeatures);

nCount = size(predictedSTFT,3);
dereverbedAudioAll = cell(1,nCount);
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nSeg = params.NumSegments;
win = params.Window;
ovrlp = params.OverlapLength;
FFTLength = params.FFTLength;
parfor ii = 1:nCount
    % Append zeros to the highest frequency bin
    stftUnit = predictedSTFT(:,:,ii);
    stftUnit = cat(1,stftUnit, zeros(1,nSeg));
    phase = reverbPhase{ii};
    phase = cat(1,phase,zeros(1,nSeg));

    oneSidedSTFT = stftUnit.*exp(1j*phase);
    dereverbedAudio = istft(oneSidedSTFT, ...
        Window=win,OverlapLength=ovrlp, ...
        FFTLength=FFTLength,ConjugateSymmetric=true,...
        FrequencyRange="onesided");

    dereverbedAudioAll{ii} = dereverbedAudio./max(max(abs(dereverbedAudio)),max(abs(reverbAudios{ii})));
end
end

Calculate Objective Measures

function [summaryMeasures,allMeasures] = calculateObjectiveMeasures(reconstructedAudios,cleanAudios,fs)
% This function computes the objective measures on time-domain signals.
%
% inputs:
% reconstructedAudios - An array of audio files to evaluate.
% cleanAudios - An array of reference audio files
% fs - Sampling rate of audio files
%
% outputs:
% summaryMeasures - Global means of CD, LLR individual mean and median values
% allMeasures - Individual mean and median values

    nAudios = length(reconstructedAudios);
    cdMean = zeros(nAudios,1);
    cdMedian = zeros(nAudios,1);
    llrMean = zeros(nAudios,1);
    llrMedian = zeros(nAudios,1);

    parfor k = 1 : nAudios
      y = reconstructedAudios{k};
      x = cleanAudios{k};

      y = y./max(abs(y));
      x = x./max(abs(x));

      [cdMean(k),cdMedian(k)] = cepstralDistance(x,y,fs);
      [llrMean(k),llrMedian(k)] = lpcLogLikelihoodRatio(y,x,fs);
    end
    
    summaryMeasures.avgCdMean = mean(cdMean);
    summaryMeasures.avgCdMedian = mean(cdMedian);
    summaryMeasures.avgLlrMean = mean(llrMean);
    summaryMeasures.avgLlrMedian = mean(llrMedian);   
    
    allMeasures.cdMean = cdMean;
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    allMeasures.llrMean = llrMean;
end

Cepstral Distance
function [meanVal, medianVal] = cepstralDistance(x,y,fs)
    x = x/sqrt(sum(x.^2));
    y = y/sqrt(sum(y.^2));

    width = round(0.025*fs);
    shift = round(0.01*fs);

    nSamples = length(x);
    nFrames = floor((nSamples - width + shift)/shift);
    win = window(@hanning,width);

    winIndex = repmat((1:width)',1,nFrames) + repmat((0:nFrames - 1)*shift,width,1);

    xFrames = x(winIndex).*win;
    yFrames = y(winIndex).*win;

    xCeps = cepstralReal(xFrames,width);
    yCeps = cepstralReal(yFrames,width);

    dist = (xCeps - yCeps).^2;
    cepsD = 10/log(10)*sqrt(2*sum(dist(2:end,:),1) + dist(1,:));
    cepsD = max(min(cepsD,10),0);

    meanVal = mean(cepsD);
    medianVal = median(cepsD);
end

Real Cepstrum
function realC = cepstralReal(x,width)
    width2p = 2^nextpow2(width);
    powX = abs(fft(x,width2p));

    lowCutoff = max(powX(:))*10^-5;
    powX  = max(powX,lowCutoff);

    realC = real(ifft(log(powX)));
    order = 24;
    realC = realC(1:order + 1,:);
    realC = realC - mean(realC,2);
end

LPC Log-Likelihood Ratio
function [meanLlr,medianLlr] = lpcLogLikelihoodRatio(x,y,fs)
    order = 12;
    width = round(0.025*fs);
    shift = round(0.01*fs);

    nSamples = length(x);
    nFrames = floor((nSamples - width + shift)/shift);
    win = window(@hanning,width);

    winIndex = repmat((1:width)',1,nFrames) + repmat((0:nFrames - 1)*shift,width,1);
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    xFrames = x(winIndex).*win;
    yFrames = y(winIndex).*win;

    lpcX = realLpc(xFrames,width,order);
    [lpcY,realY] = realLpc(yFrames,width,order);

    llr = zeros(nFrames,1);
    for n = 1:nFrames
      R = toeplitz(realY(1:order+1,n));
      num = lpcX(:,n)'*R*lpcX(:,n);
      den = lpcY(:,n)'*R*lpcY(:,n);  
      llr(n) = log(num/den);
    end

    llr = sort(llr);
    llr = llr(1:ceil(nFrames*0.95));
    llr = max(min(llr,2),0);

    meanLlr = mean(llr);
    medianLlr = median(llr);
end

Real Linear Prection Coefficients

function [lpcCoeffs, realX] = realLpc(xFrames,width,order)
    width2p = 2^nextpow2(width);
    X = fft(xFrames,width2p);

    Rx = ifft(abs(X).^2);
    Rx = Rx./width; 
    realX = real(Rx);

    lpcX = levinson(realX,order);
    lpcCoeffs = real(lpcX');
end
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Speaker Identification Using Custom SincNet Layer and Deep
Learning

In this example, you train three convolutional neural networks (CNNs) to perform speaker
verification and then compare the performances of the architectures. The architectures of the three
CNNs are all equivalent except for the first convolutional layer in each:

1 In the first architecture, the first convolutional layer is a "standard" convolutional layer,
implemented using convolution2dLayer.

2 In the second architecture, the first convolutional layer is a constant sinc filterbank, implemented
using a custom layer.

3 In the third architecture, the first convolutional layer is a trainable sinc filterbank, implemented
using a custom layer. This architecture is referred to as SincNet [1] on page 1-730.

[1] on page 1-730 shows that replacing the standard convolutional layer with a filterbank layer leads
to faster training convergence and higher accuracy. [1] on page 1-730 also shows that making the
parameters of the filter bank learnable yields additional performance gains.

Introduction

Speaker identification is a prominent research area with a variety of applications including forensics
and biometric authentication. Many speaker identification systems depend on precomputed features
such as i-vectors or MFCCs, which are then fed into machine learning or deep learning networks for
classification. Other deep learning speech systems bypass the feature extraction stage and feed the
audio signal directly to the network. In such end-to-end systems, the network directly learns low-level
audio signal characteristics.

In this example, you first train a traditional end-to-end speaker identification CNN. The filters learned
tend to have random shapes that do not correspond to perceptual evidence or knowledge of how the
human ear works, especially in scenarios where the amount of training data is limited [1] on page 1-
730. You then replace the first convolutional layer in the network with a custom sinc filterbank layer
that introduces structure and constraints based on perceptual evidence. Finally, you train the SincNet
architecture, which adds learnability to the sinc filterbank parameters.

The three neural network architectures explored in the example are summarized as follows:

1 Standard Convolutional Neural Network - The input waveform is directly connected to a
randomly initialized convolutional layer which attempts to learn features and capture
characteristics from the raw audio frames.

2 ConstantSincLayer - The input waveform is convolved with a set of fixed-width sinc functions
(bandpass filters) equally spaced on the mel scale.

3 SincNetLayer - The input waveform is convolved with a set of sinc functions whose parameters
are learned by the network. In the SincNet architecture, the network tunes parameters of the
sinc functions while training.

This example defines and trains the three neural networks proposed above and evaluates their
performance on the LibriSpeech Dataset [2] on page 1-730.
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Data Set

Download Dataset

In this example, you use a subset of the LibriSpeech Dataset [2] on page 1-730. The LibriSpeech
Dataset is a large corpus of read English speech sampled at 16 kHz. The data is derived from
audiobooks read from the LibriVox project.

dataFolder = tempdir;

dataset = fullfile(dataFolder,"LibriSpeech","train-clean-100");
if ~datasetExists(dataset)
    filename = "train-clean-100.tar.gz";
    url = "http://www.openSLR.org/resources/12/" + filename;
    gunzip(url,dataFolder);
    unzippedFile = fullfile(dataset,filename);
    untar(unzippedFile{1}(1:end-3),dataset);
end

Create an audioDatastore object to access the LibriSpeech audio data.

ads = audioDatastore(dataset,IncludeSubfolders=true);

Extract the speaker label from the file path.

ads.Labels = categorical(extractBetween(ads.Files,fullfile(dataset,filesep),filesep));

The full dev-train-100 dataset is around 6 GB of data. To run this example quickly, set
speedupExample to true.

speedupExample = ;
if speedupExample
    allSpeakers = unique(ads.Labels);
    subsetSpeakers = allSpeakers(1:50);
    ads = subset(ads,ismember(ads.Labels,subsetSpeakers));
    ads.Labels = removecats(ads.Labels);
end
ads = splitEachLabel(ads,0.1);

Split the audio files into training and test data. 80% of the audio files are assigned to the training set
and 20% are assigned to the test set.

[adsTrain,adsTest] = splitEachLabel(ads,0.8);

Sample Speech Signal

Plot one of the audio files and listen to it.

[audioIn,dsInfo] = read(adsTrain);
Fs = dsInfo.SampleRate;

sound(audioIn,Fs)

t = (1/Fs)*(0:length(audioIn)-1);

plot(t,audioIn)
title("Audio Sample")
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xlabel("Time (s)")
ylabel("Amplitude")
grid on

Reset the training datastore.

reset(adsTrain)

Data Preprocessing

CNNs expect inputs to have consistent dimensions. You will preprocess the audio by removing
regions of silence and then break the remaining speech into 200 ms frames with 40 ms overlap.

Set the parameters for preprocessing.

frameDuration = 200e-3;
overlapDuration = 40e-3;
frameLength = floor(Fs*frameDuration); 
overlapLength = round(Fs*overlapDuration);

Use the supporting function, preprocessAudioData on page 1-730, to preprocess the training and
test data. Define a transform on the audio datastores to perform the preprocessing, then use readall
to preprocess the entire datasets and place the preprocessed data into memory. If you have Parallel
Computing Toolbox™, you can spread the computational load across workers. XTrain and XTest
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contain the train and test speech frames, respectively. TTrain and TTest contain the train and test
labels, respectively.

pFlag = ~isempty(ver("parallel"));

adsTrainTransform = transform(adsTrain,@(x){preprocessAudioData(x,frameLength,overlapLength,Fs)});
XTrain = readall(adsTrainTransform,UseParallel=pFlag);

Replicate the labels so that each 200 ms chunk has a corresponding label.

chunksPerFile = cellfun(@(x)size(x,4),XTrain);
TTrain = repelem(adsTrain.Labels,chunksPerFile,1);

Concatenate the training set into an array.

XTrain = cat(4,XTrain{:});

Perform the same preprocessing steps to the test set.

adsTestTransform = transform(adsTest,@(x){preprocessAudioData(x,frameLength,overlapLength,Fs)});
XTest = readall(adsTestTransform,UseParallel=true);
chunksPerFile = cellfun(@(x)size(x,4),XTest);
TTest = repelem(adsTest.Labels,chunksPerFile,1);
XTest = cat(4,XTest{:});

Standard CNN

Define Layers

The standard CNN is inspired by the neural network architecture in [1] on page 1-730.

numFilters = 80;
filterLength = 251;
numSpeakers = numel(unique(removecats(ads.Labels)));

layers = [ 
    imageInputLayer([1 frameLength 1])
    
    % First convolutional layer
    
    convolution2dLayer([1 filterLength],numFilters)
    batchNormalizationLayer
    leakyReluLayer(0.2)
    maxPooling2dLayer([1 3])
    
    % This layer is followed by 2 convolutional layers
    
    convolution2dLayer([1 5],60)
    batchNormalizationLayer
    leakyReluLayer(0.2)
    maxPooling2dLayer([1 3])
    
    convolution2dLayer([1 5],60)
    batchNormalizationLayer
    leakyReluLayer(0.2)
    maxPooling2dLayer([1 3])

    % This is followed by 3 fully-connected layers
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    fullyConnectedLayer(256)
    batchNormalizationLayer
    leakyReluLayer(0.2)
    
    fullyConnectedLayer(256)
    batchNormalizationLayer
    leakyReluLayer(0.2)

    fullyConnectedLayer(256)
    batchNormalizationLayer
    leakyReluLayer(0.2)

    fullyConnectedLayer(numSpeakers)
    softmaxLayer
    classificationLayer];

Analyze the layers of the neural network using the analyzeNetwork function

analyzeNetwork(layers)

Train Network

Train the neural network for 15 epochs using adam optimization. Shuffle the training data before
every epoch. The training options for the neural network are set using trainingOptions. Use the
test data as the validation data to observe how the network performance improves as training
progresses.

numEpochs = 15;
miniBatchSize = 128;
validationFrequency = floor(numel(TTrain)/miniBatchSize);

options = trainingOptions("adam", ...
    Shuffle="every-epoch", ...
    MiniBatchSize=miniBatchSize, ...
    Plots="training-progress", ...
    Verbose=false,MaxEpochs=numEpochs, ...
    ValidationData={XTest,categorical(TTest)}, ...
    ValidationFrequency=validationFrequency);

To train the network, call trainNetwork.

[convNet,convNetInfo] = trainNetwork(XTrain,TTrain,layers,options);
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Inspect Frequency Response of First Convolutional Layer

Plot the magnitude frequency response of nine filters learned from the standard CNN network. The
shape of these filters is not intuitive and does not correspond to perceptual knowledge. The next
section explores the effect of using constrained filter shapes.

F = squeeze(convNet.Layers(2,1).Weights);
H = zeros(size(F));
Freq = zeros(size(F));

for ii = 1:size(F,2)
   [h,f] = freqz(F(:,ii),1,251,Fs);
    H(:,ii) = abs(h);
    Freq(:,ii) = f;
end
idx = linspace(1,size(F,2),9);
idx = round(idx);

figure
for jj = 1:9
   subplot(3,3,jj)
   plot(Freq(:,idx(jj)),H(:,idx(jj)))
   sgtitle("Frequency Response of Learned Standard CNN Filters")
   xlabel("Frequency (Hz)")
end
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Constant Sinc Filterbank

In this section, you replace the first convolutional layer in the standard CNN with a constant sinc
filterbank layer. The constant sinc filterbank layer convolves the input frames with a bank of fixed
bandpass filters. The bandpass filters are a linear combination of two sinc filters in the time domain.
The frequencies of the bandpass filters are spaced linearly on the mel scale.

Define Layers

The implementation for the constant sinc filterbank layer can be found in the
constantSincLayer.m file (attached to this example). Define parameters for a
ConstantSincLayer. Use 80 filters and a filter length of 251.

numFilters = 80;
filterLength = 251;
numChannels = 1;
name = "constant_sinc";

Change the first convolutional layer from the standard CNN to the ConstantSincLayer and keep
the other layers unchanged.

cSL = constantSincLayer(numFilters,filterLength,Fs,numChannels,name)

cSL = 
  constantSincLayer with properties:
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                Name: 'constant_sinc'
          NumFilters: 80
          SampleRate: 16000
        FilterLength: 251
         NumChannels: []
             Filters: [1×251×1×80 single]
    MinimumFrequency: 50
    MinimumBandwidth: 50
    StartFrequencies: [0.0019 0.0032 0.0047 0.0062 0.0078 0.0094 0.0111 0.0128 0.0145 0.0164 0.0183 0.0202 0.0222 0.0243 0.0264 0.0286 0.0309 0.0332 0.0356 0.0381 0.0407 0.0433 0.0460 0.0488 0.0517 0.0547 0.0578 0.0610 0.0643 0.0677 0.0712 0.0748 … ]
          Bandwidths: [0.0028 0.0030 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 0.0039 0.0041 0.0042 0.0043 0.0045 0.0046 0.0047 0.0049 0.0051 0.0052 0.0054 0.0055 0.0057 0.0059 0.0061 0.0063 0.0065 0.0067 0.0069 0.0071 0.0073 0.0075 … ]

   Learnable Parameters
    No properties.

   State Parameters
    No properties.

  Show all properties

layers(2) = cSL;

Train Network

Train the network using the trainNetwork function. Use the same training options defined
previously.

[constSincNet,constSincInfo] = trainNetwork(XTrain,TTrain,layers,options);
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Inspect Frequency Response of First Convolutional Layer

The plotNFilters method plots the magnitude frequency response of n filters with equally spaced
filter indices. Plot the magnitude frequency response of nine filters in the ConstantSincLayer.

figure
n = 9;
plotNFilters(constSincNet.Layers(2),n)

SincNet

In this section, you use a trainable SincNet layer as the first convolutional layer in your network. The
SincNet layer convolves the input frames with a bank of bandpass filters. The bandwidth and the
initial frequencies of the SincNet filters are initialized as equally spaced in the mel scale. The SincNet
layer attempts to learn better parameters for these bandpass filters within the neural network
framework.

Define Layers

The implementation for the SincNet layer filterbank layer can be found in the sincNetLayer.m file
(attached to this example). Define parameters for a SincNetLayer. Use 80 filters and a filter length
of 251.

numFilters = 80;
filterLength = 251;
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numChannels = 1; 
name = "sinc";

Replace the ConstantSincLayer from the previous network with the SincNetLayer. This new
layer has two learnable parameters: FilterFrequencies and FilterBandwidths.

sNL = sincNetLayer(numFilters,filterLength,Fs,numChannels,name)

sNL = 
  sincNetLayer with properties:

                 Name: 'sinc'
           NumFilters: 80
           SampleRate: 16000
         FilterLength: 251
          NumChannels: []
               Window: [0.0800 0.0801 0.0806 0.0813 0.0823 0.0836 0.0852 0.0871 0.0893 0.0917 0.0945 0.0975 0.1008 0.1043 0.1082 0.1123 0.1167 0.1214 0.1263 0.1315 0.1369 0.1426 0.1485 0.1547 0.1612 0.1679 0.1748 0.1819 0.1893 0.1969 0.2047 0.2127 … ]
           TimeStamps: [-0.0078 -0.0077 -0.0077 -0.0076 -0.0076 -0.0075 -0.0074 -0.0074 -0.0073 -0.0073 -0.0072 -0.0071 -0.0071 -0.0070 -0.0069 -0.0069 -0.0068 -0.0067 -0.0067 -0.0066 -0.0066 -0.0065 -0.0064 -0.0064 -0.0063 -0.0063 -0.0062 -0.0061 … ]
     MinimumFrequency: 50
     MinimumBandwidth: 50

   Learnable Parameters
    FilterFrequencies: [0.0019 0.0032 0.0047 0.0062 0.0078 0.0094 0.0111 0.0128 0.0145 0.0164 0.0183 0.0202 0.0222 0.0243 0.0264 0.0286 0.0309 0.0332 0.0356 0.0381 0.0407 0.0433 0.0460 0.0488 0.0517 0.0547 0.0578 0.0610 0.0643 0.0677 0.0712 0.0748 … ]
     FilterBandwidths: [0.0028 0.0030 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 0.0039 0.0041 0.0042 0.0043 0.0045 0.0046 0.0047 0.0049 0.0051 0.0052 0.0054 0.0055 0.0057 0.0059 0.0061 0.0063 0.0065 0.0067 0.0069 0.0071 0.0073 0.0075 … ]

   State Parameters
    No properties.

  Show all properties

layers(2) = sNL;

Train Network

Train the network using the trainNetwork function. Use the same training options defined
previously.

[sincNet,sincNetInfo] = trainNetwork(XTrain,TTrain,layers,options);
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Inspect Frequency Response of First Convolutional Layer

Use the plotNFilters method of SincNetLayer to visualize the magnitude frequency response of
nine filters with equally spaced indices learned by SincNet.

figure
plotNFilters(sincNet.Layers(2),9)
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Results Summary

Accuracy

The table summarizes the frame accuracy for all three neural networks.

NetworkType = ["Standard CNN";"Constant Sinc Layer";"SincNet Layer"];
Accuracy = [convNetInfo.FinalValidationAccuracy;constSincInfo.FinalValidationAccuracy;sincNetInfo.FinalValidationAccuracy];

resultsSummary = table(NetworkType,Accuracy)

resultsSummary=3×2 table
         NetworkType         Accuracy
    _____________________    ________

    "Standard CNN"            71.202 
    "Constant Sinc Layer"     75.455 
    "SincNet Layer"           78.395 

Performance with Respect to Epochs

Plot the accuracy on the test set against the epoch number to see how well the networks learn as the
number of epochs increase. SincNet outperforms the ConstantSincLayer network, especially
during the early stages of training. This shows that updating the parameters of the bandpass filters
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within the neural network framework leads to faster convergence. This behavior is only observed
when the dataset is large enough, so it might not be seen when speedupExample is set to true.

epoch = linspace(0,numEpochs,numel(sincNetInfo.ValidationAccuracy(~isnan(sincNetInfo.ValidationAccuracy))));
epoch = [epoch,numEpochs];

sinc_valAcc = [sincNetInfo.ValidationAccuracy(~isnan(sincNetInfo.ValidationAccuracy)),...
    sincNetInfo.FinalValidationAccuracy];
const_sinc_valAcc = [constSincInfo.ValidationAccuracy(~isnan(constSincInfo.ValidationAccuracy)),...
    constSincInfo.FinalValidationAccuracy];
conv_valAcc = [convNetInfo.ValidationAccuracy(~isnan(convNetInfo.ValidationAccuracy)),...
    convNetInfo.FinalValidationAccuracy];

figure
plot(epoch,sinc_valAcc,"-*",MarkerSize=4)
hold on
plot(epoch,const_sinc_valAcc,"-*",MarkerSize=4)
plot(epoch,conv_valAcc,"-*",MarkerSize=4)
ylabel("Frame-Level Accuracy (Test Set)")
xlabel("Epoch")
xlim([0 numEpochs+0.3])
title("Frame-Level Accuracy Versus Epoch")
legend("sincNet","constantSincLayer","conv2dLayer",Location="southeast")
grid on
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In the figure above, the final frame accuracy is a bit different from the frame accuracy that is
computed in the last iteration. While training, the batch normalization layers perform normalization
over mini-batches. However, at the end of training, the batch normalization layers normalize over the
entire training data, which results in a slight change in performance.

Supporting Functions

function xp = preprocessAudioData(x,frameLength,overlapLength,Fs)

speechIdx = detectSpeech(x,Fs);
xp = zeros(1,frameLength,1,0);

for ii = 1:size(speechIdx,1)
    % Isolate speech segment
    audioChunk = x(speechIdx(ii,1):speechIdx(ii,2));

    % Split into 200 ms chunks
    audioChunk = buffer(audioChunk,frameLength,overlapLength);
    audioChunk = reshape(audioChunk,1,frameLength,1,size(audioChunk,2));

    % Concatenate with existing audio
    xp = cat(4,xp,audioChunk);
end
end
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Acoustics-Based Machine Fault Recognition

In this example, you develop a deep learning model to detect faults in an air compressor using
acoustic measurements. After developing the model, you package the system so that you can
recognize faults based on streaming input data.

Data Preparation

Download and unzip the air compressor data set [1] on page 1-750. This data set consists of
recordings from air compressors in a healthy state or one of seven faulty states.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","AirCompressorDataset/AirCompressorDataset.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
dataset = fullfile(dataFolder,"AirCompressorDataset");

Create an audioDatastore object to manage the data and split it into training and validation sets.
Call countEachLabel to inspect the distribution of labels in the train and validation sets.

ads = audioDatastore(dataset,IncludeSubfolders=true,LabelSource="foldernames");

[adsTrain,adsValidation] = splitEachLabel(ads,0.9,0.1);

countEachLabel(adsTrain)

ans=8×2 table
      Label      Count
    _________    _____

    Bearing       203 
    Flywheel      203 
    Healthy       203 
    LIV           203 
    LOV           203 
    NRV           203 
    Piston        203 
    Riderbelt     203 

countEachLabel(adsValidation)

ans=8×2 table
      Label      Count
    _________    _____

    Bearing       22  
    Flywheel      22  
    Healthy       22  
    LIV           22  
    LOV           22  
    NRV           22  
    Piston        22  
    Riderbelt     22  

adsTrain = shuffle(adsTrain);
adsValidation = shuffle(adsValidation);
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You can reduce the training data set used in this example to speed up the runtime at the cost of
performance. In general, reducing the data set is a good practice for development and debugging.

speedupExample = ;
if speedupExample
    adsTrain = splitEachLabel(adsTrain,20);
end

The data consists of time-series recordings of acoustics from faulty or healthy air compressors. As
such, there are strong relationships between samples in time. Listen to a recording and plot the
waveform.

[sampleData,sampleDataInfo] = read(adsTrain);
fs = sampleDataInfo.SampleRate;

soundsc(sampleData,fs)
plot(sampleData)
xlabel("Sample")
ylabel("Amplitude")
title("State: " + string(sampleDataInfo.Label))
axis tight

Because the samples are related in time, you can use a recurrent neural network (RNN) to model the
data. A long short-term memory (LSTM) network is a popular choice of RNN because it is designed to
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avoid vanishing and exploding gradients. Before you can train the network, it's important to prepare
the data adequately. Often, it is best to transform or extract features from 1-dimensional signal data
in order to provide a richer set of features for the model to learn from.

Feature Engineering

The next step is to extract a set of acoustic features used as inputs to the network. Audio Toolbox™
enables you to extract spectral descriptors that are commonly used as inputs in machine learning
tasks. You can extract the features using individual functions, or you can use
audioFeatureExtractor to simplify the workflow and do it all at once.

trainFeatures = cell(1,numel(adsTrain.Files));
windowLength = 512;
overlapLength = 0;

aFE = audioFeatureExtractor(SampleRate=fs, ...
    Window=hamming(windowLength,"periodic"),...
    OverlapLength=overlapLength,...
    spectralCentroid=true, ...
    spectralCrest=true, ...
    spectralDecrease=true, ...
    spectralEntropy=true, ...
    spectralFlatness=true, ...
    spectralFlux=false, ...
    spectralKurtosis=true, ...
    spectralRolloffPoint=true, ...
    spectralSkewness=true, ...
    spectralSlope=true, ...
    spectralSpread=true);

reset(adsTrain)
tic
for index = 1:numel(adsTrain.Files)
    data = read(adsTrain);
    trainFeatures{index} = (extract(aFE,data))';
end
disp("Feature extraction of train set took " + toc + " seconds.");

Feature extraction of train set took 15.7192 seconds.

Data Augmentation

The training set contains a relatively small number of acoustic recordings for training a deep learning
model. A popular method to enlarge the dataset is to use mixup. In mixup, you augment your dataset
by mixing the features and labels from two different class instances. Mixup was reformulated by [2]
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on page 1-750 as labels drawn from a probability distribution instead of mixed labels. The
supporting function, mixup on page 1-749, takes the training features, associated labels, and the
number of mixes per observation and then outputs the mixes and associated labels.

trainLabels = adsTrain.Labels;

numMixesPerInstance = ;
tic
[augData,augLabels] = mixup(trainFeatures,trainLabels,numMixesPerInstance);

trainLabels = cat(1,trainLabels,augLabels);
trainFeatures = cat(2,trainFeatures,augData);
disp("Feature augmentation of train set took " + toc + " seconds.");

Feature augmentation of train set took 0.16065 seconds.

Generate Validation Features

Repeat the feature extraction for the validation features.

validationFeatures = cell(1,numel(adsValidation.Files));

reset(adsValidation)
tic
for index = 1:numel(adsValidation.Files)
    data = read(adsValidation);
    validationFeatures{index} = (extract(aFE,data))';
end
disp("Feature extraction of validation set took " + toc + " seconds.");

Feature extraction of validation set took 1.6419 seconds.

Train Model

Next, you define and train a network. To skip training the network, set
downloadPretrainedSystem to true, then continue to the next section on page 1-736.

downloadPretrainedSystem = ;
if downloadPretrainedSystem
    downloadFolder = matlab.internal.examples.downloadSupportFile("audio","AcousticsBasedMachineFaultRecognition/AcousticsBasedMachineFaultRecognition.zip");
    dataFolder = tempdir;
    unzip(downloadFolder,dataFolder)
    netFolder = fullfile(dataFolder,"AcousticsBasedMachineFaultRecognition");

    addpath(netFolder)
end

Define Network

An LSTM layer learns long-term dependencies between time steps of time series or sequence data.
The first lstmLayer has 100 hidden units and outputs sequence data. Then a dropout layer is used
to reduce overfitting. The second lstmLayer outputs the last step of the time sequence.

numHiddenUnits = ;

dropProb = ;
layers = [ ...
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    sequenceInputLayer(aFE.FeatureVectorLength,Normalization="zscore")
    lstmLayer(numHiddenUnits,OutputMode="sequence")
    dropoutLayer(dropProb)
    lstmLayer(numHiddenUnits,OutputMode="last")
    fullyConnectedLayer(numel(unique(adsTrain.Labels)))
    softmaxLayer
    classificationLayer];

Define Network Hyperparameters

To define hyperparameters for the network, use trainingOptions.

miniBatchSize = ;
validationFrequency = floor(numel(trainFeatures)/miniBatchSize);
options = trainingOptions("adam", ...
    MiniBatchSize=miniBatchSize, ...
    MaxEpochs=35, ...
    Plots="training-progress", ...
    Verbose=false, ...
    Shuffle="every-epoch", ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropPeriod=30, ...
    LearnRateDropFactor=0.1, ...
    ValidationData={validationFeatures,adsValidation.Labels}, ...
    ValidationFrequency=validationFrequency);

Train Network

To train the network, use trainNetwork.

airCompNet = trainNetwork(trainFeatures,trainLabels,layers,options);
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Evaluate Network

View the confusion chart for the validation data.

validationResults = classify(airCompNet,validationFeatures);
confusionchart(validationResults,adsValidation.Labels, ...
    Title="Accuracy: " + mean(validationResults == adsValidation.Labels)*100 + " (%)");

Model Streaming Detection

Create Functions to Process Data in a Streaming Loop

Once you have a trained network with satisfactory performance, you can apply the network to test
data in a streaming fashion.

There are many additional considerations to take into account to make the system work in a real-
world embedded system.

For example,

• The rate or interval at which classification can be performed with accurate results
• The size of the network in terms of generated code (program memory) and weights (data memory)
• The efficiency of the network in terms of computation speed
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In MATLAB, you can mimic how the network is deployed and used in hardware on a real embedded
system and begin to answer these important questions.

Create MATLAB Function Compatible with C/C++ Code Generation

Once you train your deep learning model, you will deploy it to an embedded target. That means you
also need to deploy the code used to perform the feature extraction. Use the
generateMATLABFunction method of audioFeatureExtractor to generate a MATLAB function
compatible with C/C++ code generation. Specify IsStreaming as true so that the generated
function is optimized for stream processing.

filename = fullfile(pwd,"extractAudioFeatures");
generateMATLABFunction(aFE,filename,IsStreaming=true);

Combine Streaming Feature Extraction and Classification

Save the trained network as a MAT file.

save("AirCompressorFaultRecognitionModel.mat","airCompNet")

Create a function that combines the feature extraction and deep learning classification.

type recognizeAirCompressorFault.m

function scores = recognizeAirCompressorFault(audioIn,rs)
% This is a streaming classifier function 

persistent airCompNet

if isempty(airCompNet)
    airCompNet = coder.loadDeepLearningNetwork('AirCompressorFaultRecognitionModel.mat');
end
if rs
    airCompNet = resetState(airCompNet);
end

% Extract features using function
features = extractAudioFeatures(audioIn);

% Classify
[airCompNet,scores] = predictAndUpdateState(airCompNet,features);

end

Test Streaming Loop

Next, you test the streaming classifier in MATLAB. Stream audio one frame at a time to represent a
system as it would be deployed in a real-time embedded system. This enables you to measure and
visualize the timing and accuracy of the streaming implementation.

Stream in several audio files and plot the output classification results for each frame of data. At a
time interval equal to the length of each file, evaluate the output of the classifier.

reset(adsValidation)

N = 10;
labels = categories(ads.Labels);
numLabels = numel(labels);
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% Create a dsp.AsyncBuffer to read audio in a streaming fashion
audioSource = dsp.AsyncBuffer;

% Create a dsp.AsyncBuffer to accumulate scores
scoreBuffer = dsp.AsyncBuffer;

% Create a dsp.AsyncBuffer to record execution time.
timingBuffer = dsp.AsyncBuffer;

% Pre-allocate array to store results
streamingResults = categorical(zeros(N,1));

% Loop over files
for fileIdx = 1:N

    % Read one audio file and put it in the source buffer
    [data,dataInfo] = read(adsValidation);
    write(audioSource,data);

    % Inner loop over frames
    rs = true;
    while audioSource.NumUnreadSamples >= windowLength

        % Get a frame of audio data
        x = read(audioSource,windowLength);

        % Apply streaming classifier function
        tic
        score = recognizeAirCompressorFault(x,rs);
        write(timingBuffer,toc);

        % Store score for analysis
        write(scoreBuffer,score);

        rs = false;
    end
    reset(audioSource)

    % Store class result for that file
    scores = read(scoreBuffer);
    [~,result] = max(scores(end,:),[],2);
    streamingResults(fileIdx) = categorical(labels(result));

    % Plot scores to compare over time
    figure
    plot(scores) %#ok<*NASGU>
    legend(string(airCompNet.Layers(end).Classes),Location="northwest")
    xlabel("Time Step")
    ylabel("Score")
    title(["Known Label = " + string(dataInfo.Label),"Predicted Label = " + string(streamingResults(fileIdx))])
end
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Compare the test results for the streaming version of the classifier and the non-streaming.

testError = mean(validationResults(1:N) ~= streamingResults);
disp("Error between streaming classifier and non-streaming: " + testError*100 + " (%)")

Error between streaming classifier and non-streaming: 0 (%)

Analyze the execution time. The execution time when state is reset is often above the 32 ms budget.
However, in a real, deployed system, that initialization time will only be incurred once. The execution
time of the main loop is around 10 ms, which is well below the 32 ms budget for real-time
performance.

executionTime = read(timingBuffer)*1000;
budget = (windowLength/aFE.SampleRate)*1000;
plot(executionTime,"o")
title("Execution Time Per Frame")
xlabel("Frame Number")
ylabel("Time (ms)")
yline(budget,"","Budget",LineWidth=2)
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Supporting Functions

function [augData,augLabels] = mixup(data,labels,numMixesPerInstance)
augData = cell(1,numel(data)*numMixesPerInstance);
augLabels = repelem(labels,numMixesPerInstance);

kk = 1;
for ii = 1:numel(data)
    for jj = 1:numMixesPerInstance
        lambda = max(min((randn./10)+0.5,1),0);
        
        % Find all available data with different labels.
        availableData = find(labels~=labels(ii));

        % Randomly choose one of the available data with a different label.
        numAvailableData = numel(availableData);
        idx = randi([1,numAvailableData]);

        % Mix.
        augData{kk} = lambda*data{ii} + (1-lambda)*data{availableData(idx)};

        % Specify the label as randomly set by lambda.
        if lambda < rand
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            augLabels(kk) = labels(availableData(idx));
        else
            augLabels(kk) = labels(ii);
        end
        kk = kk + 1;
    end
end

end
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Acoustics-Based Machine Fault Recognition Code Generation
with Intel MKL-DNN

This example demonstrates code generation for “Acoustics-Based Machine Fault Recognition” on
page 1-731 using a long short-term memory (LSTM) network and spectral descriptors. This example
uses MATLAB® Coder™ with deep learning support to generate a MEX (MATLAB executable)
function that leverages performance of Intel® MKL-DNN library. The input data consists of acoustics
time-series recordings from faulty or healthy air compressors and the output is the state of the
mechanical machine predicted by the LSTM network. For details on audio preprocessing and network
training, see “Acoustics-Based Machine Fault Recognition” on page 1-731.

Example Requirements

• The MATLAB Coder Interface f or Deep Learning Libraries Support Package
• Intel processor with support for Intel Advanced Vector Extensions 2 (Intel AVX2)
• Intel Deep Neural Networks Library (MKL-DNN)
• Environment variables for Intel MKL-DNN

For supported versions of libraries and for information about setting up environment variables, see
“Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder).

Prepare Input Dataset

Specify a sample rate fs of 16 kHz and a windowLength of 512 samples, as defined in “Acoustics-
Based Machine Fault Recognition” on page 1-731. Set numFrames to 100.

fs = 16000;
windowLength = 512;
numFrames = 100;

To run the Example on a test signal, generate a pink noise signal. To test the performance of the
system on a real dataset, download the air compressor dataset [1] on page 1-757.

downloadDataset = 

if ~downloadDataset
    pinkNoiseSignal = pinknoise(windowLength*numFrames);
else
    % Download AirCompressorDataset.zip 
    component = 'audio';
    filename = 'AirCompressorDataset/AirCompressorDataset.zip';
    localfile = matlab.internal.examples.downloadSupportFile(component,filename);
    
    % Unzip the downloaded zip file to the downloadFolder
    downloadFolder = fileparts(localfile);
    if ~exist(fullfile(downloadFolder,'AirCompressorDataset'),'dir')
        unzip(localfile, downloadFolder)
    end
    
    % Create an audioDatastore object dataStore, to manage, the data.
    dataStore = audioDatastore(downloadFolder,'IncludeSubfolders',true,'LabelSource','foldernames');
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    % Use countEachLabel to get the number of samples of each category in the dataset.
    countEachLabel(dataStore)
end

Recognize Machine Fault in MATLAB

To run the streaming classifier in MATLAB, download and unzip the system developed in “Acoustics-
Based Machine Fault Recognition” on page 1-731.

component = 'audio';
filename = 'AcousticsBasedMachineFaultRecognition/AcousticsBasedMachineFaultRecognition.zip';
localfile = matlab.internal.examples.downloadSupportFile(component,filename);

downloadFolder = fullfile(fileparts(localfile),'system');
if ~exist(downloadFolder,'dir')    
    unzip(localfile,downloadFolder)
end

To access the recognizeAirCompressorFault function of the system, add downloadFolder to
the search path.

addpath(downloadFolder)

Create a dsp.AsyncBuffer object to read audio in a streaming fashion and a dsp.AsyncBuffer
object to accumulate scores.

audioSource = dsp.AsyncBuffer;
scoreBuffer = dsp.AsyncBuffer;

Load the pretrained network and extract labels from the network.

airCompNet = coder.loadDeepLearningNetwork('AirCompressorFaultRecognitionModel.mat');
labels = string(airCompNet.Layers(end).Classes);

Initialize signalToBeTested to pinkNoiseSignal or select a signal from the drop-down list to test
the file of your choice from the dataset.

if ~downloadDataset
    signalToBeTested = pinkNoiseSignal;
else
    [allFiles,~] = splitEachLabel(dataStore,1);
    allData = readall(allFiles);

    signalToBeTested = ;
    signalToBeTested = cell2mat(signalToBeTested);
end

Stream one audio frame at a time to represent the system as it would be deployed in a real-time
embedded system. Use recognizeAirCompressorFault developed in “Acoustics-Based Machine
Fault Recognition” on page 1-731 to compute audio features and perform deep learning classification.

write(audioSource,signalToBeTested);
resetNetworkState = true;

while audioSource.NumUnreadSamples >= windowLength

    % Get a frame of audio data
    x = read(audioSource,windowLength);
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    % Apply streaming classifier function
    score = recognizeAirCompressorFault(x,resetNetworkState);
    
    % Store score for analysis
    write(scoreBuffer,score);
    
    resetNetworkState = false;
end

Compute the recognized fault from scores and display it.

scores = read(scoreBuffer);
[~,labelIndex] = max(scores(end,:),[],2);
detectedFault = labels(labelIndex)

detectedFault = 
"Flywheel"

Plot the scores of each label for each frame.

plot(scores)
legend("" + labels,'Location','northwest') 
xlabel("Time Step")
ylabel("Score")
str = sprintf("Predicted Scores Over Time Steps.\nPredicted Class: %s",detectedFault);
title(str)
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Generate MATLAB Executable

Create a code generation configuration object to generate an executable. Specify the target language
as C++.

cfg = coder.config('mex');
cfg.TargetLang = 'C++';

Create a configuration object for deep learning code generation with the MKL-DNN library. Attach
the deep learning configuration object to the code generation configuration object.

dlcfg = coder.DeepLearningConfig('mkldnn');
cfg.DeepLearningConfig = dlcfg;

Create an audio data frame of length windowLength.

audioFrame = ones(windowLength,1);

Call the codegen (MATLAB Coder) function from MATLAB Coder to generate C++ code for the
recognizeAirCompressorFault function. Specify the configuration object and prototype
arguments. A MEX-file named recognizeAirCompressorFault_mex is generated to your current
folder.

codegen -config cfg recognizeAirCompressorFault -args {audioFrame,resetNetworkState} -report

Code generation successful: View report

Perform Machine Fault Recognition Using MATLAB Executable

Initialize signalToBeTested to pinkNoiseSignal or select a signal from the drop-down list to test
the file of your choice from the dataset.

if ~downloadDataset
    signalToBeTested = pinkNoiseSignal;
else
    [allFiles,~] = splitEachLabel(dataStore,1);
    allData = readall(allFiles);

    signalToBeTested = ;
    signalToBeTested = cell2mat(signalToBeTested);
end

Stream one audio frame at a time to represent the system as it would be deployed in a real-time
embedded system. Use generated recognizeAirCompressorFault_mex to compute audio features
and perform deep learning classification.

write(audioSource,signalToBeTested);
resetNetworkState = true;

while audioSource.NumUnreadSamples >= windowLength

    % Get a frame of audio data
    x = read(audioSource,windowLength);

    % Apply streaming classifier function
    score = recognizeAirCompressorFault_mex(x,resetNetworkState);
    
    % Store score for analysis
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    write(scoreBuffer,score);

    resetNetworkState = false;
end

Compute the recognized fault from scores and display it.

scores = read(scoreBuffer);
[~,labelIndex] = max(scores(end,:),[],2);
detectedFault = labels(labelIndex)

detectedFault = 
"Flywheel"

Plot the scores of each label for each frame.

plot(scores)
legend("" + labels,'Location','northwest')
xlabel("Time Step")
ylabel("Score")
str = sprintf("Predicted Scores Over Time Steps.\nPredicted Class: %s",detectedFault);
title(str)

Evaluate Execution Time of Alternative MEX Function Workflow

Use tic and toc to measure the execution time of MATLAB function
recognizeAirCompressorFault and MATLAB executable (MEX)
recognizeAirCompressorFault_mex.
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Create a dsp.AsyncBuffer object to record execution time.

timingBufferMATLAB = dsp.AsyncBuffer;
timingBufferMEX = dsp.AsyncBuffer;

Use same recording that you chose in previous section as input to recognizeAirCompressorFault
function and its MEX equivalent recognizeAirCompressorFault_mex.

write(audioSource,signalToBeTested);

Measure the execution time of the MATLAB code.

resetNetworkState = true;
while audioSource.NumUnreadSamples >= windowLength

    % Get a frame of audio data
    x = read(audioSource,windowLength);

    % Apply streaming classifier function
    tic
    scoreMATLAB = recognizeAirCompressorFault(x,resetNetworkState);
    write(timingBufferMATLAB,toc);

    % Apply streaming classifier MEX function
    tic
    scoreMEX = recognizeAirCompressorFault_mex(x,resetNetworkState);
    write(timingBufferMEX,toc);

    resetNetworkState = false;

end

Plot the execution time for each frame and analyze the profile. The first call of
recognizeAirCompressorFault_mex consumes around four times of the budget as it includes
loading of network and resetting of the states. However, in a real, deployed system, that initialization
time is only incurred once. The execution time of the MATLAB function is around 10 ms and that of
MEX function is ~1 ms, which is well below the 32 ms budget for real-time performance.

budget = (windowLength/fs)*1000;
timingMATLAB = read(timingBufferMATLAB)*1000;
timingMEX = read(timingBufferMEX)*1000;
frameNumber = 1:numel(timingMATLAB);
perfGain = timingMATLAB./timingMEX;
plot(frameNumber,timingMATLAB,frameNumber,timingMEX,'LineWidth',2)
grid on
yline(budget,'',{'Budget'},'LineWidth',2)
legend('MATLAB Function','MEX Function','Location','northwest')
xlabel("Time Step")
ylabel("Execution Time (in ms)")
title("Execution Time Profile of MATLAB and MEX Function")
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Compute the performance gain of MEX over MATLAB function excluding the first call. This
performance test is done on a machine using an NVIDIA Quadro P620 (Version 26) GPU and an
Intel® Xeon® W-2133 CPU running at 3.60 GHz.

PerformanceGain = sum(timingMATLAB(2:end))/sum(timingMEX(2:end))

PerformanceGain = 16.4834

This example ends here. For deploying machine fault recognition on Raspberry Pi, see “Acoustics-
Based Machine Fault Recognition Code Generation on Raspberry Pi” on page 1-758.

References

[1] Verma, Nishchal K., et al. "Intelligent Condition Based Monitoring Using Acoustic Signals for Air
Compressors." IEEE Transactions on Reliability, vol. 65, no. 1, Mar. 2016, pp. 291–309. DOI.org
(Crossref), doi:10.1109/TR.2015.2459684.

 Acoustics-Based Machine Fault Recognition Code Generation with Intel MKL-DNN

1-757



Acoustics-Based Machine Fault Recognition Code Generation
on Raspberry Pi

This example demonstrates code generation for “Acoustics-Based Machine Fault Recognition” on
page 1-731 using a long short-term memory (LSTM) network and spectral descriptors. This example
uses MATLAB® Coder™, MATLAB Coder Interface for Deep Learning Libraries, MATLAB Support
Package for Raspberry Pi™ Hardware to generate a standalone executable (.elf) file on a Raspberry
Pi that leverages performance of the ARM® Compute Library. The input data consists of acoustics
time-series recordings from faulty or healthy air compressors and the output is the state of the
mechanical machine predicted by the LSTM network. This standalone executable on Raspberry Pi
runs the streaming classifier on the input data received from MATLAB and sends the computed
scores for each label to MATLAB. Interaction between MATLAB script and the executable on your
Raspberry Pi is handled using the user datagram protocol (UDP). For more details on audio
preprocessing and network training, see “Acoustics-Based Machine Fault Recognition” on page 1-731.

Example Requirements

• The MATLAB Coder Interface for Deep Learning Libraries Support Package
• ARM processor that supports the NEON extension
• ARM Compute Library version 20.02.1 (on the target ARM hardware)
• Environment variables for the compilers and libraries

For supported versions of libraries and for information about setting up environment variables, see
“Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder)

Prepare Input Dataset

Specify a sample rate fs of 16 kHz and a windowLength of 512 samples, as defined in “Acoustics-
Based Machine Fault Recognition” on page 1-731. Set numFrames to 100.

fs = 16000;
windowLength = 512;
numFrames = 100;

To run the Example on a test signal, generate a pink noise signal. To test the performance of the
system on a real dataset, download the air compressor dataset [1] on page 1-768.

downloadDataset = 

if ~downloadDataset
    pinkNoiseSignal = pinknoise(windowLength*numFrames);
else
    % Download AirCompressorDataset.zip 
    component = 'audio';
    filename = 'AirCompressorDataset/AirCompressorDataset.zip';
    localfile = matlab.internal.examples.downloadSupportFile(component,filename);
    
    % Unzip the downloaded zip file to the downloadFolder
    downloadFolder = fileparts(localfile);
    if ~exist(fullfile(downloadFolder,'AirCompressorDataset'),'dir')
        unzip(localfile, downloadFolder)
    end
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    % Create an audioDatastore object dataStore, to manage, the data.
    dataStore = audioDatastore(downloadFolder,'IncludeSubfolders',true,'LabelSource','foldernames');

    % Use countEachLabel to get the number of samples of each category in the dataset.
    countEachLabel(dataStore)
end

Recognize Machine Fault in MATLAB

To run the streaming classifier in MATLAB, download and unzip the system developed in “Acoustics-
Based Machine Fault Recognition” on page 1-731.

component = 'audio';
filename = 'AcousticsBasedMachineFaultRecognition/AcousticsBasedMachineFaultRecognition.zip';
localfile = matlab.internal.examples.downloadSupportFile(component,filename);

downloadFolder = fullfile(fileparts(localfile),'system');
if ~exist(downloadFolder,'dir')    
    unzip(localfile,downloadFolder)
end

To access the recognizeAirCompressorFault function of the system, add downloadFolder to
the search path.

addpath(downloadFolder)

Create a dsp.AsyncBuffer object to read audio in a streaming fashion and a dsp.AsyncBuffer
object to accumulate scores.

audioSource = dsp.AsyncBuffer;
scoreBuffer = dsp.AsyncBuffer;

Load the pretrained network and extract labels from the network.

airCompNet = coder.loadDeepLearningNetwork('AirCompressorFaultRecognitionModel.mat');
labels = string(airCompNet.Layers(end).Classes);

Initialize signalToBeTested to pinkNoiseSignal or select a signal from the drop-down list to test
the file of your choice from the dataset.

if ~downloadDataset
    signalToBeTested = pinkNoiseSignal;
else
    [allFiles,~] = splitEachLabel(dataStore,1);
    allData = readall(allFiles);

    signalToBeTested = ;
    signalToBeTested = cell2mat(signalToBeTested);
end

Stream one audio frame at a time to represent the system as it would be deployed in a real-time
embedded system. Use recognizeAirCompressorFault developed in “Acoustics-Based Machine
Fault Recognition” on page 1-731 to compute audio features and perform deep learning classification.

write(audioSource,signalToBeTested);
resetNetworkState = true;
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while audioSource.NumUnreadSamples >= windowLength
    
    % Get a frame of audio data
    x = read(audioSource,windowLength);
    
    % Apply streaming classifier function
    score = recognizeAirCompressorFault(x,resetNetworkState);
   
    % Store score for analysis
    write(scoreBuffer,score);
    
    resetNetworkState = false;
end

Compute the recognized fault from scores and display it.

scores = read(scoreBuffer);
[~,labelIndex] = max(scores(end,:),[],2);
detectedFault = labels(labelIndex)

detectedFault = 
"Flywheel"

Plot the scores of each label for each frame.

plot(scores)
legend("" + labels,'Location','northwest') 
xlabel("Time Step")
ylabel("Score")
str = sprintf("Predicted Scores Over Time Steps.\nPredicted Class: %s",detectedFault);
title(str)
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Reset the asynchronous buffer audioSource.

reset(audioSource)

Prepare MATLAB Code For Deployment

This example uses the dsp.UDPSender System object to send the audio frame to the executable
running on Raspberry Pi and the dsp.UDPReceiver System object to receive the score vector from
the Raspberry Pi. Create a dsp.UDPSender system object to send audio captured in MATLAB to your
Raspberry Pi. Set the targetIPAddress to the IP address of your Raspberry Pi. Set the
RemoteIPPort to 25000. Raspberry Pi receives the input audio frame from the same port using the
dsp.UDPReceiver system object.

targetIPAddress = '172.31.164.247';
UDPSend = dsp.UDPSender('RemoteIPPort',25000,'RemoteIPAddress',targetIPAddress); 

Create a dsp.UDPReceiver system object to receive predicted scores from your Raspberry Pi. Each
UDP packet received from the Raspberry Pi is a vector of scores and each vector element is a score
for a state of the air compressor. The maximum message length for the dsp.UDPReceiver object is
65507 bytes. Calculate the buffer size to accommodate the maximum number of UDP packets.

sizeOfDoubleInBytes = 8;
numScores = 8;
maxUDPMessageLength = floor(65507/sizeOfDoubleInBytes);
numPackets = floor(maxUDPMessageLength/numScores);
bufferSize = numPackets*numScores*sizeOfDoubleInBytes;
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UDPReceive = dsp.UDPReceiver("LocalIPPort",21000, ...  
    "MessageDataType","single", ...
    "MaximumMessageLength",numScores, ...
    "ReceiveBufferSize",bufferSize);

Create a supporting function, recognizeAirCompressorFaultRaspi, that receives an audio frame
using dsp.UDPReceiver and applies the streaming classifier and sends the predicted score vector to
MATLAB using dsp.UDPSender.

type recognizeAirCompressorFaultRaspi

function recognizeAirCompressorFaultRaspi(hostIPAddress)
% This function receives acoustic input using dsp.UDPReceiver and runs a
% streaming classifier by calling recognizeAirCompressorFault, developed in
% the Acoustics-Based Machine Fault Recognition - MATLAB Example. 
% Computed scores are sent to MATLAB using dsp.UDPSender.
%#codegen

%   Copyright 2021 The MathWorks, Inc.

frameLength = 512;

% Configure UDP Sender System Object
UDPSend = dsp.UDPSender('RemoteIPPort',21000,'RemoteIPAddress',hostIPAddress);

% Configure UDP Receiver system object
sizeOfDoubleInBytes = 8;
maxUDPMessageLength = floor(65507/sizeOfDoubleInBytes);
numPackets = floor(maxUDPMessageLength/frameLength);
bufferSize = numPackets*frameLength*sizeOfDoubleInBytes;
UDPReceiveRaspi = dsp.UDPReceiver('LocalIPPort',25000, ...
    'MaximumMessageLength',frameLength, ...
    'ReceiveBufferSize',bufferSize, ...
    'MessageDataType','double');

% Reset network state for first call
resetNetworkState = true;

while true
    % Receive audio frame of size frameLength x 1
    x = UDPReceiveRaspi();

    if(~isempty(x))

        x = x(1:frameLength,1);

        % Apply streaming classifier function
        scores = recognizeAirCompressorFault(x,resetNetworkState);

        %Send output to the host machine
        UDPSend(scores);

        resetNetworkState = false;
    end
end
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Generate Executable on Raspberry Pi

Replace the hostIPAddress with your machine's address. Your Raspberry Pi sends the predicted
scores to the IP address you specify.

hostIPAddress = coder.Constant('172.18.230.30');

Create a code generation configuration object to generate an executable program. Specify the target
language as C++.

cfg = coder.config('exe');
cfg.TargetLang = 'C++';

Create a configuration object for deep learning code generation with the ARM compute library that is
on your Raspberry Pi. Specify the architecture of the Raspberry Pi and attach the deep learning
configuration object to the code generation configuration object.

dlcfg = coder.DeepLearningConfig('arm-compute');
dlcfg.ArmArchitecture = 'armv7';
dlcfg.ArmComputeVersion = '20.02.1';
cfg.DeepLearningConfig = dlcfg;

Use the Raspberry Pi Support Package function raspi to create a connection to your Raspberry Pi.
In the next block of code, replace:

• raspiname with the name of your Raspberry Pi
• pi with your user name
• password with your password

if (~exist('r','var'))
  r = raspi('raspiname','pi','password');
end

Create a coder.hardware (MATLAB Coder) object for Raspberry Pi and attach it to the code
generation configuration object.

hw = coder.hardware('Raspberry Pi');
cfg.Hardware = hw;

Specify the build folder on the Raspberry Pi.

buildDir = '~/remoteBuildDir';
cfg.Hardware.BuildDir = buildDir;

Use an autogenerated C++ main file to generate a standalone executable.

cfg.GenerateExampleMain = 'GenerateCodeAndCompile';

Call the codegen (MATLAB Coder) function from MATLAB Coder to generate C++ code and the
executable on your Raspberry Pi. By default, the Raspberry Pi executable has the same name as the
MATLAB function. You get a warning in the code generation logs that you can disregard because
recognizeAirCompressorFaultRaspi has an infinite loop that looks for an audio frame from
MATLAB.

codegen -config cfg recognizeAirCompressorFaultRaspi -args {hostIPAddress} -report

 Deploying code. This may take a few minutes. 
Warning: Function 'recognizeAirCompressorFaultRaspi' does not terminate due to an infinite loop.
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Warning in ==> recognizeAirCompressorFaultRaspi Line: 1 Column: 1
Code generation successful (with warnings): View report

Perform Machine Fault Recognition Using Deployed Code

Create a command to open the recognizeAirCompressorFaultRaspi application on a Raspberry
Pi. Use system to send the command to your Raspberry Pi.

applicationName = 'recognizeAirCompressorFaultRaspi';

applicationDirPaths = raspi.utils.getRemoteBuildDirectory('applicationName',applicationName);
targetDirPath = applicationDirPaths{1}.directory;

exeName = strcat(applicationName,'.elf');
command = ['cd ',targetDirPath,'; ./',exeName,' &> 1 &'];

system(r,command);

Initialize signalToBeTested to pinkNoiseSignal or select a signal from the drop-down list to test
the file of your choice from the dataset.

if ~downloadDataset
    signalToBeTested = pinkNoiseSignal;
else
    [allFiles,~] = splitEachLabel(dataStore,1);
    allData = readall(allFiles);

    signalToBeTested = ;
    signalToBeTested = cell2mat(signalToBeTested);
end

Stream one audio frame at a time to represent a system as it would be deployed in a real-time
embedded system. Use the generated MEX file recognizeAirCompressorFault_mex to compute
audio features and perform deep learning classification.

write(audioSource,signalToBeTested);

while audioSource.NumUnreadSamples >= windowLength
    x = read(audioSource,windowLength);
    UDPSend(x);
    score = UDPReceive();
    if ~isempty(score)    
        write(scoreBuffer,score');
    end
end

Compute the recognized fault from scores and display it.

scores = read(scoreBuffer);
[~,labelIndex] = max(scores(end,:),[],2);
detectedFault = labels(labelIndex)

detectedFault = 
"Flywheel"

Plot the scores of each label for each frame.

plot(scores)
legend("" + labels,'Location','northwest') 
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xlabel("Time Step")
ylabel("Score")
str = sprintf("Predicted Scores Over Time Steps.\nPredicted Class: %s",detectedFault);
title(str)

Terminate the standalone executable running on Raspberry Pi.

stopExecutable(codertarget.raspi.raspberrypi,exeName)

Evaluate Execution Time Using Alternative PIL Function Workflow

To evaluate execution time taken by standalone executable on Raspberry Pi, use a PIL (processor-in-
loop) workflow. To perform PIL profiling, generate a PIL function for the supporting function
recognizeAirCompressorFault.

Create a code generation configuration object to generate the PIL function.

cfg = coder.config('lib','ecoder',true);
cfg.VerificationMode = 'PIL';

Set the ARM compute library and architecture.

dlcfg = coder.DeepLearningConfig('arm-compute');
cfg.DeepLearningConfig = dlcfg ;
cfg.DeepLearningConfig.ArmArchitecture = 'armv7';
cfg.DeepLearningConfig.ArmComputeVersion = '20.02.1';

Set up the connection with your target hardware.
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if (~exist('r','var'))
  r = raspi('raspiname','pi','password');
end
hw = coder.hardware('Raspberry Pi');
cfg.Hardware = hw;

Set the build directory and target language.

buildDir = '~/remoteBuildDir';
cfg.Hardware.BuildDir = buildDir;
cfg.TargetLang = 'C++';

Enable profiling and generate the PIL code. A MEX file named
recognizeAirCompressorFault_pil is generated in your current folder.

cfg.CodeExecutionProfiling = true;
audioFrame = ones(windowLength,1);
resetNetworkStateFlag = true;
codegen -config cfg recognizeAirCompressorFault -args {audioFrame,resetNetworkStateFlag}

 Deploying code. This may take a few minutes. 
### Connectivity configuration for function 'recognizeAirCompressorFault': 'Raspberry Pi'
Location of the generated elf : /home/pi/remoteBuildDir/MATLAB_ws/R2021b/S/MATLAB/Examples/ExampleManager/sporwal.Bdoc21b.j1720794/deeplearning_shared-ex44063374/codegen/lib/recognizeAirCompressorFault/pil
Code generation successful.

Call the generated PIL function 50 times to get the average execution time.

totalCalls = 50;

for k = 1:totalCalls
    x = pinknoise(windowLength,1);
    score = recognizeAirCompressorFault_pil(x,resetNetworkStateFlag);
    resetNetworkStateFlag = false;
end

### Starting application: 'codegen\lib\recognizeAirCompressorFault\pil\recognizeAirCompressorFault.elf'
    To terminate execution: clear recognizeAirCompressorFault_pil
### Launching application recognizeAirCompressorFault.elf...
    Execution profiling data is available for viewing. Open Simulation Data Inspector.
    Execution profiling report available after termination.

Terminate the PIL execution.

clear recognizeAirCompressorFault_pil

### Host application produced the following standard output (stdout) and standard error (stderr) messages:

### Connectivity configuration for function 'recognizeAirCompressorFault': 'Raspberry Pi'
    Execution profiling report: report(getCoderExecutionProfile('recognizeAirCompressorFault'))

Generate an execution profile report to evaluate execution time.

executionProfile = getCoderExecutionProfile('recognizeAirCompressorFault');
report(executionProfile, ...
       'Units','Seconds', ...
       'ScaleFactor','1e-03', ...
       'NumericFormat','%0.4f');
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The average execution time of recognizeAirCompressorFault_pil function is 0.423 ms, which
is well below the 32 ms budget for real-time performance. The first call of
recognizeAirCompressorFault_pil consumes around 12 times of the average execution time as
it includes loading of network and resetting of the states. However, in a real, deployed system, that
initialization time is incurred only once. This example ends here. For deploying machine fault
recognition on desktops, see “Acoustics-Based Machine Fault Recognition Code Generation with Intel
MKL-DNN” on page 1-751.
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audioDatastore Object Pointing to Audio Files

To create an audioDatastore object, first specify the file path to the audio samples included with
Audio Toolbox™.

folder = fullfile(matlabroot,'toolbox','audio','samples');

Create an audioDatastore object that points to the specified folder of audio files.

ADS = audioDatastore(folder)

ADS = 
  audioDatastore with properties:

                       Files: {
                              'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
                              'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
                              ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
                               ... and 32 more
                              }
                     Folders: {
                              'B:\matlab\toolbox\audio\samples'
                              }
    AlternateFileSystemRoots: {}
              OutputDataType: 'double'
                      Labels: {}
      SupportedOutputFormats: ["wav"    "flac"    "ogg"    "opus"    ...    ]
         DefaultOutputFormat: "wav"

Generate a subset of the audio datastore that only includes audio files containing 'Guitar' in the
file name.

fileContainsGuitar = cellfun(@(c)contains(c,'Guitar'),ADS.Files);
ADSsubset = subset(ADS,fileContainsGuitar)

ADSsubset = 
  audioDatastore with properties:

                       Files: {
                              'B:\matlab\toolbox\audio\samples\RockGuitar-16-44p1-stereo-72secs.wav';
                              'B:\matlab\toolbox\audio\samples\RockGuitar-16-96-stereo-72secs.flac';
                              'B:\matlab\toolbox\audio\samples\SoftGuitar-44p1_mono-10mins.ogg'
                              }
                     Folders: {
                              'B:\matlab\toolbox\audio\samples'
                              }
    AlternateFileSystemRoots: {}
              OutputDataType: 'double'
                      Labels: {}
      SupportedOutputFormats: ["wav"    "flac"    "ogg"    "opus"    ...    ]
         DefaultOutputFormat: "wav"

Use the subset audio datastore as the source for a labeledSignalSet object.

audioLabSigSet = labeledSignalSet(ADSsubset)
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audioLabSigSet = 
  labeledSignalSet with properties:

             Source: {3x1 cell}
         NumMembers: 3
    TimeInformation: "inherent"
             Labels: [3x0 table]
        Description: ""

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Open Signal Labeler and use Import From Workspace to import the labeledSignalSet.
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Accelerate Audio Deep Learning Using GPU-Based Feature
Extraction

In this example, you leverage GPUs for feature extraction and augmentation to decrease the time
required to train a deep learning model. The model you train is a convolutional neural network (CNN)
for acoustic fault recognition.

Audio Toolbox™ includes gpuArray (Parallel Computing Toolbox) support for most feature
extractors, including popular ones such as melSpectrogram and mfcc. For an overview of GPU
support, see “Code Generation and GPU Support”.

Load Training Data

Download and unzip the air compressor data set [1] on page 1-781. This data set consists of
recordings from air compressors in a healthy state or one of seven faulty states.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","AirCompressorDataset/AirCompressorDataset.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
dataset = fullfile(dataFolder,"AirCompressorDataset");

Create an audioDatastore object to manage the data and split it into training and validation sets.

ads = audioDatastore(dataset,IncludeSubfolders=true,LabelSource="foldernames");
rng default
[adsTrain,adsValidation] = splitEachLabel(ads,0.8);

Visualize the number of files in the training and validation sets.

uniqueLabels = unique(adsTrain.Labels);
tblTrain = countEachLabel(adsTrain);
tblValidation = countEachLabel(adsValidation);
H = bar(uniqueLabels,[tblTrain.Count, tblValidation.Count],"stacked");
legend(H,["Training Set","Validation Set"],Location="NorthEastOutside")
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Select random examples from the training set for plotting. Each recording has 50,000 samples
sampled at 16 kHz.

t = (0:5e4-1)/16e3;
tiledlayout(4,2,TileSpacing="compact",Padding="compact")
for n = 1:numel(uniqueLabels)
    idx = find(adsTrain.Labels==uniqueLabels(n));
    [x,fs] = audioread(adsTrain.Files{idx(randperm(numel(idx),1))});

    nexttile
    plotHandle = plot(t,x);
    if n == 7 || n == 8
        xlabel("Seconds");
    else
        set(gca,xtick=[])
    end
    title(string(uniqueLabels(n)));
end
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Preprocess Data on CPU and GPU

In this example, you perform feature extraction and data augmentation while training the network. In
this section, you define the feature extraction and augmentation pipeline and compare the speed of
the pipeline executed on a CPU against the speed of the pipeline executed on a GPU. The output of
this pipeline is the input to the CNN you train.

Create an audioFeatureExtractor object to extract mel spectrums using 200 ms mel windows
with a 5 ms hop. The output from extract is a numHops-by-128-by-1 array.

afe = audioFeatureExtractor(SampleRate=fs, ...
    FFTLength=4096, ...
    Window=hann(round(fs*0.2),"periodic"), ...
    OverlapLength=round(fs*0.195), ...
    melSpectrum=true);
setExtractorParameters(afe,"melSpectrum",NumBands=128);

featureVector = extract(afe,x);
[numHops,numFeatures,numChannels] = size(featureVector)

numHops = 586

numFeatures = 128

numChannels = 1

Deep learning methods are data-hungry, and the training dataset in this example is relatively small.
Use the mixup [2] on page 1-781 augmentation technique to effectively enlarge the training set. In
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mixup, you merge the features extracted from two audio signals as a weighted sum. The two signals
have different labels, and the label assigned to the merged feature matrix is probabilistically assigned
based on the mixing coefficient. The mixup augmentation is implemented in the supporting object,
Mixup on page 1-780.

Create the pipeline to perform the following steps:

1 Extract the log-mel spectrogram.
2 Apply mixup to the feature matrices. The Mixup supporting object outputs a cell array containing

the features and the label.

Create two versions of the pipeline for comparison: one that executes the pipeline on your CPU, and
one that converts the raw audio signal to a gpuArray so that the pipeline is executed on your GPU.

offset = eps;

adsTrainCPU = transform(adsTrain,@(x)log10(extract(afe,x)+offset));
mixerCPU = Mixup(adsTrainCPU);
adsTrainCPU = transform(adsTrainCPU,@(x,info)mix(mixerCPU,x,info),IncludeInfo=true);

adsTrainGPU = transform(adsTrain,@gpuArray);
adsTrainGPU = transform(adsTrainGPU,@(x)log10(extract(afe,x)+offset));
mixerGPU = Mixup(adsTrainGPU);
adsTrainGPU = transform(adsTrainGPU,@(x,info)mix(mixerGPU,x,info),IncludeInfo=true);

For the validation set, apply the feature extraction pipeline but not the augmentation. Because you
are not applying mixup, create a combined datastore to output a cell array containing the features
and the label. Again, create one validation pipeline that executes on your GPU and one validation
pipeline that executes on your CPU.

adsValidationGPU = transform(adsValidation,@gpuArray);
adsValidationGPU = transform(adsValidationGPU,@(x){log10(extract(afe,x)+offset)});
adsValidationGPU = combine(adsValidationGPU,arrayDatastore(adsValidation.Labels));

adsValidationCPU = transform(adsValidation,@(x){log10(extract(afe,x)+offset)});
adsValidationCPU = combine(adsValidationCPU,arrayDatastore(adsValidation.Labels));

Compare the time it takes for the CPU and a single GPU to extract features and perform data
augmentation.

tic
for ii = 1:numel(adsTrain.Files)
    x = read(adsTrainCPU);
end
cpuPipeline = toc;
reset(adsTrainCPU)

tic
for ii = 1:numel(adsTrain.Files)
    x = read(adsTrainGPU);
end
wait(gpuDevice) % Ensure all calculations are completed
gpuPipeline = toc;
reset(adsTrainGPU)

disp(["Read, extract, and augment train set (CPU): "+cpuPipeline+" seconds"; ...
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    "Read, extract, and augment train set (GPU): "+gpuPipeline+" seconds"; ...
    "Speedup (CPU time)/(GPU time): "+cpuPipeline/gpuPipeline]);

    "Read, extract, and augment train set (CPU): 117.0887 seconds"
    "Read, extract, and augment train set (GPU): 34.8972 seconds"
    "Speedup (CPU time)/(GPU time): 3.3552"

Reading from the datastore contributes a significant amount of the overall time to the pipeline. A
comparison of just extraction and augmentation shows an even greater speedup. Compare just
feature extraction on the GPU versus on the CPU.

x = read(ads);

extract(afe,x); % Incur initialization cost outside timing loop
tic
for ii = 1:numel(adsTrain.Files)
    features = log10(extract(afe,x)+offset);
end
cpuFeatureExtraction = toc;

x = gpuArray(x); % Incur initialization cost outside timing loop
extract(afe,x);
tic
for ii = 1:numel(adsTrain.Files)
    features = log10(extract(afe,x)+offset);
end
wait(gpuDevice) % Ensure all calculations are completed
gpuFeatureExtraction = toc;

disp(["Extract features from train set (CPU): "+cpuFeatureExtraction+" seconds"; ...
    "Extract features from train set (GPU): "+gpuFeatureExtraction+" seconds"; ...
    "Speedup (CPU time)/(GPU time): "+cpuFeatureExtraction/gpuFeatureExtraction]);

    "Extract features from train set (CPU): 52.7254 seconds"
    "Extract features from train set (GPU): 1.2611 seconds"
    "Speedup (CPU time)/(GPU time): 41.8096"

Define Network

Define a convolutional neural network that takes the augmented mel spectrogram as input. This
network applies a single convolutional layer consisting of 48 filters with 3-by-3 kernels, followed by a
batch normalization layer and a ReLU activation layer. The time dimension is then collapsed using a
max pooling layer. Finally, the output of the pooling layer is reduced using a fully connected layer
followed by softmax and classification layers. See “List of Deep Learning Layers” (Deep Learning
Toolbox) for more information.

numClasses = numel(categories(adsTrain.Labels));
imageSize = [numHops,afe.FeatureVectorLength];

layers = [
    imageInputLayer(imageSize,Normalization="none")

    convolution2dLayer(3,48,Padding="same")
    batchNormalizationLayer
    reluLayer

    maxPooling2dLayer([numHops,1])
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    fullyConnectedLayer(numClasses)
    softmaxLayer
    classificationLayer(Classes=categories(adsTrain.Labels));
    ];

To define the training options, use trainingOptions (Deep Learning Toolbox). Set the
ExecutionEnvironment to multi-gpu to leverage multiple GPUs, if available. Otherwise, you can
set ExecutionEnvironment to gpu. The computer used in this example has access to four Titan V
GPU devices. In this example, the network training always leverages GPUs.

miniBatchSize = 128;
options = trainingOptions("adam", ...
    Shuffle="every-epoch", ...
    MaxEpochs=40, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropPeriod=15, ...
    LearnRateDropFactor=0.2, ...
    MiniBatchSize=miniBatchSize, ...
    Plots="training-progress", ...
    Verbose=false, ...
    ValidationData=adsValidationCPU, ...
    ValidationFrequency=ceil(numel(adsTrain.Files)/miniBatchSize), ...
    ExecutionEnvironment="multi-gpu");

Train Network

Train Network Using CPU-Based Preprocessing

Call trainNetwork (Deep Learning Toolbox) to train the network using your CPU for the feature
extraction pipeline. The execution environment for the network training is your GPU(s).

tic
net = trainNetwork(adsTrainCPU,layers,options);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 4).
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cpuTrainTime = toc;

Train Network Using GPU-Based Preprocessing

Replace the validation data in the training options with the GPU-based pipeline. Train the network
using your GPU(s) for the feature extraction pipeline. The execution environment for the network
training is your GPU(s).

options.ValidationData = adsValidationGPU;
tic
net = trainNetwork(adsTrainGPU,layers,options);
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gpuTrainTime = toc;

Compare CPU- and GPU-based Preprocessing

Print the timing results for training using a CPU for feature extraction and augmentation, and
training using GPU(s) for feature extraction and augmentation.
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disp(["Training time (CPU): "+cpuTrainTime+" seconds";
    "Training time (GPU): "+gpuTrainTime+" seconds";
    "Speedup (CPU time)/(GPU time): "+cpuTrainTime/gpuTrainTime])

    "Training time (CPU): 4650.3639 seconds"
    "Training time (GPU): 599.1963 seconds"
    "Speedup (CPU time)/(GPU time): 7.761"

Compare CPU and GPU Inference Performance

Compare the time it takes to perform prediction on a single 3-second clip when feature extraction is
performed on the GPU versus the CPU. In both cases, the network prediction happens on your GPU.

signalToClassify = read(ads);

gpuFeatureExtraction = gputimeit(@()predict(net,log10(extract(afe,gpuArray(signalToClassify))+offset)));
cpuFeatureExtraction = gputimeit(@()predict(net,log10(extract(afe,(signalToClassify))+offset)));

disp(["Prediction time for 3 s of data (feature extraction on CPU): "+cpuFeatureExtraction*1e3+" ms"; ...
    "Prediction time for 3 s of data (feature extraction on GPU): "+gpuFeatureExtraction*1e3+" ms"; ...
    "Speedup (CPU time)/(GPU time): "+cpuFeatureExtraction/gpuFeatureExtraction])

    "Prediction time for 3 s of data (feature extraction on CPU): 42.8014 ms"
    "Prediction time for 3 s of data (feature extraction on GPU): 4.0693 ms"
    "Speedup (CPU time)/(GPU time): 10.5182"

Compare the time it takes to perform prediction on a set of 3-second clips when feature extraction is
performed on the GPU(s) versus the CPU. In both cases, the network prediction happens on your
GPU(s).

adsValidationGPU = transform(adsValidation,@(x)gpuArray(x));
adsValidationGPU = transform(adsValidationGPU,@(x){log10(extract(afe,x)+offset)});
adsValidationCPU = transform(adsValidation,@(x){log10(extract(afe,x)+offset)});

gpuFeatureExtraction = gputimeit(@()predict(net,adsValidationGPU,ExecutionEnvironment="multi-gpu"));
cpuFeatureExtraction = gputimeit(@()predict(net,adsValidationCPU,ExecutionEnvironment="multi-gpu"));

disp(["Prediction time for validation set (feature extraction on CPU): "+cpuFeatureExtraction+" seconds";
    "Prediction time for validation set (feature extraction on GPU): "+gpuFeatureExtraction+" seconds";
    "Speedup (CPU time)/(GPU time): "+cpuFeatureExtraction/gpuFeatureExtraction])

    "Prediction time for validation set (feature extraction on CPU): 36.2089 seconds"
    "Prediction time for validation set (feature extraction on GPU): 4.1345 seconds"
    "Speedup (CPU time)/(GPU time): 8.7578"

Conclusion

It is well known that you can decrease the time it takes to train a network by leveraging GPU devices.
This enables you to more quickly iterate and develop your final system. In many training setups, you
can achieve additional performance gains by leveraging GPU devices for feature extraction and data
augmentation. This example shows a significant decrease in the overall time it takes to train a CNN
when leveraging GPU devices for feature extraction and data augmentation. Additionally, leveraging
GPU devices for feature extraction at inference time, for both single-observations and data sets,
achieves significant performance gains.
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Supporting Functions

Mixup

The supporting object, Mixup, is placed in your current folder when you open this example.

type Mixup

classdef Mixup < handle
    %MIXUP Mixup data augmentation
    %   mixer = Mixup(augDatastore) creates an object that can mix features
    %   at a randomly set ratio and then probabilistically set the output
    %   label as one of the two original signals.
    %
    %   Mixup Properties:
    %   MixProbability - Mix probability
    %   AugDatastore   - Augmentation datastore
    %
    %   Mixup Methods:
    %   mix            - Apply mixup
    %

    % Copyright 2021 The MathWorks, Inc.

    properties (SetAccess=public,GetAccess=public)
        %MixProbability Mix probability
        % Specify the probability that mixing is applied as a scalar in the
        % range [0,1]. If unspecified, MixProbability defaults to 1/3.
        MixProbability (1,1) {mustBeNumeric} = 1/3;
    end
    properties (SetAccess=immutable,GetAccess=public)
        %AUGDATASTORE Augmentation datastore
        % Specify a datastore from which to get the mixing signals. The
        % datastore must contain a label in the info returned from reading.
        % This property is immutable, meaning it cannot be changed after
        % construction.
        AugDatastore
    end

    methods
        function obj = Mixup(augDatastore)
            obj.AugDatastore = augDatastore;
        end

        function [dataOut,infoOut] = mix(obj,x,infoIn)
            %MIX Apply mixup
            % [dataOut,infoOut] = mix(mixer,x,infoIn) probabilistically mix
            % the input, x, and its associated label contained in infoIn
            % with a signal randomly drawn from the augmentation datastore.
            % The output, dataOut, is a cell array with two columns. The
            % first column contains the features and the second column
            % contains the label.

            if rand > obj.MixProbability % Only mix ~1/3 the dataset

                % Randomly set mixing coefficient. Draw from a normal
                % distribution with mean 0.5 and contained within [0,1].
                lambda = max(min((randn./10)+0.5,1),0);
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                % Read one file from the augmentation datastore.
                subDS = subset(obj.AugDatastore,randi([1,numel(obj.AugDatastore.UnderlyingDatastores{1}.Files)]));
                [y,yInfo] = read(subDS);

                % Mix the features element-by-element according to lambda.
                dataOut = lambda*x + (1-lambda)*y;

                % Set the output label probabilistically based on the mixing coefficient.
                if lambda < rand
                    labelOut = yInfo.Label;
                    infoOut.Label = labelOut;
                else
                    labelOut = infoIn.Label;
                end
                infoOut.Label = labelOut;

                % Combine the output data and labels.
                dataOut = [{dataOut},{labelOut}];

            else % Do not apply mixing

                dataOut = [{x},{infoIn.Label}];
                infoOut = infoIn;

            end
        end

    end
end
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Train 3-D Sound Event Localization and Detection (SELD) Using
Deep Learning

In this example, you train a deep learning model to perform sound localization and event detection
from ambisonic data. The model consists of two independently trained convolutional recurrent neural
networks (CRNN) [1] on page 1-798: one for sound event detection (SED), and one for direction of
arrival (DOA) estimation. To explore the models trained in this example, see “3-D Sound Event
Localization and Detection Using Trained Recurrent Convolutional Neural Network” on page 1-809.
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Introduction

Ambisonics is a popular 3-D sound format that has shown promise in tasks like sound source
localization, speech enhancement, and source separation. Ambisonics is a full sphere surround sound
format that contains a speaker-independent sound field representation (B-format). First order B-
format ambisonic recordings contain components that correspond to the sound pressure captured by
an omnidirectional microphone (W) and sound pressure gradients X, Y, and Z that correspond to
front/back, left/right, and up/down captured by figure-of-eight capsules oriented along the three
spatial axes. 3-D SELD has applications in virtual reality, robotics, smart homes, and defense.

You will train two separate models for the sound event detection task and the localization task. Both
models are based on the convolutional recurrent neural network architecture described in [1] on
page 1-798. The sound event detection task is formulated as a classification task. The sound event
localization task estimates Cartesian coordinates of the sound source and is formulated as a
regression task. You use the L3DAS21 data set [2] on page 1-799 to train and validate the networks.
To explore the models trained in this example, see “3-D Sound Event Localization and Detection
Using Trained Recurrent Convolutional Neural Network” on page 1-809.

Download and Prepare Data

This example uses a subset of the L3DAS21 Task 2 challenge data set [2] on page 1-799. The data
set contains multiple-source and multiple-perspective (MSMP) B-format ambisonic audio recordings
collected at a sampling rate of 32 kHz. The train and validation splits are provided with the data set.
Each recording is one minute long and contains a simulated 3-D audio environment in which up to 3
simultaneous acoustic events may be active at the same time. In this example, you only use the data
that contains non-overlapping sounds. The sound events belong to 14 sound classes. The labels are
provided as csv files that contain the sound class, the Cartesian coordinates of the sound source, and
the onset and offset time stamps.

Download the dataset.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","L3DAS21_ov1.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
dataset = fullfile(dataFolder,"L3DAS21_ov1");

Optionally Reduce Data Set

To train the networks with the entire data set and achieve a reasonable performance, set
speedupExample to false. To run this example quickly, set speedupExample to true.

speedupExample = ;

Create Datastores

Create audioDatastore objects to ingest the data. Each data point in the data set consists of two B-
format ambisonic recordings that correspond to the two microphones (A and B). For each data folder
(train and validation), use subset to create two subsets corresponding to the two microphones.

adsTrain = audioDatastore(fullfile(dataset,"train","data"));
adsTrainA = subset(adsTrain,cellfun(@(c)endsWith(c,"A.wav"),adsTrain.Files));
adsTrainB = subset(adsTrain,cellfun(@(c)endsWith(c,"B.wav"),adsTrain.Files));

adsValidation = audioDatastore(fullfile(dataset,"validation","data"));
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adsValidationA = subset(adsValidation,cellfun(@(c)endsWith(c,"A.wav"),adsValidation.Files));
adsValidationB = subset(adsValidation,cellfun(@(c)endsWith(c,"B.wav"),adsValidation.Files));

Reduce the data set if requested.

if speedupExample
    adsTrainA = subset(adsTrainA,1:2);
    adsTrainB = subset(adsTrainB,1:2);
end

Inspect Data

Preview the ambisonic recordings and plot the data.

micA = preview(adsTrainA);
micB = preview(adsTrainB);

tiledlayout(4,2,TileSpacing="tight")

nexttile
plot(micA(:,1))
title("Microphone A")
ylabel("W")

nexttile
plot(micB(:,1))
title("Microphone B")

nexttile
plot(micA(:,2))
ylabel("X")

nexttile
plot(micB(:,2))

nexttile
plot(micA(:,3))
ylabel("Y")

nexttile
plot(micB(:,3))

nexttile
plot(micB(:,4))
ylabel("Z")

nexttile
plot(micB(:,4))
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Listen to a section of the data.

microphone = ;

channel = ;

duration = ;
fs = 32e3; % Known sampling rate of data.

s = [micA,micB];
data = s(1:round(duration*fs),channel + (microphone-1)*4);
sound(data,fs)

Create Targets

Each data point in the data set has a corresponding CSV file containing the sound event class, the
start and end times of the sound, and the location of the sound. Create a container to map between
the sound classes and integers.

keySet = ["Chink_and_clink","Computer_keyboard","Cupboard_open_or_close","Drawer_open_or_close", ...
    "Female_speech_and_woman_speaking","Finger_snapping","Keys_jangling","Knock","Laughter", ...
    "Male_speech_and_man_speaking","Printer","Scissors","Telephone","Writing"];
valueSet = {1,2,3,4,5,6,7,8,9,10,11,12,13,14};
params.SoundClasses = containers.Map(keySet,valueSet);
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Create a tabularTextDatastore to ingest the train file labels. Make sure the label files are in the
same order as the data files. Preview a label file from the datastore.

[folder,fn] = fileparts(adsTrainA.Files);
targetPath = fullfile(strrep(folder,filesep+"data",filesep+"labels"),"label_" + strrep(fn,"_A","") + ".csv");
ttdsTrain = tabularTextDatastore(targetPath);

labelTable = preview(ttdsTrain)

labelTable=8×7 table
    File     Start      End                     Class                     X       Y       Z  
    ____    _______    ______    ____________________________________    ____    ____    ____

     0      0.54784    9.6651    {'Writing'                         }     0.5    -1.5     0.3
     0       11.521    12.534    {'Finger_snapping'                 }    0.75    1.25      -1
     0       14.255    16.064    {'Keys_jangling'                   }     0.5    -1.5     0.3
     0       17.728    18.878    {'Chink_and_clink'                 }     0.5       1       0
     0        19.95      20.4    {'Printer'                         }    -1.5    -1.5    -0.6
     0       20.994    23.477    {'Cupboard_open_or_close'          }    -0.5    0.75       0
     0       25.032    25.723    {'Chink_and_clink'                 }      -2    -0.5    -0.3
     0       26.547    27.491    {'Female_speech_and_woman_speaking'}       1    -1.5       0

The labels in the dataset are provided with time stamps in seconds. To create targets and train a
network, you need to map the time stamps to frames. The total duration of each file is 60 seconds.
You will divide each file into 600 frames for the target, meaning the model will make a prediction
every 0.1 seconds.

params.Targets.TotalDuration = 60;
params.Targets.NumFrames = 600;

SED Targets

The supporting function, extractSEDTargets on page 1-799, uses the label data to create an SED
target. The target is a one-hot encoded matrix of size numframes-by-numclasses. Frames with no
sounds present are encoded as all-zero vectors.

SEDTargets = extractSEDTargets(labelTable,params);

[numframes,numclasses] = size(SEDTargets{1})

numframes = 600

numclasses = 14

Extract SED targets from the train and validation sets.

dsTTrain = transform(ttdsTrain,@(x)extractSEDTargets(x,params));
sedTTrain = readall(dsTTrain);

[folder,fn] = fileparts(adsValidationA.Files);
targetPath = fullfile(strrep(folder,filesep+"data",filesep+"labels"),"label_" + strrep(fn,"_A","") + ".csv");

ttdsValidation = tabularTextDatastore(targetPath);
dsTValidation = transform(ttdsValidation,@(x)extractSEDTargets(x,params));
sedTValidation = readall(dsTValidation);
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DOA Targets

The supporting function, extractDOATargets on page 1-799, uses the label data to create a DOA
target. The target is a matrix of size numframes-by-numaxis. The axis values correspond to the
sound source location in 3-D space. Frames with no sounds present are encoded as all-zero vectors.

First, define a parameter to scale the target axis values so that they are between -1 and 1. This
scaling is necessary because the DOA network you define later uses tanh activation as its final layer.

params.DOA.ScaleFactor = 2;
DOATargets = extractDOATargets(labelTable,params);

[numframes,numaxis] = size(DOATargets{1})

numframes = 600

numaxis = 3

Extract DOA targets from the train and validation sets.

dsTTrain = transform(ttdsTrain,@(x)extractDOATargets(x,params));
doaTTrain = readall(dsTTrain);

[folder,fn] = fileparts(adsValidationA.Files);
targetPath = fullfile(strrep(folder,filesep+"data",filesep+"labels"),"label_" + strrep(fn,"_A","") + ".csv");

ttdsValidation = tabularTextDatastore(targetPath);
dsTValidation = transform(ttdsValidation,@(x)extractDOATargets(x,params));
doaTValidation = readall(dsTValidation);

Sound Event Detection (SED)

Feature Extraction

The sound event detection model uses log-magnitude short-time Fourier transforms (STFT) as
predictors to the system. Specify a 512-point periodic Hamming window and a hop length of 400
samples.

params.SED.SampleRate = 32e3;
params.SED.HopLength = 400;
params.SED.Window = hamming(512,"periodic");

The supporting function, extractSTFT on page 1-800, takes a cell array of microphone readings and
extracts the half-sided centered log-magnitude STFTs. The STFT features corresponding to both
microphones are stacked along the third dimension.

stftFeats = extractSTFT({micA,micB},params);
[numfeaturesSED,numframesSED,numchannelsSED] = size(stftFeats)

numfeaturesSED = 256

numframesSED = 4800

numchannelsSED = 8

Plot the STFT features of one channel.

channel = ;

 Train 3-D Sound Event Localization and Detection (SELD) Using Deep Learning

1-787



figure
imagesc(stftFeats(:,:,channel))
colorbar
xlabel("Frame")
ylabel("Frequency (bin)")
set(gca,YDir="normal")

Extract features from the entire train and validation sets. First, combine the datastores
corresponding to microphones A and B. Then, define a transform on the datastore so that reading
from it returns the STFT. If you have Parallel Computing Toolbox™, you can speed up processing
using the UseParallel flag of readall.

pFlag = ~isempty(ver("parallel")) && ~speedupExample;

trainDS = combine(adsTrainA,adsTrainB);
trainDS_T = transform(trainDS,@(x){extractSTFT(x,params)},IncludeInfo=false);
XTrain = readall(trainDS_T,UseParallel=pFlag);
valDS = combine(adsValidationA,adsValidationB);
valDS_T = transform(valDS,@(x){extractSTFT(x,params)},IncludeInfo=false);
XValidation = readall(valDS_T,UseParallel=pFlag);

Combine the predictor arrays with the previously computed SED target arrays.

trainSedDS = combine(arrayDatastore(XTrain,OutputType="same"),arrayDatastore(sedTTrain,OutputType="same"));
valSedDS = combine(arrayDatastore(XValidation,OutputType="same"),arrayDatastore(sedTValidation,OutputType="same"));
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Training Options

Define training parameters for Adam optimization.

trainOptionsSED = struct( ...
    MaxEpochs=300, ...
    MiniBatchSize=4, ...
    InitialLearnRate=1e-5, ...
    GradientDecayFactor=0.01, ...
    SquaredGradientDecayFactor=0.0, ...
    ValidationPatience=25, ...
    LearnRateDropPeriod=100, ...
    LearnRateDropFactor=1);

if speedupExample
    trainOptionsSED.MaxEpochs = 1;
end

Create minibatchqueue (Deep Learning Toolbox) objects to read mini-batches from the train and
validation datastores.

trainSEDmbq = minibatchqueue(trainSedDS, ...
    MiniBatchSize=trainOptionsSED.MiniBatchSize, ...
    OutputAsDlarray=[1,1], ...
    MiniBatchFormat=["SSCB","TCB"], ...
    OutputEnvironment=["auto","auto"]);

validationSEDmbq = minibatchqueue(valSedDS, ...
    MiniBatchSize=trainOptionsSED.MiniBatchSize, ...
    OutputAsDlarray=[1,1], ...
    MiniBatchFormat=["SSCB","TCB"], ...
    OutputEnvironment=["auto","auto"]);

Define Sound Event Detection (SED) Network

The network is implemented in two stages - Convolutional Neural Network (CNN) and Gated
Recurrent Network (GRU). You will use a custom reshaping layer to recast the output of the CNN
model into a sequence and pass that as the input to the RNN model. The custom reshaping layer is
placed in your current folder when you open this example. The final output layer uses sigmoid
activation.

Define the CNN layers for the SED model.

seldnetCNNLayers = [
    imageInputLayer([numfeaturesSED,numframesSED,numchannelsSED],Normalization="none",Name="input")
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    convolution2dLayer([3,3],64,Padding="same",Name="conv1")
    batchNormalizationLayer(Name="batchnorm1")
    reluLayer(Name="relu1")
    maxPooling2dLayer([8,2],Stride=[8,2],Padding="same",Name="maxpool1")

    convolution2dLayer([3,3],128,Padding="same",Name="conv2")
    batchNormalizationLayer(Name="batchnorm2")
    reluLayer(Name="relu2")
    maxPooling2dLayer([8,2],Stride=[8,2],Padding="same",Name="maxpool2")

    convolution2dLayer([3,3],256,Padding="same",Name="conv3")
    batchNormalizationLayer(Name="batchnorm3")
    reluLayer(Name="relu3")
    maxPooling2dLayer([2,2],Stride=[2,2],Padding="same",Name="maxpool3")

    convolution2dLayer([3,3],512,Padding="same",Name="conv4")
    batchNormalizationLayer(Name="batchnorm4")
    reluLayer(Name="relu4")
    maxPooling2dLayer([1,1],Stride=[1,1],Padding="same",Name="maxpool4")

    reshapeLayer("reshape")
    ];
netCNN = dlnetwork(layerGraph(seldnetCNNLayers));

Define the RNN layers for the SED model.

seldnetGRULayers = [
    sequenceInputLayer(1024,Name="sequenceInputLayer")

    bigruLayer(1024,256,Name="gru1")
    bigruLayer(512,256,Name="gru2")
    bigruLayer(512,256,Name="gru3")

    fullyConnectedLayer(1024,Name="fc1")
    reluLayer(Name="relu1")
    fullyConnectedLayer(1024,Name="fc2")
    reluLayer(Name="relu2")
    fullyConnectedLayer(1024,Name="fc3")
    reluLayer(Name="relu3")

    fullyConnectedLayer(params.SoundClasses.Count,Name="fc4")
    sigmoidLayer(Name="output")
    ];

netRNN = dlnetwork(layerGraph(seldnetGRULayers));

Create a struct to contain both the CNN and RNN sections of the full model.

sedModel.CNN = netCNN;
sedModel.RNN = netRNN;

Train SED Network

Initialize variables to track the progress of the training.

iteration = 0;
averageGrad = [];
averageSqGrad = [];
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epoch = 0;
bestLoss = Inf;
badEpochs = 0;
learnRate = trainOptionsSED.InitialLearnRate;

To display training progress, initialize the supporting object progresPlotterSELD. The supporting
object, progressPlotterSELD, is placed in your current folder when you open this example.

pp = progressPlotterSELD();

Run the training loop.

rng(0)
while epoch < trainOptionsSED.MaxEpochs && badEpochs < trainOptionsSED.ValidationPatience
    
    epoch = epoch + 1;

    % Shuffle mini-batch queue.
    shuffle(trainSEDmbq)

    while hasdata(trainSEDmbq)

        % Update iteration counter.
        iteration = iteration + 1;

        % Read mini-batch of data.
        [X,T] = next(trainSEDmbq);

        % Evaluate the model gradients and loss using dlfeval and the modelLoss function.
        [loss,grad,state] = dlfeval(@modelLoss,sedModel,X,T);
        loss = loss/size(T,2);

        % Update state.
        sedModel.CNN.State = state.CNN;
        sedModel.RNN.State = state.RNN;

        % Update the network parameters using the Adam optimizer.
        [sedModel,averageGrad,averageSqGrad] = adamupdate(sedModel,grad,averageGrad, ...
            averageSqGrad,iteration,learnRate,trainOptionsSED.GradientDecayFactor,trainOptionsSED.SquaredGradientDecayFactor);

        % Update the training progress plot.
        updateTrainingProgress(pp,Epoch=epoch,LearnRate=learnRate,Iteration=iteration,Loss=loss);
    end

    % Perform validation after each epoch.
    loss = predictBatch(sedModel,validationSEDmbq);

    % Update the training progress plot with validation results.
    updateValidation(pp,Loss=loss,Iteration=iteration)

    % Create a checkpoint if the validation loss improved. If validation
    % loss did not improve, add to the number of bad epochs.
    if loss < bestLoss
        bestLoss = loss;
        badEpochs = 0;
        fileName = "SED-BestModel";
        save(fileName,"sedModel");
    else
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        badEpochs = badEpochs + 1;
    end

    % Update learn rate
    if rem(epoch,trainOptionsSED.LearnRateDropPeriod)==0
        learnRate = learnRate*trainOptionsSED.LearnRateDropFactor;
    end

end

Direction of Arrival (DOA)

Feature Extraction

The direction of arrival estimation model uses generalized cross correlation phase transform (GCC-
PHAT) as predictors to the system. Specify a 1024-point Hann window, a hop length of 400 samples,
and the number of bands as 96.

params.DOA.SampleRate = 32e3;
params.DOA.Window = hann(1024);
params.DOA.NumBands = 96;
params.DOA.HopLength = 400;

Extract the GCC-PHAT features used as input predictors to the sound localization network. The GCC-
PHAT algorithm measures the cross correlation between each pair of channels. The input signals
have a total of 8 channels, so the output has a total of 28 measurements.
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gccPhatFeats = extractGCCPHAT({micA,micB},params);
[numfeaturesDOA,timestepsDOA,numchannelsDOA] = size(gccPhatFeats)

numfeaturesDOA = 96

timestepsDOA = 4800

numchannelsDOA = 28

Plot the GCC-PHAT features of a channel pair.

channelpair = ;

figure
imagesc(gccPhatFeats(:,:,channelpair))
colorbar
xlabel("Frame")
ylabel("Band")
set(gca,YDir="normal")

Extract features from the entire train and validation sets. If you have Parallel Computing Toolbox™,
you can speed up processing using the UseParallel flag of readall.

pFlag = ~isempty(ver("parallel")) && ~speedupExample;
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trainDS = combine(adsTrainA,adsTrainB);
trainDS_T = transform(trainDS,@(x){extractGCCPHAT(x,params)},IncludeInfo=false);
XTrain = readall(trainDS_T,UseParallel=pFlag);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

valDS = combine(adsValidationA,adsValidationB);
valDS_T = transform(valDS,@(x){extractGCCPHAT(x,params)},IncludeInfo=false);
XValidation = readall(valDS_T,UseParallel=pFlag);

Combine the predictor arrays with the previously compute DOA target arrays.

trainDOA = combine(arrayDatastore(XTrain,OutputType="same"),arrayDatastore(doaTTrain,OutputType="same"));
validationDOA = combine(arrayDatastore(XValidation,OutputType="same"),arrayDatastore(doaTValidation,OutputType="same"));

Training Options

Use the same train options you defined when training the SED network.

trainOptionsDOA = trainOptionsSED;

Create mini-batch queues for the train and validation sets.

trainDOAmbq = minibatchqueue(trainDOA, ...
    MiniBatchSize=trainOptionsDOA.MiniBatchSize, ...
    OutputAsDlarray=[1,1], ...
    MiniBatchFormat=["SSCB","TCB"], ...
    OutputEnvironment=["auto","auto"]);
validationDOAmbq = minibatchqueue(validationDOA, ...
    MiniBatchSize=trainOptionsDOA.MiniBatchSize, ...
    OutputAsDlarray=[1,1], ...
    MiniBatchFormat=["SSCB","TCB"], ...
    OutputEnvironment=["auto","auto"]);

Define Direction of Arrival (DOA) Network

The DOA network is very similar to the SED network defined earlier. The key differences are the size
of the input layer and the final activation layer.

Update the SELDnet architecture used for the SED network for use with DOA estimation.

seldnetCNNLayers(1) = imageInputLayer([numfeaturesDOA,timestepsDOA,numchannelsDOA],Normalization="none",Name="input");
seldnetCNNLayers(5) = maxPooling2dLayer([3,2],Stride=[3,2],Padding="same",Name="maxpool1");
netCNN = dlnetwork(layerGraph(seldnetCNNLayers));

seldnetGRULayers(11) = fullyConnectedLayer(3,Name="fc4");
seldnetGRULayers(12) = tanhLayer(Name="output");
netRNN = dlnetwork(layerGraph(seldnetGRULayers));
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Create a struct to contain both the CNN and RNN sections of the full model.

doaModel.CNN = netCNN;
doaModel.RNN = netRNN;

Train DOA Network

Initialize variables used in the training loop.

iteration = 0;
averageGrad = [];
averageSqGrad = [];
epoch = 0;
bestLoss = Inf;
badEpochs = 0;
learnRate = trainOptionsDOA.InitialLearnRate;

To display training progress, initialize the supporting object progressPlotterSELD. The supporting
object, progressPlotterSELD, is placed in your current folder when you open this example.

pp = progressPlotterSELD();

Run the training loop.

rng(0)
while epoch < trainOptionsDOA.MaxEpochs && badEpochs < trainOptionsDOA.ValidationPatience
    
    epoch = epoch + 1;

    % Shuffle mini-batch queue.
    shuffle(trainDOAmbq)

    while hasdata(trainDOAmbq)

        % Update iteration counter.
        iteration = iteration + 1;

        % Read mini-batch of data.
        [X,T] = next(trainDOAmbq);

        % Evaluate the model gradients and loss using dlfeval and the modelLoss function.
        [loss,grad,state] = dlfeval(@modelLoss,doaModel,X,T);
        loss = loss/size(T,2);

        % Update state.
        doaModel.CNN.State = state.CNN;
        doModel.RNN.State = state.RNN;

        % Update the network parameters using the Adam optimizer.
        [doaModel,averageGrad,averageSqGrad] = adamupdate(doaModel,grad,averageGrad, ...
            averageSqGrad,iteration,learnRate,trainOptionsDOA.GradientDecayFactor,trainOptionsDOA.SquaredGradientDecayFactor);

        % Update the training progress plot
        updateTrainingProgress(pp,Epoch=epoch,LearnRate=learnRate,Iteration=iteration,Loss=loss);
    end

    % Perform validation after each epoch
    loss = predictBatch(doaModel,validationDOAmbq);
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    % Update the training progress plot with validation results.
    updateValidation(pp,Loss=loss,Iteration=iteration)

    % Create a checkpoint if the validation loss improved. If validation
    % loss did not improve, add to the number of bad epochs.
    if loss < bestLoss
        bestLoss = loss;
        badEpochs = 0;
        fileName = "DOA-BestModel";
        save(fileName,"doaModel");
    else
        badEpochs = badEpochs + 1;
    end

    % Update learn rate
    if rem(epoch,trainOptionsDOA.LearnRateDropPeriod)==0
        learnRate = learnRate*trainOptionsDOA.LearnRateDropFactor;
    end
end

Evaluate System Performance

To evaluate your system's performance, use the location-sensitive detection error defined in [4] on
page 1-799. Load the best-performing models.

sedModel = importdata("SED-BestModel.mat");
doaModel = importdata("DOA-BestModel.mat");
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Location-sensitive detection is a joint metric that evaluates the results of both sound event detection
and sound event localization tasks. In this type of evaluation, a true positive only occurs when the
predicted label is correct, and the predicted location is within a predefined threshold of the true
location. A threshold of 0.2 is used in this example which is about ~3% of the maximum possible
error. To determine regions of silence in the prediction, set a confidence threshold on SED decisions.
If the SED predictions are below that threshold, the frame is considered silence.

params.SpatialThreshold = 0.2;
params.SilenceThreshold = 0.1;

Compute the metrics for the validation data set using the computeMetrics on page 1-804
supporting function.

results = computeMetrics(sedModel,doaModel,validationSEDmbq,validationDOAmbq,params);
results

results = struct with fields:
    precision: 0.4246
       recall: 0.4275
      f1Score: 0.4261
       avgErr: 0.1861

The computeMetrics supporting function can optionally smooth the decisions over time before
evaluating the system. This option requires the Statistics and Machine Learning Toolbox™. Evaluate
the system again, this time including the smoothing.

[results,cm] = computeMetrics(sedModel,doaModel,validationSEDmbq,validationDOAmbq,params,ApplySmoothing=true);
results

results = struct with fields:
    precision: 0.5077
       recall: 0.5084
      f1Score: 0.5080
       avgErr: 0.1659

You can inspect the confusion matrix for SED predictions to get more insights on the prediction
errors. The confusion matrix is only calculated over regions where there is an active sound source.

figure(Position=[100 100 800 800]);
confusionchart(cm,keys(params.SoundClasses))
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Conclusion

For next steps, you can download and try out the pretrained models from this example in this second
example showing inference: “3-D Sound Event Localization and Detection Using Trained Recurrent
Convolutional Neural Network” on page 1-809.
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Supporting Functions

Extract Direction of Arrival (DOA) Targets

function T = extractDOATargets(csvFile,params)
%EXTRACTDOATARGETS Extract direction of arrival (DOA) targets
% T = extractDOATargets(fileName,params) parses the CSV file
% fileName and returns a matrix, T. The target matrix is an N-by-3
% matrix, where N corresponds to the number of frames and 3 corresponds to
% the 3 axes describing location in 3-D space.

% Preallocate target matrix. A frame of all zeros corresponds to no sound
% source.
T = zeros(params.Targets.NumFrames,3);

% Quantize the time stamps for sound sources into frames.
startendTime = [csvFile.Start,csvFile.End];
startendFrame = time2frame(startendTime,params.Targets.TotalDuration,params.Targets.NumFrames);

% For each sound source, fill the target matrix sound source location for
% the appropriate number of frames.
for ii = 1:size(startendFrame,1)
    idx = startendFrame(ii,1):startendFrame(ii,2)-1;
    T(idx,:) = repmat([csvFile.X(ii),csvFile.Y(ii),csvFile.Z(ii)],numel(idx),1);
end

% Scale the target so that it is between -1 and 1 (the bounds of the tanh
% activation layer). Wrap the target in a cell array for convenient batch
% processing.
T = {T/params.DOA.ScaleFactor};
end

Extract Sound Event Detection (SED) Targets
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function T = extractSEDTargets(csvFile,params)
%EXTRACTSEDTARGETS Extract sound event detection (SED) targets
% T = extractSEDTargets(fileName,params) parses the CSV file
% fileName and returns a matrix of SED targets, T. The target matrix is an N-by-K
% matrix, where N corresponds to the number of frames and K corresponds to
% the number of sound classes.

% Preallocate target matrix. A frame of all zeros corresponds to no sound
% source.
T = zeros(params.Targets.NumFrames,params.SoundClasses.Count);

% Quantize the time stamps for sound sources into frames.
startendTime = [csvFile.Start,csvFile.End];
startendFrame = time2frame(startendTime,params.Targets.TotalDuration,params.Targets.NumFrames);

% For each sound source, fill the appropriate column of the target matrix
% with a 1, indicating that the sound class is present in that frame.
for ii = 1:size(startendFrame,1)
    classID = params.SoundClasses(csvFile.Class{ii});
    T(startendFrame(ii,1):startendFrame(ii,2)-1,classID) = 1;
end

% Wrap the target in a cell array for convenient batch processing.
T = {T};
end

Short-Time Fourier Transform (STFT)

function X = extractSTFT(s,params)
%EXTRACTSTFT Extract log-magnitude of centered STFT
% X = extractSTFT({s1,s2},params) concatenates s1 and s2 and then
% extracts the one-sided log-magnitude STFT. The signals are padded before
% the STFT so that the first window is centered on the first sample. The
% output is trimmed to remove the 1st (DC) coefficient and the last
% spectrum. The input params defines the STFT.

% Concatenate the signals along the second (channel) dimension.
audio = cat(2,s{:});

% Extract the centered STFT.
N = numel(params.SED.Window);
overlapLength = N - params.SED.HopLength;
S = centeredSTFT(audio,params.SED.Window,overlapLength,N);

% Trim the 1st coefficient from all spectrums and trim the last spectrum.
S = S(2:end,1:end-1,:);

% Convert to log-magnitude. Use an offset to protect against log of zero.
mag = log(abs(S) + eps);

% Cast output to single precision.
X = single(mag);
end
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Generalized Cross Correlation with Phase Transform (GCC-PHAT)

function X = extractGCCPHAT(s,params)
%EXTRACTGCCPHAT Extract generalized cross correlation phase transform (GCC-PHAT) features
% X = extractGCCPHAT({s1,s2},params) concatenates s1 and s2 and then
% extracts the GCC-PHAT for all pairs of channels.

% Concatenate the signals corresponding to the two microphones.
audio = cat(2,s{:});

% Count the total number of input channels.
nChan = size(audio,2);

% Calculate the total number of output channels.
numOutputChannels = nchoosek(nChan,2);

% Preallocate a NumFeatures-by-NumFrames-by-NumChannels feature (predictor)
% matrix.
numFrames = size(audio,1)/params.DOA.HopLength;
X = zeros(params.DOA.NumBands,numFrames,numOutputChannels);

% -----------------------------------
% Calculate GCC-PHAT for each pair of channels.
% Precompute STFT for each channel.
N = numel(params.DOA.Window);
overlapLength = N - params.DOA.HopLength;
micAB_stft = centeredSTFT(audio,params.DOA.Window,overlapLength,N);
conjmicAB_stft = conj(micAB_stft(:,:,2:end));
idx = 1;
for ii = 1:nChan - 1
    R = micAB_stft(:,:,ii).*conjmicAB_stft(:,:,ii:end);
    R = exp(1i .* angle(R));
    R = padarray(R, N/2 - 1,"post");
    gcc = fftshift(ifft(R,[],1,"symmetric"),1);
    X(:,:,idx:idx+size(R,3)-1) = gcc(floor(N/2+1 - (params.DOA.NumBands-1)/2):floor(N/2+1 + (params.DOA.NumBands-1)/2),1:end-1,:);

    idx = idx + size(R,3);
end
% -----------------------------------

% Cast output to single precision.
X = single(X);

end

Centered Short-Time Fourier Transform (STFT)

function s = centeredSTFT(audio,win,overlapLength,fftLength)
%CENTEREDSTFT Centered STFT
% s = centeredSTFT(audioIn,win,overlapLength,fftLength) computes an STFT
% with the first window centered around the first sample. The two ends are
% padded with the reflected audio signal.

% Pad front and back of input signal.
firstR = flip(audio(1:fftLength/2,:),1);
lastR = flip(audio(end - fftLength/2 + 1:end,:),1);
sig = cat(1,firstR,audio,lastR);
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% Perform STFT.
s = stft(sig,Window=win,OverlapLength=overlapLength,FFTLength=fftLength,FrequencyRange="onesided");

end

Convert Time Stamp to Frame Number
function fnum = time2frame(t,dur,numFrames)
%TIME2FRAME Convert time stamp to frame number
% fnum = time2frame(t,dur,numFrames) maps the times t, which exist in dur,
% to a frame number if dur is divided into numFrames.

stp = dur/numFrames;

qt = round(t./stp).*stp;

fnum = floor(qt*(numFrames - 1)/dur) + 1;

end

Forward Pass Through CNN and RNN Networks
function [loss,cnnState,rnnState,Y3]  = forwardAll(model,X,T)
%FORWARDALL Forward pass of model through CNN and RNN networks
% [loss,cnnState,rnnState] = forwardAll(model,X,T) passes the predictors X
% through the model and returns the loss and the states of the networks in
% the model. The model is a struct containing a CNN network and an RNN
% network.
%
% [loss,cnnState,rnnState,Y] = forwardAll(model,X,T) also returns the final
% prediction of the model Y.

% Pass predictors through CNN.
[Y1,cnnState] = forward(model.CNN,X);

% Label the dimensions output from the CNN for consumption by the RNN.
Y2 = dlarray(Y1,"TCUB");

% Pass the predictors through the RNN.
[Y3,rnnState] = forward(model.RNN,Y2);

% Calculate the loss.
loss = seldNetLoss(Y3,T);

end

Full Model Prediction
function [loss,Y3]  = predictAll(model,X,T)
%PREDICTALL Model prediction through CNN and RNN networks
% [loss,prediction] = predictAll(model,X,T) passes the predictors X through
% the model and returns the loss and the model prediction. The model is a
% struct containing a CNN network and an RNN network.

% Pass predictors through CNN.
Y1 = predict(model.CNN,X);

% Label the dimensions output from the CNN for consumption by the RNN.
Y2 = dlarray(Y1,"TCUB");
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% Pass the predictors through the RNN.
Y3 = predict(model.RNN,Y2);

% Calculate the loss.
loss = seldNetLoss(Y3,T);

end

Predict Batch

function loss = predictBatch(model,mbq)
%PREDICTBATCH Calculate the loss of mini-batch queue
% loss = predictBatch(model,mbq) returns the total loss calculated by
% passing the entire contents of the mini-batch queue through the model.

% Reset mini-batch queue and initialize counters.
reset(mbq)
loss = 0;
n = 0;

while hasdata(mbq)

    % Read the predictors and targets from mini-batch queue.
    [X,T] = next(mbq);

    % Pass the mini-batch through the model and calculate the loss.
    lss = predictAll(model,X,T);
    lss = lss/size(T,2);

    % Update the total loss.
    loss = loss + lss;

    % Sum number of datapoints.
    n = n + 1;

end

% Divide the total loss accumulated by the number of mini-batches.
loss = loss/n;

end

Compute Model Loss, Gradients, and Network States

function [loss,gradients,state] = modelLoss(model,X,T)
%MODELLOSS Compute model loss, gradients, and network states
% [loss,gradients,state] = modelLoss(model,X,T) passes the
% predictors X through the model and returns the loss, the gradients, and
% the states of the networks in the model. The model is a struct containing
% a CNN network and an RNN network.

% Pass the predictors through the model.
[loss,cnnState,rnnState] = forwardAll(model,X,T);

% Isolate the learnables.
allGrad.CNN = model.CNN.Learnables;
allGrad.RNN = model.RNN.Learnables;
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state.CNN = cnnState;
state.RNN = rnnState;

% Calculate the gradients.
gradients = dlgradient(loss,allGrad);

end

Loss Function of SELDnet
function loss = seldNetLoss(Y,T)
%SELDNETLOSS Compute the SELDnet loss function for DOA or SED models
% loss = seldNetLoss(Y,T) returns the SELDnet loss given predictions Y and
% targets T. The loss function depends on the network (DOA or SED). The
% network is inferred by the dimensions of the target. For the DOA network,
% the loss function is mean-squared error. For the SED network, the loss
% function is crossentropy.

% Determine whether the targets correspond to the DOA network or SED
% network.
isDOAModel = size(T,find(dims(T)=='C'))==3;

if isDOAModel
    % Calculate MSE loss.
    doaLoss = mse(Y,T);
    doaLossFactor = 2 / (size(Y,1) * size(Y,3));
    loss = doaLoss * doaLossFactor; % To align with the original implementation
else
    % Calculate cross-entropy loss.
    loss = crossentropy(Y,T,TargetCategories="independent",NormalizationFactor="all-elements");
end

loss = loss * size(T,2);

end

Compute Performance Metrics

function [r,cm] = computeMetrics(sedModel,doaModel,sedMBQ,doaMBQ,params,nvargs)
%COMPUTEMETRICS Compute performance metrics
% [r,cm] = computeMetrics(sedModel,doaModel,sedMBQ,doaMBW,params) returns
% a struct of performance metrics calculated over the SED and DOA
% validation mini-batch queues, and a confusion matrix cm valid SED
% regions.
arguments
    sedModel
    doaModel
    sedMBQ
    doaMBQ
    params
    nvargs.ApplySmoothing = false;
end

% Initialize counters.
TP = 0;
FP = 0;
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FN = 0;
it = 0;
ct = 0;
err = 0;

sedYAll = [];
sedTAll = [];

% Loop over all the data.
reset(sedMBQ)
reset(doaMBQ)
while hasdata(sedMBQ)

    % Get the predictors, targets, and predictions for the SED model.
    [sedXb,sedTb] = next(sedMBQ);
    [~,sedYb]  = predictAll(sedModel,sedXb,sedTb);
    sedTb = extractdata(gather(sedTb));
    sedYb = extractdata(gather(sedYb));

    % Get the predictors, targets, and predictions for the DOA model.
    [doaXb,doaTb] = next(doaMBQ);
    [~,doaYb]  = predictAll(doaModel,doaXb,doaTb);
    doaTb = extractdata(gather(doaTb));
    doaYb = extractdata(gather(doaYb));
    doaYb = doaYb*params.DOA.ScaleFactor;
    doaTb = doaTb*params.DOA.ScaleFactor;

    % Loop over the mini-batches.
    for batch = 1:size(sedYb,2)

        % Isolate the predictors and targets for current data point.
        sedY = squeeze(sedYb(:,batch,:));
        sedT = squeeze(sedTb(:,batch,:));
        doaY = squeeze(doaYb(:,batch,:));
        doaT = squeeze(doaTb(:,batch,:));

        % If the SED predictions of a frame are all made with low
        % confidence (beneath a threshold), assume that there is no sound
        % source present.
        isActive = ~(sum(double(sedY<params.SilenceThreshold),1)==size(sedY,1));

        % Convert the SED predictors and targets from one-hot vectors to
        % scalars.
        [~,sedY] = max(sedY,[],1);
        sedY = sedY.*isActive;

        [isActive,sedT] = max(sedT,[],1);
        sedT = sedT.*isActive;

        % Smooth outputs.
        if nvargs.ApplySmoothing
            [doaY,sedY] = smoothOutputs(doaY,sedY,params);
        end

        % Perform location-sensitive detection.
        [tp,fp,fn,e,c] = locationSensitiveDetection(sedY,sedT,doaY,doaT,params);
        
        % Accumulate performance metrics.
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        TP = TP + tp;
        FP = FP + fp;
        FN = FN + fn;
        err = err + e;
        ct = ct + c;

        sedYAll = [sedYAll sedY.*isActive]; %#ok<AGROW> 
        sedTAll = [sedTAll sedT.*isActive]; %#ok<AGROW> 
    end
    it = it + 1;
end

% Calculate performance metrics.
r.precision =  TP/(TP + FP + eps);
r.recall = TP / (TP + FN + eps);
r.f1Score = 2*(r.precision*r.recall)/(r.precision + r.recall + eps);
r.avgErr = err/ct;

% Calculate confusion matrix.
confmat = confusionmat(sedTAll,single(sedYAll),Order=0:14);
cm = confmat(2:end,2:end); % Remove the silence from the confusion matrix.
end

Location Sensitive Detection

function [TP,FP,FN,totErr,ct] = locationSensitiveDetection(sedY,sedT,doaY,doaT,params)
%LOCATIONSENSITIVEDETECTION Location sensitive detection
% [TP,FP,FN,totErr,ct] =
% locationSensitiveDetection(sedY,sedT,doaY,doaT,params) calculates the
% true positive, false positive, false negative, DOA total error, and
% number of active targets. The definitions of each metric are provided in
% [4].

% Calculate distance.
dist = vecnorm(doaY-doaT);

% Determine if sounds active for reference and predictions.
isReferenceActive = sedT~=0;
isPredictedActive = sedY~=0;

% Calculate the total DOA error for reference-active sections.
totErr = sum(dist.*isReferenceActive);

% Count total number of active targets.
ct = sum(isReferenceActive);

% Determine if the DOA is within threshold per frame.
isDOAnear = dist < params.SpatialThreshold;

% True positive: 
TP = sum(isDOAnear & isReferenceActive & isPredictedActive & (sedT==sedY));

% False positive: 
FP1 = sum(~isReferenceActive & isPredictedActive);
FP2 = sum(isReferenceActive & isPredictedActive & (sedT~=sedY | ~isDOAnear));
FP = FP1 + FP2;

% False negative:
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FN1 = sum(isReferenceActive & ~isPredictedActive);
FN2 = sum(isReferenceActive & (sedT~=sedY | ~isDOAnear));
FN = FN1 + FN2;

end

Smooth Outputs

function [doaYSmooth,sedYSmooth] = smoothOutputs(doaY,sedY,params)
%SMOOTHOUTPUTS Smooth DOA and SED predictions over time
% [doaYSmooth,sedYSmooth] = smoothOutputs(doaY,sedY,params) smooths the DOA
% and SED predictions over time.

% Preallocate smoothed outputs.
doaYSmooth = doaY;
sedYSmooth = sedY;

% Cluster the DOA predictions.
clusters = clusterdata(doaY',Criterion="distance",Cutoff=params.SpatialThreshold);
stt = 1;
enn = 1;

while enn <= params.Targets.NumFrames

    if clusters(stt) == clusters(enn)
        enn = enn + 1;
    else
        doaYSmooth(:,stt:enn-1) = smoothDOA(doaY(:,stt:enn-1));
        sedYSmooth(:,stt:enn-1) = smoothSED(sedY(:,stt:enn-1));
        stt = enn;
    end

end

doaYSmooth(:,stt:enn-1) = smoothDOA(doaY(:,stt:enn-1));
sedYSmooth(:,stt:enn-1) = smoothSED(sedY(:,stt:enn-1));

sedYSmooth = round(movmedian(sedYSmooth,5));

end

Smooth DOA Prediction

function smoothed = smoothDOA(chunk)
%SMOOTHDOA Smooth DOA prediction
% smoothed = smoothDOA(chunk) smooths DOA predictions by replacing the
% values of each axis with the mean of that axis in the chunk. The mean is
% calculated after discarding the lower and upper quarters of data.

% Determine the length of the chunk, and then indices to cut out the middle
% half of the data.
chlen = size(chunk,2);
st = max(round(chlen*1/4),1);
en = max(round(chlen*3/4),1);

% Sort the spatial axes (columns).
dim = sort(chunk,2);
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% Take the mean of the inner half.
smoothed = repmat(mean(dim(:,st:en),2),1,chlen);

end

Smooth SED Prediction

function smoothed = smoothSED(chunk)
%SMOOTHSED Smooth SED prediction
% smoothed = smoothSED(chunk) smooths SED predictions using the mode.

smoothed = repmat(mode(chunk),1,size(chunk,2));

end
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3-D Sound Event Localization and Detection Using Trained
Recurrent Convolutional Neural Network

In this example, you perform 3-D sound event localization and detection (SELD) using a pretrained
deep learning model. For details about the model and how it was trained, see “Train 3-D Sound Event
Localization and Detection (SELD) Using Deep Learning” on page 1-782. The SELD model uses two
B-format ambisonic audio recordings to detect the presence and location of one of 14 sound classes
commonly found in an office environment.

Download Pretrained Network

Download the pretrained SELD network, ambisonic test files, and labels. The model architecture is
based on [1] on page 1-822 and [3] on page 1-822. The data the model was trained on, the labels,
and the ambisonic test files, are provided as part of the L3DAS21 challenge [2] on page 1-822.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","SELDmodel.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
netFolder = fullfile(dataFolder,"SELDmodel");
addpath(netFolder)

Load and Inspect Data

Load the ambisonic data. First order B-format ambisonic recordings contain components that
correspond to the sound pressure captured by an omnidirectional microphone (W) and sound
pressure gradients X, Y, and Z that correspond to front/back, left/right, and up/down captured by
figure-of-eight capsules oriented along the three spatial axes.

[micA,fs] = audioread("micA.wav");
micB = audioread("micB.wav");

Listen to a section of the data.

microphone = ;

channel = ;

start = ;

stop = ;
s = [micA,micB];
data = s(round(start*fs):round(stop*fs),channel+(microphone-1)*4);
sound(data,fs)

Plot the waveforms.

plotAmbisonics(micA,micB)
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Use the supporting function, getLabels, to load the ground truth labels associated with the sound
event detection (SED) and direction of arrival (DOA).

[sedLabels,doaLabels] = getLabels();

sedLabels is a T-by-1 vector of keys over time, where the values map to one of 14 possible sound
classes. A key of zero indicates a region of silence. The 14 possible sound classes are chink/clink,
keyboard, cupboard, drawer, female speech, finger snapping, keys jangling, knock, laughter, male
speech, printer, scissors, telephone, and writing.

sedLabels

sedLabels = 600×1 single column vector

     0
     0
     0
     0
     0
     0
     0
     0
     0
     0

1 Audio Toolbox Examples

1-810



      ⋮

soundClasses = getSoundClasses();
soundClasses(sedLabels+1)

ans = 1×600 categorical
     Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Cupboard      Cupboard      Cupboard      Cupboard      Cupboard      Cupboard      Cupboard      Cupboard      Cupboard      Cupboard      Cupboard      Cupboard      Silence      Silence      Silence      Silence      Silence      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Keys      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Female      Female      Female      Female      Female      Female      Female      Female      Female      Female      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Scissors      Scissors      Scissors      Scissors      Scissors      Scissors      Scissors      Scissors      Scissors      Scissors      Scissors      Scissors      Scissors      Silence      Silence      Silence      Silence      Silence      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Knock      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Writing      Writing      Writing      Writing      Writing      Writing      Writing      Writing      Writing      Writing      Writing      Writing      Writing      Writing      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Keyboard      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Silence      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Drawer      Silence      Silence      Silence      Silence      Silence      Silence 

doaLabels is a T-by-3 matrix where T is the number of time steps and 3 corresponds to the X, Y, and
Z axes in 3-D space.

doaLabels

doaLabels = 600×3

     0     0     0
     0     0     0
     0     0     0
     0     0     0
     0     0     0
     0     0     0
     0     0     0
     0     0     0
     0     0     0
     0     0     0
      ⋮

In both cases, the 60-second ground truth has been discretized into 600 time steps.

Perform 3-D Sound Event Localization and Detection (SELD)

Use the supporting object, seldModel, to perform SELD. The object encapsulates the SELD model
developed in “Train 3-D Sound Event Localization and Detection (SELD) Using Deep Learning” on
page 1-782. Create the model, then call seld on the ambisonic data to detect and localize sound in
time and space.

If you have Statistics and Machine Learning Toolbox™, the model applies smoothing to the decisions
using moving averages and clustering.

model = seldModel();
[sed,doa] = seld(model,micA,micB);

To visualize the system's performance over time, call the supporting function plot2d on page 1-816.

plot2d(sedLabels,doaLabels,sed,doa)
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To visualize the system's performance in three spatial dimensions, call the supporting function plot3d
on page 1-817. You can move the slider to visualize sound event locations detected at different
times. The ground truth source location is identified by a semi-transparent sphere. The predicted
source location is identified by a circle connected to the original by a dotted line.

plot3d(sedLabels,doaLabels,sed,doa);
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SELD is a 4D problem, in that you are localizing the sound source in 3-D space and 1D time. To
examine the system's performance in 4D, call the supporting function plot4d on page 1-821. The
plot4d function plays the 3-D plot and corresponding ambisonic recording over time.

plot4d(micA(:,1),sedLabels,doaLabels,sed,doa)
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Supporting Functions

Plot Ambisonics

function plotAmbisonics(micA,micB)
%PLOTAMBISONICS Plot B-format ambisonics over time
% plotAmbisonics(micA,micB) plots the ambisonic recordings collected from
% micA and micB. The channels are plotted along the rows of a 4-by-2 tiled
% layout (W,X,Y,Z). The first column of the plot corresponds to data from
% microphone A and the second column corresponds to data from microphone B.

figure(1)
tiledlayout(4,2,TileSpacing="tight")

t = linspace(0,60,size(micA,1));
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nexttile
plot(t,micA(:,1))
title("Microphone A")
yL = ylabel("W",FontWeight="bold");
set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")
axis([t(1),t(end),-0.2,0.2])
set(gca,Xticklabel=[])

nexttile
plot(t,micB(:,1))
title("Microphone B")
axis([t(1),t(end),-0.2,0.2])
set(gca,Yticklabel=[],XtickLabel=[])

nexttile
plot(t,micA(:,2))
yL = ylabel("X",FontWeight="bold");
set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")
axis([t(1),t(end),-0.2,0.2])
set(gca,Xticklabel=[])

nexttile
plot(t,micB(:,2))
axis([t(1),t(end),-0.2,0.2])
set(gca,Yticklabel=[],XtickLabel=[])

nexttile
plot(t,micA(:,3))
yL = ylabel("Y",FontWeight="bold");
set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")
axis([t(1),t(end),-0.2,0.2])
set(gca,Xticklabel=[])

nexttile
plot(t,micB(:,3))
axis([t(1),t(end),-0.2,0.2])
set(gca,Yticklabel=[],XtickLabel=[])

nexttile
plot(t,micB(:,4))
yL = ylabel("Z",FontWeight="bold");
set(yL,Rotation=0)
axis([t(1),t(end),-0.2,0.2])
xlabel("Time (s)")

nexttile
plot(t,micB(:,4))
axis([t(1),t(end),-0.2,0.2])
set(gca,Yticklabel=[])
xlabel("Time (s)")
end

Plot Time Series

function plotTimeSeries(sed,values)
%PLOTTIMESERIES Plot time series
% plotTimeSeries(sed,values) is leveraged by plot2d to plot the color-coded
% SED or DOA estimation.
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colors = getColors();
hold on
for ii = 1:numel(sed)
    cls = sed(ii);
    if cls > 0
        x = [ii-1,ii];
        y = repelem(values(ii),2);
        plot(x,y,Color=colors{cls},LineWidth=8)
    end
end
hold off
grid on
end

Plot 2D

function plot2d(sedLabels,doaLabels,sed,doa)
%PLOT2D Plot 2D
% plot2d(sedLabels,doaLabels,sed,doa) creates plots for SED, SED ground
% truth, DOA estimation, and DOA ground truth.

fh = figure(2);
set(fh,Position=[100 100 800 800])

SoundClasses = ["Clink","Keyboard","Cupboard","Drawer","Female","Fingers Snap", ...
    "Keys","Knock","Laughter","Male","Printer","Scissors","Telephone","Writing"];

tiledlayout(5,2,TileSpacing="tight")

nexttile([2,1])
plotTimeSeries(sedLabels,sedLabels);
yticks(1:14)
yticklabels(SoundClasses)
ylim([0.5,14.5])
ylabel("Class")
title("Ground Truth")
set(gca,Xticklabel=[])

nexttile([2,1])
plotTimeSeries(sed,sed);
yticks(1:14)
ylim([0.5,14.5])
title("Prediction")
set(gca,Yticklabel=[],XtickLabel=[])

nexttile
plotTimeSeries(sedLabels,doaLabels(:,1));
yL = ylabel("X",FontWeight="bold");
set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")
set(gca,Xticklabel=[])

nexttile
plotTimeSeries(sed,doa(:,1));
set(gca,Yticklabel=[],XtickLabel=[])
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nexttile
plotTimeSeries(sedLabels,doaLabels(:,2));
yL = ylabel("Y",FontWeight="bold");
set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")
set(gca,Xticklabel=[])

nexttile
plotTimeSeries(sed,doa(:,2));
set(gca,Yticklabel=[],XtickLabel=[])

nexttile
plotTimeSeries(sedLabels,doaLabels(:,3));
xlabel("Frame")
yL = ylabel("Z",FontWeight="bold");
set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")

nexttile
plotTimeSeries(sed,doa(:,3));
xlabel("Frame")
set(gca,YtickLabel=[])

end

Plot 3-D

function data = plot3d(sedLabels,doaLabels,sed,doa,nvargs)
%PLOT3D Plot 3-D
% plot3d(sedLabels,doaLabels,sed,doa) creates a 3-dimensional plot with a
% slider. Moving the slider moves the frame in the plot. The location of
% the recording is located at the origin. The location of a sound event is
% noted by a semi-transparent orb. The location of the estimated sound
% event is noted by a filled circle connected to the origin by a line. The
% estimated sound event class and the true sound event class for the
% current frame are displayed on the plot.
%
% plot3d(sedLabels,doaLabels,sed,doa,IncludeSlider=false) creates a 3-D plot
% but does not add the slider and associated callback. This format of the
% plot is leveraged by plot4d.

arguments
    sedLabels
    doaLabels
    sed
    doa
    nvargs.IncludeSlider = true;
end

% Create data struct to contain plot information.
data.sedLabels = sedLabels;
data.doaLabels = doaLabels;
data.sed = sed;
data.doa = doa;
data.Colors = getColors();
data.SoundClasses = ["Clink","Keyboard","Cupboard","Drawer","Female","Fingers Snap", ...
    "Keys","Knock","Laughter","Male","Printer","Scissors","Telephone","Writing"];
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% Create figure.
if nvargs.IncludeSlider
    data.FigureHandle = figure(3);
else
    data.FigureHandle = figure(4);
end
set(data.FigureHandle,Position=[680,400,640,580],Color="k",MenuBar="none",Toolbar="none")

% Initialize plot.
data = initialize3DPlot(data);

% Add slider for 3-D plot.
if nvargs.IncludeSlider
    N = numel(data.sedLabels);
    frame = 1/N;
    b = uicontrol(Parent=data.FigureHandle,Style="slider",Position=[40,20,570,20], ...
        value=frame*80,min=1/N,max=1,units="pixel", ...
        SliderStep=[1/N,20/N]);
    cbk = @(es,ed)update3DPlot(es.Value,data);
    addlistener(b,ContinuousValueChange=cbk);
end

end

Initialize 3-D Plot

function data = initialize3DPlot(data)
%INITIALIZE3DPLOT Initialize 3-D plot
% data = initialize3DPlot(data) creates the 3-D plot and initializes lines,
% dots, and surfaces that are included in the plot. data is appended to
% include handles for figure properties.

% Make sure the figure is visible.
data.FigureHandle.Visible = "on";

% Initialize the line plot that connects origin to predicted location.
data.YPlot = plot3([0,1],[0,1],[0,1],":",Color="k",LineWidth=1.5);
hold on
data.YPlot.Visible = "off";

% Initialize the dot plot that marks the predicted location.
data.YPlotDot = plot3(0,0,0,"o",MarkerSize=8,MarkerEdgeColor="k",LineWidth=2,MarkerFaceColor="k");
data.YPlotDot.Visible = "off";

% Initialize the sphere that marks the target location.
[x,y,z] = sphere;
data.TPlotDot = surf(x,y,z,FaceAlpha=0.2,EdgeColor="none",FaceColor="b");
data.TPlotDot.Visible = "off";

% Create a sphere to mark the origin. This is where the ambisonic
% microphones are located.
light
[X,Y,Z] = sphere(8);
surf(X*0.15,Y*0.15,Z*0.15,FaceColor=[0.3010 0.7450 0.9330],LineWidth=0.25);

% Create 'walls' on the 3-D plot to aid 3-D visualization.
patch([2.2,2.2,2.2,2.2],[2.2,2.2,-2.2,-2.2],[-2.2,2.2,2.2,-2.2],[3,2,1,2],FaceAlpha=0.5,FaceColor="interp");
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patch([2.2,2.2,-2.2,-2.2],[2.2,2.2,2.2,2.2],[-2.2,2.2,2.2,-2.2],[3,2,1,2],FaceAlpha=0.5,FaceColor="interp")
patch([2.2,2.2,-2.2,-2.2],[2.2,-2.2,-2.2,2.2],[-2.2,-2.2,-2.2,-2.2],[3,2,1,2],FaceAlpha=0.5,FaceColor="interp")

% Create guidelines on the 3-D plot to aid 3-D visualization.
plot3([0,0],[0,0],[-2.2,0])
plot3([0,0],[2.2,0],[0,0])
plot3([2.2,0],[0,0],[0,0])

% Set axes limits.
xlim([-2,2])
ylim([-2,2])
zlim([-2,2])

% Add axis labels.
xlabel("X",Color=[0,0.4470,0.7410]);
ylabel("Y",Color=[0,0.4470,0.7410]);
zlabel("Z",Color=[0,0.4470,0.7410],Rotation=0);
set(gca,XColor=[0,0.4470,0.7410],YColor=[0,0.4470,0.7410],ZColor=[0,0.4470,0.7410])

% Initialize annotations for the ground truth and predicted labels.
annotation("textbox",[0.4,0.2,0.6,0.1],String="Ground Truth: ",FitBoxToText="on",Color="k",EdgeColor="none",FontWeight="bold");
annotation("textbox",[0.4,0.17,0.4,0.1],String="Prediction: ",FitBoxToText="on",Color="k",EdgeColor="none",FontWeight="bold");
data.GTAnnotation = annotation("textbox",[0.55,0.2,0.6,0.1],String=" ",FitBoxToText="on",Color="k",EdgeColor="none",FontWeight="bold");
data.PredictedAnnotation = annotation("textbox",[0.55,0.17,0.4,0.1],String=" ",FitBoxToText="on",Color="k",EdgeColor="none",FontWeight="bold");

grid on
grid minor
axis equal
hold off
end

Update 3-D Plot

function update3DPlot(timeFrame,data)
%UPDATE3DPLOT Update 3-D Plot
% update3DPlot(timeFrame,data) updates the 3-D plot to display data
% corresponding to the specified time frame.

timeFrame = round(timeFrame*numel(data.sedLabels));

if data.sedLabels(timeFrame) > 0
    % Turn plot visibility on.
    data.TPlotDot.Visible = "on";
    data.GTAnnotation.Visible = "on";

    % Get the current target sound class.
    gtClass = data.SoundClasses{data.sedLabels(timeFrame)};

    % Get current location coordinates and SED color code.
    doa = data.doaLabels(timeFrame,:);
    tcol = data.Colors{data.sedLabels(timeFrame)};

    % Update target sphere.
    [x,y,z] = sphere;
    r = 0.2;
    data.TPlotDot.XData = x*r + doa(1);
    data.TPlotDot.YData = y*r + doa(2);
    data.TPlotDot.ZData = z*r + doa(3);
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    data.TPlotDot.FaceColor = tcol;
    data.TPlotDot.MarkerEdgeColor = tcol;
else
     % Turn plot visibility off.
    data.TPlotDot.Visible = "off";
    data.GTAnnotation.Visible = "off";

    % Set the current target sound class to silence and color-code as
    % black.
    gtClass = "Silence";
    tcol = "k";
end

if data.sed(timeFrame) > 0
    % Turn plot visibility on.
    data.PredictedAnnotation.Visible = "on";
    data.YPlot.Visible = "on";
    data.YPlotDot.Visible = "on";

    % Get the current predicted sound class.
    pClass = data.SoundClasses{data.sed(timeFrame)};
    
    % Get current location coordinates and SED color code.
    doa = data.doa(timeFrame,:);
    pcol = data.Colors{data.sed(timeFrame)};

    % Update prediction line.
    data.YPlot.XData = [0,doa(1)];
    data.YPlot.YData = [0,doa(2)];
    data.YPlot.ZData = [0,doa(3)];
    data.YPlot.Color = pcol;

    % Update the prediction dot.
    data.YPlotDot.XData = doa(1);
    data.YPlotDot.YData = doa(2);
    data.YPlotDot.ZData = doa(3);
    data.YPlotDot.Color = pcol;
    data.YPlotDot.MarkerEdgeColor = pcol;
    data.YPlotDot.MarkerFaceColor = pcol;
else
    % Turn plot visibility off.
    data.YPlot.Visible = "off";
    data.YPlotDot.Visible = "off";
    data.PredictedAnnotation.Visible = "off";

    % Set the current predicted sound class to silence and color-code as
    % black.
    pClass = "Silence";
    pcol = "k";
end

% Update the annotation strings and color code them.
if isequal(tcol,pcol)
    col = 'b';
else
    col = 'r';
end
data.GTAnnotation.String = gtClass;
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data.GTAnnotation.Color = col;
data.PredictedAnnotation.String = pClass;
data.PredictedAnnotation.Color = col;

drawnow
end

Plot 4D

function plot4d(audioToPlay,sedLabels,doaLabels,sed,doa)
%PLOT4D Plot 4D
% plot4d(audioToPlay,sedLabels,doaLabels,sed,doa) creates a "movie" of
% ground truth and estimated sound events in a 3-D environment over time.
% The movie runs in real time and plays the audioToPlay to your default
% sound device.

% Create an audioDeviceWriter object to play streaming audio.
adw = audioDeviceWriter(SampleRate=32e3);

% Create and fill a dsp.AsyncBuffer to read chunks of audio data.
buff = dsp.AsyncBuffer(size(audioToPlay,1));
write(buff,audioToPlay);

% Create a 3-D plot without a slider.
data = plot3d(sedLabels,doaLabels,sed,doa,IncludeSlider=false);

drawnow

% The true and predicted label definitions have resolutions of 0.1 seconds. Create a
% labels vector to only update the 3-D plot when necessary.
changepoints = 0.1:0.1:60;

% Initialize counters.
idx = 1;
elapsedTime = 0;

% Loop while audio data is unread.
while buff.NumUnreadSamples~=0

    % Update a plot if a changepoint is reached.
    if elapsedTime>changepoints(idx)
        update3DPlot(idx/600,data)
        idx = idx+1;
    end
    
    % Write a chunk of data to your sound card.
    adw(read(buff,400));

    % Push the elapsed time forward.
    elapsedTime = elapsedTime + 400/32e3;
end

end
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Get Colors

function colors = getColors()
%GETCOLORS Get colors
% colors = getColors() returns a cell array of 14 unique colors.

% Define 14 colors to color-code the sound classes.
colors = {[0,0.4470,0.7410],[0.8500,0.3250,0.0980],[0.9290,0.6940,0.1250],[0.4940,0.1840,0.5560], ...
    [0.4660 0.6740 0.1880],[0.3010 0.7450 0.9330],[0.6350 0.0780 0.1840],[0.2,1,1],[0.6,0,0.6], ...
    [0.6,0.6,0],[0.6,0.3,0],[0,0.4,0.2],[0.2,0,0.4],[1,0.6,0.6]};
end

Get Sound Classes

function soundClasses = getSoundClasses()
%GETSOUNDCLASSES Get map between sound classes (keys) and values.

soundClasses = categorical(["Silence","Clink","Keyboard","Cupboard","Drawer","Female","Fingers Snap", ...
    "Keys","Knock","Laughter","Male","Printer","Scissors","Telephone","Writing"]);
end
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Import Audacity Labels to Signal Labeler

This example shows how to import labels created in Audacity™ into Signal Labeler.

Read Labels in MATLAB

You have an audio file consisting of a human voice uttering "Volume up" several times.

Load the audio file to the MATLAB® workspace.

audioFile = "speaker1.ogg";
[x,fs] = audioread(audioFile);
sound(x,fs)

You label the file in Audacity [1] and export the labels to speaker.txt.

Read the labels using readtable. The labels consist of three columns corresponding to the speech
utterances along with their respective start and end times (in seconds).

labelFile = "speaker1.txt";
roiTable = readtable(labelFile,Delimiter="tab");
roiTable.Properties.VariableNames = ["StartTime","EndTime","Value"]

roiTable=6×3 table
    StartTime    EndTime        Value    
    _________    _______    _____________

     0.33273     0.74033    {'Volume up'}
      1.2062      1.8716    {'Volume up'}
      2.6785       3.111    {'Volume up'}
      3.7432      4.4087    {'Volume'   }
      4.7331      5.0243    {'Up'       }
      5.4984      5.9809    {'Volume up'}

In order to gain insight into the labels, you plot the audio signal along with a mask corresponding to
labeled regions of speech.

Convert the signal regions of interest to a binary mask.

mask=signalMask(table(roiTable{:,1:2},categorical(roiTable{:,3})),SampleRate=fs);
plotsigroi(mask, x, true);
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Convert Labels to a Labeled Signal Set

Next, convert the label data to a labeledSignalSet that can be imported to Signal Labeler.

First, define the label type. Specify "roi" (Region of interest) for the label type, and "string" for
the label datatype.

labelName = "Speech";
lblDef = signalLabelDefinition(string(labelName),...
                               LabelType="roi",...
                               LabelDataType="string");

Next, create a labeledSignalSet pointing to the labeled audio file. Add the label definition to the
labeled signal set.

lss = labeledSignalSet(audioDatastore(audioFile),lblDef);

Set the label values.

roiLimits = [roiTable.StartTime roiTable.EndTime];
setLabelValue(lss,1,labelName,roiLimits,string(roiTable.Value));

Load Labels in Signal Labeler

You are now ready to read these labels into Signal Labeler.

1) Open signalLabeler

1 Audio Toolbox Examples

1-824



2) Click Import, then From Workspace, and import lss.

The audio signal is now available to you along with its labels.

Import a Labeled Dataset

The helper function importLabels creates a labeled signal set corresponding to labels for multiple
audio files. In this example, you work with two audio files with labels stored in text files.

Call importLabels to create a signal data set for multiple annotated files. Specify the label name as
"Speech".

lss = importLabels("Speech");

You can now load lss in SignalLabeler by following the same steps from the previous section.

function lss = importLabels(labelName)
% IMPORTLABELS Import labels from multiple audio file
%
% The function assumes the labels are stored in *.txt files
% The function assumes the label file name is identical to the 
% audio file name.

labelFiles = dir("*.txt");
labelFiles = {labelFiles.name};
numFiles = length(labelFiles);
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% Create an audio datastore pointing to all audio files in the current
% folder
ads = audioDatastore(pwd);

lss = labeledSignalSet(ads);
lblDef = signalLabelDefinition(string(labelName),...
    LabelType="roi",...
    LabelDataType="string");
addLabelDefinitions(lss,lblDef)

for index0=1:numFiles
    filename = labelFiles{index0};
    roiTable = readtable(filename,Delimiter="tab");
    roiTable.Properties.VariableNames = ["StartTime","EndTime","Value"];
    roiLimits = [roiTable.StartTime roiTable.EndTime];
    setLabelValue(lss,index0,labelName,roiLimits,roiTable.Value);
end
end
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Room Impulse Response Simulation with the Image-Source
Method and HRTF Interpolation

Room impulse response simulation aims to model the reverberant properties of a space without
having to perform acoustic measurements. Many geometric and wave-based room acoustic simulation
methods exist in the literature [1] on page 1-837. The image-source method is a popular and
relatively straightforward geometric method [2] on page 1-838. It models the specular reflections
between a transmitter and a receiver.

This example showcases the image-source method for a simple "shoebox" (cuboid) room. The example
also uses head-related transfer function (HRTF) interpolation to simulate the received sound at the
ears of the listener.

Define Room Parameters

You simulate the impulse response of a shoebox empty room.

Define the room dimensions, in meters (width, length and height, respectively).

roomDimensions = [4 4 2.5];

You treat the receiver and transmitter as points within the space of the room. Define their
coordinates, in meters.

receiverCoord = [2 1 1.8];
sourceCoord = [3 1 1.8];

Plot the room space along with the receiver (red circle) and transmitter (blue x).

h = figure;
plotRoom(roomDimensions,receiverCoord,sourceCoord,h)
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The Image-Source Method

Image-source is a geometric simulation method that models specular sound reflection paths between
the source and receiver. It assumes that sound travels in straight lines (rays) which undergo perfect
reflections when they encounter an obstacle (in our case, one of the four walls, the floor, or the
ceiling of the room).

When a sound ray hits a wall, it spawns a mirrored "image" source. The image source is the
symmetrical reflection of the original source with respect to the encountered boundary. Higher-order
reflections (rays that reach the receiver after bouncing off multiple obstacles) are modeled by
repeating the mirroring process with respect to each encountered obstacle.

As an example, consider the ray that bounces off two walls and the floor before arriving at the
receiver. Define the coordinates of the equivalent image for this ray.

imageSource = [-sourceCoord(1) -sourceCoord(2) -sourceCoord(3)];

The ray is modeled by the straight line connecting the image to the receiver. The length of this
straight line is equal to the traveled distance from the original source to the receiver along the
reflected ray.

Visualize the image-source and the resulting path.

plot3(imageSource(1),imageSource(2),imageSource(3),"gx",LineWidth=2)
plot3([imageSource(1) receiverCoord(1)], ...
      [imageSource(2) receiverCoord(2)], ...
      [imageSource(3) receiverCoord(3)],Color="k",LineWidth=2)
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Visualize Multiple Images

To calculate the room impulse response, add the contributions of a large number of source images.

Extend the visible space around the room to ensure the images appear in the plot.

h2 = figure;

plotRoom(roomDimensions,receiverCoord,sourceCoord,h2)

Lx = roomDimensions(1); 
Ly = roomDimensions(2);
Lz = roomDimensions(3);

xlim([-3*Lx,3*Lx]);
ylim([-3*Ly,3*Ly]);
zlim([-3*Lz,3*Lz]);
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Visualize a subset of the source images. Compute the image coordinates based on equations 6 and 7
in [2].

Model the eight combinations stemming from possible reflections along the x-, y- and z- axes.

x = sourceCoord(1);
y = sourceCoord(2);
z = sourceCoord(3);
sourceXYZ = [-x -y -z;...
             -x -y  z;...
             -x  y -z;...
             -x  y  z;...
              x -y -z;...
              x -y  z;...
              x  y -z;...
              x  y  z].';

Model scenarios with multiple reflections by looping over the x-, y- and z- axes. These loops have
infinite ranges in theory. You will see how to practically limit the ranges in the next section. For now,
select arbitrary limits for the loops.

% Increase the range to plot more images
nVect = -2:2;
lVect = -2:2;
mVect = -2:2;

for n = nVect
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    for l = lVect
        for m = mVect
            xyz = [n*2*Lx; l*2*Ly; m*2*Lz];
            isourceCoords = xyz - sourceXYZ;
            for kk=1:8
                isourceCoord=isourceCoords(:,kk);
                plot3(isourceCoord(1),isourceCoord(2),isourceCoord(3),"g*")
            end 
        end
    end
end

Restricting the Number of Simulated Images

The number of images is theoretically infinite. Restrict the number of images by limiting the
computed impulse response length to the time by which the reverberated sound pressure drops
below a certain level. Here, you use the reverberation time RT60 [3] on page 1-838, which is the
time by which the sound level has dropped by 60 dB.

You use Sabine's formula to calculate RT60.

Define Wall Absorption Coefficients

First, define the absorption coefficients of the walls. The absorption coefficient is a measure of how
much sound is absorbed (rather than reflected) when hitting a surface.

The absorption coefficients are frequency-dependent, and are defined at the frequencies defined in
the variable FVect [4] on page 1-838.
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FVect = [125 250 500 1000 2000 4000];

A = [0.10 0.20 0.40 0.60 0.50 0.60;...
    0.10 0.20 0.40 0.60 0.50 0.60;...
    0.10 0.20 0.40 0.60 0.50 0.60;...
    0.10 0.20 0.40 0.60 0.50 0.60;...
    0.02 0.03 0.03 0.03 0.04 0.07;...
    0.02 0.03 0.03 0.03 0.04 0.07].';

Estimate RT60

Compute RT60 based on Sabine's formula.

First, compute the room's volume.

V = Lx*Ly*Lz;

Next, compute the total wall surface area of the room.

WallXZ = Lx*Lz;
WallYZ = Ly*Lz;
WallXY = Lx*Ly;

Compute the frequency-dependent effective absorbing area of the room surfaces.

S = WallYZ*(A(:,1)+A(:,2))+WallXZ.*(A(:,3)+A(:,4))+WallXY.*(A(:,5)+A(:,6));

Compute the frequency-dependent RT60, in seconds, based on Sabine's equation. Notice that RT60 is
frequency-dependent: There are 6 different RT60 values, one for each frequency band.

c  = 343; % Speed of sound (m/s)
RT60 = (55.25/c)*V./S

RT60 = 6×1

    1.3886
    0.7191
    0.3799
    0.2581
    0.3028
    0.2455

Deduce the maximum impulse response length (in samples) based on the largest value in RT60.
Assume a sample rate of 48 kHz.

fs = 48000;
impResLength = fix(max(RT60)*fs)

impResLength = 66653

Express the maximum range of the impulse response in meters.

impResRange=c*(1/fs)*impResLength

impResRange = 476.2912

Use this value to limit the range over which to compute images. In this example, to limit the run time,
you restrict the loop ranges to [-10;10].
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nMax = min(ceil(impResRange./(2.*Lx)),10);
lMax = min(ceil(impResRange./(2.*Ly)),10);
mMax = min(ceil(impResRange./(2.*Lz)),10);

Derive Contribution of One Image

In this section, you derive the contribution of one image to the room impulse response.

You later obtain the full room impulse response by summing the contributions of all images under
consideration.

Derive the pressure reflection coefficients from the absorption coefficients.

B=sqrt(1-A);

Store the reflection coefficients for each wall in a separate variable.

BX1=B(:,1);
BX2=B(:,2); 
BY1=B(:,3); 
BY2=B(:,4); 
BZ1=B(:,5); 
BZ2=B(:,6);

Model the eight permutations representing the absence or presence of reflection on the x-, y-, and z-
axes.

surface_coeff=[0 0 0; 0 0 1; 0 1 0; 0 1 1; 1 0 0; 1 0 1; 1 1 0; 1 1 1];
q = surface_coeff(:,1).'; 
j = surface_coeff(:,2).';
k = surface_coeff(:,3).'; 

In this section, you focus on the contribution of a single image. Select index values corresponding to
an arbitrary image.

n = 1;
l = 1;
m = 1;
p = 1;

Compute Image Delay

The contribution of each image is defined by two values:

• Delay: The time it takes the signal to reach the receiver.
• Power: The (frequency-dependent) energy level of the signal when it reaches the receiver.

You start by computing the image delay. The delay is related to the total distance traveled by the
wave from the image to the receiver.

Get the coordinates of the image.

isourceCoord = [n*2*Lx; l*2*Ly; m*2*Lz] - sourceXYZ(:,p);

Calculate the delay (in samples) at which the contribution occurs.

dist = norm((isourceCoord(:)-receiverCoord(:)),2);
delay = (fs/c).*dist;
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Compute Image Power

Now compute the frequency-dependent magnitude of the contribution.

ImagePower = BX1.^abs(n-q(p)).*BY1.^abs(l-j(p)).*BZ1.^abs(m-k(p)).*BX2.^abs(n).*(BY2.^abs(l)).*(BZ2.^abs(m));

Derive Image Contribution

The image power is only defined at 6 frequencies. Here, you first interpolate the response to the
entire frequency (Nyquist) range, and then perform an inverse FFT operation to derive the image's
contribution to the impulse response.

Extend the energy level to incorporate zero and Nyquist frequencies.

FVect2=[0 FVect fs/2]';
ImagePower2 = [ImagePower(1); ImagePower(:); ImagePower(6)];

In this example, use an FFT length of 512.

FFTLength = 512; 
HalfLength = fix(FFTLength./2);
OneSidedLength = HalfLength+1;

Interpolate the response to the entire frequency range.

ImagePower2 = interp1(FVect2./(fs/2),ImagePower2,linspace(0,1,257)).';

Convert the response to two-sided.

ImagePower2 = [ImagePower2; conj(ImagePower2(HalfLength:-1:2))];

Convert the frequency response to the time-based contribution of the image.

h_ImagePower = real(ifft(ImagePower2,FFTLength));

Smooth the response by applying a Hann window.

win = hann(FFTLength+1);
h_ImagePower = win.*[h_ImagePower(OneSidedLength:FFTLength); ...
                     h_ImagePower(1:OneSidedLength)];

HRTF Modeling

You have derived the image's contribution to the impulse response, where you assumed that the
receiver is a point in space. Here, you derive the image's contribution at the ears of a listener located
at the receiver coordinates by using 3-D head-related transfer function (HRTF) interpolation.

You use the ARI HRTF data set [5] on page 1-838. Load the data set.

ARIDataset = load("ReferenceHRTF.mat");

Express the hrtfData as an array of size (Number of source measurements) × 2 × (Sample
lengths).

hrtfData = permute(ARIDataset.hrtfData,[2 3 1]);
sourcePosition = ARIDataset.sourcePosition(:,[1 2]);
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Calculate the elevation and azimuth corresponding to the coordinates of the image source.

sensor_xyz=receiverCoord;
xyz=isourceCoord-sensor_xyz;
hyp = sqrt(xyz(1)^2+xyz(2)^2); 
elevation = atan(xyz(3)./(hyp+eps)); 
azimuth = atan2(xyz(2),xyz(1));

The desired HRTF position is formed by the computed elevation and azimuth.

desiredPosition = [azimuth elevation]*180/pi;

Calculate the HRTF at the desired position.

interpolatedIR  = interpolateHRTF(hrtfData,sourcePosition,desiredPosition);
interpolatedIR = squeeze(permute(interpolatedIR,[3 2 1]));

Incorporate the HRTF into the response using convolution.

interpolatedIR = [interpolatedIR; zeros(512,2)]; 
h = [];
h(:,1) = filter(h_ImagePower,1,interpolatedIR(:,1)); 
h(:,2) = filter(h_ImagePower,1,interpolatedIR(:,2)); 

Plot the overall contribution of the selected image. This contribution is added to the overall impulse
response at the computed image delay.

figure
plot(1:size(h,1),h)
grid on
xlabel("Sample Index")
ylabel("Impulse Response")
legend("Left","Right")
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Compute The Impulse Response

In this section, you compute the overall impulse response by summing the contributions of individual
images. The contribution of each image is computed exactly like in the previous section.

The helper function HelperImageSource encapsulates the steps you went over in the previous
section. It computes the impulse response by summing image contributions.

useHRTF = true;
h = HelperImageSource(roomDimensions,receiverCoord,sourceCoord,A,FVect,fs,useHRTF,hrtfData,sourcePosition);

Starting parallel pool (parpool) using the 'Processes' profile ...
Connected to the parallel pool (number of workers: 12).

Visualize Impulse Response

Plot the impulse response.

figure
t= (1/fs)*(0:size(h,1)-1);
plot(t,h)
grid on
xlabel("Time (s)")
ylabel("Impulse Response")
legend("Left","Right")

1 Audio Toolbox Examples

1-836



Auralization

Apply the impulse response to an audio signal.

Load an audio signal.

[audioIn,fs] = audioread("FunkyDrums-44p1-stereo-25secs.mp3");
audioIn = audioIn(:,1);

Simulate the received audio by filtering with the impulse response.

y1 = filter(h(:,1),1,audioIn);
y2 = filter(h(:,2),1,audioIn);
y = [y1 y2];

Listen to a few seconds of the original audio.

T = 10;
sound(audioIn(1:fs*T),fs)
pause(T)

Listen to a few seconds of the received audio.

sound(y(1:fs*T),fs);
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Helper Functions

function plotRoom(roomDimensions,receiverCoord,sourceCoord,figHandle)
% PLOTROOM Plot room, transmitter and receiver

figure(figHandle)
X = [0;roomDimensions(1);roomDimensions(1);0;0];
Y = [0;0;roomDimensions(2);roomDimensions(2);0];
Z = [0;0;0;0;0];
figure;
hold on;
plot3(X,Y,Z,"k","LineWidth",1.5);   % draw a square in the xy plane with z = 0
plot3(X,Y,Z+roomDimensions(3),"k","LineWidth",1.5); % draw a square in the xy plane with z = 1
set(gca,"View",[-28,35]); % set the azimuth and elevation of the plot
for k=1:length(X)-1
    plot3([X(k);X(k)],[Y(k);Y(k)],[0;roomDimensions(3)],"k","LineWidth",1.5);
end
grid on
xlabel("X (m)")
ylabel("Y (m)")
zlabel("Z (m)")
plot3(sourceCoord(1),sourceCoord(2),sourceCoord(3),"bx","LineWidth",2)
plot3(receiverCoord(1),receiverCoord(2),receiverCoord(3),"ro","LineWidth",2)
end

function h = HelperImageSource(roomDimensions,receiverCoord, ....
                    sourceCoord,A,FVect,fs,useHRTF,varargin)
% HELPERIMAGESOURCE Estimate impulse response of shoebox room
% roomDimensions: Room dimensions, specified as a row vector with three
%                 values.
% receiverCoord: Receiver coordinates, specified as a row vector with 3
%                values
% sourceCoord: Source coordinates, specified as a row vector with 3
%              values
% A:  Wall absorption coefficient matrix, specified as a L-by-6 matrix,
%     where L is the number of frequency bands.
% FVect: Vector of frequencies, of length L.
% fs: Sampling rate, in Hertz
% useHRTF: Specify as true to use HRTF interpolation
% hrtfData: Specify is useHRTF is true
%sourcePosition: Specify is useHRTF is true
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hrtfData = [];
sourcePosition = [];
if useHRTF
    hrtfData = varargin{1};
    sourcePosition = varargin{2};
end

x = sourceCoord(1);
y = sourceCoord(2);
z = sourceCoord(3);
sourceXYZ = [-x -y -z; ...
             -x -y  z; ...
             -x  y -z; ...
             -x  y  z; ...
              x -y -z; ...
              x -y  z; ...
              x  y -z; ...
              x  y  z].';

Lx=roomDimensions(1); 
Ly=roomDimensions(2);
Lz=roomDimensions(3);

V = Lx*Ly*Lz;

WallXZ=Lx*Lz;
WallYZ=Ly*Lz;
WallXY=Lx*Ly;

S = WallYZ*(A(:,1)+A(:,2))+WallXZ.*(A(:,3)+A(:,4))+WallXY.*(A(:,5)+A(:,6));

c  = 343; % Speed of sound (m/s)
RT60 = (55.25/c)*V./S;

impResLength = fix(max(RT60)*fs);

impResRange=c*(1/fs)*impResLength;

nMax = min(ceil(impResRange./(2.*Lx)),10);
lMax = min(ceil(impResRange./(2.*Ly)),10);
mMax = min(ceil(impResRange./(2.*Lz)),10);

B=sqrt(1-A);

BX1=B(:,1);
BX2=B(:,2); 
BY1=B(:,3); 
BY2=B(:,4); 
BZ1=B(:,5); 
BZ2=B(:,6);

surface_coeff=[0 0 0; 0 0 1; 0 1 0; 0 1 1; 1 0 0; 1 0 1; 1 1 0; 1 1 1];
q=surface_coeff(:,1).'; 
j=surface_coeff(:,2).';
k=surface_coeff(:,3).'; 

FFTLength=512; 
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HalfLength=fix(FFTLength./2);
OneSidedLength = HalfLength+1;
win = hann(FFTLength+1);

FVect2=[0 FVect fs/2]';

h = zeros(impResLength,2);

for n=-nMax:nMax
    Lxn2=n*2*Lx;
    for l=-lMax:lMax
        Lyl2=l*2*Ly;

       if useHRTF
            imagesVals = zeros(FFTLength+size(hrtfData,3),2,2*lMax+1,8);
       else
           imagesVals = zeros(FFTLength+1,2,2*lMax+1,8);
       end

        Li = size(imagesVals,1);
        isDelayValid = zeros(2*lMax+1,8);
        start_index_HpV = zeros(2*lMax+1,8);
        stop_index_HpV = zeros(2*lMax+1,8);
        start_index_hV = zeros(2*lMax+1,8);

        parfor mInd=1:2*mMax+1

            m = mInd - mMax - 1;

            Lzm2=m*2*Lz;
            xyz = [Lxn2; Lyl2; Lzm2];

            isourceCoordV=xyz - sourceXYZ;
            xyzV = isourceCoordV - receiverCoord.';
            distV = sqrt(sum(xyzV.^2));
            delayV = (fs/c)*distV;

            ImagePower = BX1.^abs(n-q).*BY1.^abs(l-j).*BZ1.^abs(m-k).*BX2.^abs(n).*(BY2.^abs(l)).*(BZ2.^abs(m));
            ImagePower2 = [ImagePower(1,:); ImagePower; ImagePower(6,:)];

            ImagePower2 = ImagePower2./distV;

            validDelay = delayV<= impResLength;

            if sum(validDelay)==0
                continue;
            end

            isDelayValid(mInd,:) = validDelay;

            ImagePower2 = interp1(FVect2./(fs/2),ImagePower2,linspace(0,1,257));
            if isrow(ImagePower2)
                ImagePower2 = ImagePower2.';
            end
            ImagePower3 = [ImagePower2; conj(ImagePower2(HalfLength:-1:2,:))];

            h_ImagePower = real(ifft(ImagePower3,FFTLength));
            h_ImagePower = [h_ImagePower(OneSidedLength:FFTLength,:); h_ImagePower(1:OneSidedLength,:)];
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            h_ImagePower = win.*h_ImagePower;

            if useHRTF
                hyp = sqrt(xyzV(1,:).^2+xyzV(2,:).^2);
                elevation = atan(xyzV(3,:)./(hyp+realmin));
                azimuth = atan2(xyzV(2,:),xyzV(1,:));

                desiredPosition = [azimuth.',elevation.']*180/pi;

                interpolatedIR  = interpolateHRTF(hrtfData,sourcePosition,desiredPosition,"Algorithm","VBAP");
                interpolatedIR = squeeze(permute(interpolatedIR,[3 2 1]));

                pad_ImagePower = zeros(512,2);

                for index=1:8
                    hrir0 = interpolatedIR(:,:,index);
                    hrir_ext=[hrir0; pad_ImagePower];
                    for ear=1:2
                        imagesVals(:,ear,mInd,index)=filter(h_ImagePower(:,index),1,hrir_ext(:,ear));
                    end
                end
            else
                for index=1:8
                    for ear=1:2
                        imagesVals(:,ear,mInd,index)=h_ImagePower(:,index);
                    end
                end
            end

            adjust_delay = round(delayV) - (fix(FFTLength/2))+1;

            len_h=Li;
            start_index_HpV(mInd,:) = max(adjust_delay+1+(adjust_delay>=0),1);
            stop_index_HpV(mInd,:) = min(adjust_delay+1+len_h,impResLength);
            start_index_hV(mInd,:) = max(-adjust_delay,1);

        end
        stop_index_hV = start_index_hV + (stop_index_HpV - start_index_HpV);

        for index2=1:size(imagesVals,3)
            for index3=1:8
                if isDelayValid(index2,index3)
                    h(start_index_HpV(index2,index3):stop_index_HpV(index2,index3),:)= h(start_index_HpV(index2,index3):stop_index_HpV(index2,index3),:) + squeeze(imagesVals(start_index_hV(index2,index3):stop_index_hV(index2,index3),:,index2,index3));
                end
            end
        end

    end
end

h = h./max(abs(h));
end
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Room Impulse Response Simulation with Stochastic Ray
Tracing

Room impulse response simulation aims to model the reverberant properties of a space without
having to perform acoustic measurements. Many geometric and wave-based room acoustic simulation
methods exist in the literature [1] on page 1-850.

The image-source method is a popular geometric method (for an example, see “Room Impulse
Response Simulation with the Image-Source Method and HRTF Interpolation” on page 1-827). One
drawback of the image-source method is that it only models specular reflections between a
transmitter and a receiver. There are other geometric methods that address this limitation by also
taking sound diffusion and diffraction into account. Stochastic ray tracing is one such method.

This example showcases a stochastic ray tracing method for a simple "shoebox" (cuboid) room.

Stochastic Ray Tracing Overview

Ray tracing assumes that sound energy travels around the room in rays. The rays start at the sound
source, and are emitted in all directions, following a uniform random distribution. In this example,
you follow (trace) rays as they bounce off obstacles (walls, floor and ceiling) in the room. At each ray
reflection, you compute the measured ray energy at the receiver. You use the measured energy to
update a frequency-dependent histogram. You then compute the room impulse response by weighting
a Poisson random process by the histogram values [2] on page 1-850.

Define Room Parameters

Simulate the impulse response of the shoebox empty room.

Define the room dimensions, in meters (width, length, and height, respectively).

roomDimensions = [10 8 4];

Treat the transmitter as a point within the space of the room. Assume that the receiver is a sphere
with radius 8.75 cm.

sourceCoord = [2 2 2];
receiverCoord = [5 5 1.8];
r = 0.0875;

Plot the room space along with the receiver (red circle) and transmitter (blue x).

h = figure;
plotRoom(roomDimensions,receiverCoord,sourceCoord,h)
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Generate Random Rays

First, generate rays emanating from the source in random directions.

Set the number of rays.

N = 5000;

Generate the rays using the helper function RandSampleSphere. rays is a N-by-3 matrix. Each row
of rays holds the three-dimensional ray vector direction.

rng(0)
rays = RandSampleSphere(N);
size(rays)

ans = 1×2

        5000           3

Define Reflection and Scattering Coefficients

A sound ray is reflected when it hits a surface. The reflection is a combination of a specular
component and a diffused component. The relative strength of each component is determined by the
reflection and scattering coefficients of the surfaces.

Define the absorption coefficients of the walls. The absorption coefficient is a measure of how much
sound is absorbed (rather than reflected) when hitting a surface.
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The frequency-dependent absorption coefficients are defined at the frequencies in the variable FVect
[4] on page 1-851.

FVect = [125 250 500 1000 2000 4000];

A = [0.08 0.09 0.12 0.16 0.22 0.24;
    0.08 0.09 0.12 0.16 0.22 0.24;
    0.08 0.09 0.12 0.16 0.22 0.24;
    0.08 0.09 0.12 0.16 0.22 0.24;
    0.08 0.09 0.12 0.16 0.22 0.24;
    0.08 0.09 0.12 0.16 0.22 0.24].';

Derive the reflection coefficients of the six surfaces from the absorption coefficients.

R = sqrt(1-A);

Define the frequency-dependent scattering coefficients [5] on page 1-851. The scattering coefficient
is defined as one minus the ratio between the specularly reflected acoustic energy and the total
reflected acoustic energy.

D = [0.05 0.3 0.7 0.9 0.92 0.94;
     0.05 0.3 0.7 0.9 0.92 0.94; 
     0.05 0.3 0.7 0.9 0.92 0.94; 
     0.05 0.3 0.7 0.9 0.92 0.94; 
     0.01 0.05 0.1 0.2 0.3 0.5;
     0.01 0.05 0.1 0.2 0.3 0.5];

Initialize Energy Histogram

As you trace the rays, you update a two-dimensional histogram of the energy detected at the receiver.
The histogram records values along time and frequency.

Set the histogram time resolution, in seconds. The time resolution is typically much larger than the
inverse of the audio sample rate.

histTimeStep = 0.0010;

Compute the number of histogram time bins. In this example, limit the impulse response length to
one second.

impResTime = 1;
nTBins = round(impResTime/histTimeStep);

The ray tracing algorithm is frequency-selective. In this example, focus on six frequency bands,
centered around the frequencies in FVect.

The number of frequency bins in the histogram is equal to the number of frequency bands.

nFBins = length(FVect);

Initialize the histogram.

TFHist = zeros(nTBins,nFBins);

Perform Ray Tracing

Compute the received energy histogram by tracing the rays over each frequency band. When a ray
hits a surface, record the amount of diffused ray energy seen at the receiver based on the diffused
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rain model [2] on page 1-850. The new ray direction upon hitting a surface is a combination of a
specular reflection and a random reflection. Continue tracing the ray until its travel time exceeds the
impulse response duration.

for iBand = 1:nFBins
    % Perform ray tracing independently for each frequency band.
    for iRay = 1:size(rays,1)
        % Select ray direction
        ray = rays(iRay,:);
        % All rays start at the source/transmitter
        ray_xyz = sourceCoord;
        % Set initial ray direction. This direction changes as the ray is
        % reflected off surfaces.
        ray_dxyz = ray;
        % Initialize ray travel time. Ray tracing is terminated when the
        % travel time exceeds the impulse response length.
        ray_time = 0;
        % Initialize the ray energy to a normalized value of 1. Energy
        % decreases when the ray hits a surface.
        ray_energy = 1;

        while (ray_time <= impResTime)

            % Determine the surface that the ray encounters
            [surfaceofimpact,displacement] = getImpactWall(ray_xyz,...
                                             ray_dxyz,roomDimensions);
            
            % Determine the distance traveled by the ray
            distance = sqrt(sum(displacement.^2));

            % Determine the coordinates of the impact point
            impactCoord = ray_xyz+displacement;

            % Update ray location/source
            ray_xyz = impactCoord;

            % Update cumulative ray travel time
            c = 343; % speed of light (m/s)
            ray_time = ray_time+distance/c;

            % Apply surface reflection to ray's energy
            % This is the amount of energy that is not lost through
            % absorption.
            ray_energy = ray_energy*R(surfaceofimpact,iBand);

            % Apply diffuse reflection to ray energy
            % This is the fraction of energy used to determine what is
            % detected at the receiver
            rayrecv_energy = ray_energy*D(surfaceofimpact,iBand);

            % Determine impact point-to-receiver direction.
            rayrecvvector = receiverCoord-impactCoord;

            % Determine the ray's time of arrival at receiver.
            distance = sqrt(sum(rayrecvvector.*rayrecvvector));
            recv_timeofarrival = ray_time+distance/c;

            if recv_timeofarrival>impResTime
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                break
            end

            % Determine amount of diffuse energy that reaches the receiver.
            % See (5.20) in [2].

            % Compute received energy
            N = getWallNormalVector(surfaceofimpact);
            cosTheta = sum(rayrecvvector.*N)/(sqrt(sum(rayrecvvector.^2)));
            cosAlpha = sqrt(sum(rayrecvvector.^2)-r^2)/sum(rayrecvvector.^2);
            E = (1-cosAlpha)*2*cosTheta*rayrecv_energy;

            % Update energy histogram
            tbin = floor(recv_timeofarrival/histTimeStep + 0.5);
            TFHist(tbin,iBand) = TFHist(tbin,iBand) + E;

            % Compute a new direction for the ray.
            % Pick a random direction that is in the hemisphere of the
            % normal to the impact surface.
            d = rand(1,3);
            d = d/norm(d);
            if sum(d.*N)<0
                d = -d;
            end

            % Derive the specular reflection with respect to the incident
            % wall
            ref = ray_dxyz-2*(sum(ray_dxyz.*N))*N;

            % Combine the specular and random components
            d = d/norm(d);
            ref = ref/norm(ref);
            ray_dxyz = D(surfaceofimpact,iBand)*d+(1-D(surfaceofimpact,iBand))*ref;
            ray_dxyz = ray_dxyz/norm(ray_dxyz);
        end
    end
end

View Energy Histogram

Plot the computed frequency-dependent histogram.

figure
bar(histTimeStep*(0:size(TFHist)-1),TFHist)
grid on
xlabel("Time (s)")
legend(["125 Hz","250 Hz","500 Hz","1000 Hz","2000 Hz","4000 Hz"])
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Generate Room Impulse Response

The energy histogram represents the envelope of the room impulse response. Synthesize the impulse
response using a Poisson-distributed noise process [2] on page 1-850.

Generate Poisson Random Process

Define the audio sample rate (in Hz).

fs = 44100;

You model sound reflections as a Poisson random process.

Define the start time of the process.

V = prod(roomDimensions);
t0 = ((2*V*log(2))/(4*pi*c^3))^(1/3); % eq 5.45 in [2]

Initialize the random process vector and the vector containing the times at which events occur.

poissonProcess = [];
timeValues = [];

Create the random process.

t = t0;
while (t<impResTime)
    timeValues = [timeValues t]; %#ok
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    % Determine polarity.
    if (round(t*fs)-t*fs) < 0 
        poissonProcess = [poissonProcess 1]; %#ok
    else
        poissonProcess = [poissonProcess -1];%#ok
    end
    % Determine the mean event occurence (eq 5.44 in [2])
    mu = min(1e4,4*pi*c^3*t^2/V); 
    % Determine the interval size (eq. 5.44 in [2])
    deltaTA = (1/mu)*log(1/rand); % eq. 5.43 in [2])
    t = t+deltaTA;
end

Create a random process sampled at the specified sample rate.

randSeq = zeros(ceil(impResTime*fs),1);
for index=1:length(timeValues)
    randSeq(round(timeValues(index)*fs)) = poissonProcess(index);
end

Pass Poisson Process Through Bandpass Filters

You create the impulse response by passing the Poisson process through bandpass filters centered at
the frequencies in FVect, and then weighting the filtered signals with the received energy envelope
computed in the histogram.

Define the lower and upper cutoff frequencies of the bandpass filters.

flow = [115 225 450 900 1800 3600];
fhigh = [135 275 550 1100 2200 4400];

Set the FFT length.

NFFT = 8192;

Create the short-time Fourier transform and inverse short-time Fourier transform objects you will use
to filter the Poisson process and reconstruct it. Use a Hann window with 50% overlap.

win = hann(882,"symmetric");
sfft = dsp.STFT(Window = win,OverlapLength=441,FFTLength=NFFT,FrequencyRange="onesided");
isfft = dsp.ISTFT(Window=win,OverlapLength=441,FrequencyRange="onesided");
F = sfft.getFrequencyVector(fs);

Create the bandpass filters (use equation 5.46 in [2] on page 1-850).

RCF = zeros(length(FVect),length(F));
for index0 = 1:length(FVect)
    for index=1:length(F)
        f = F(index);
        if f<FVect(index0) && f>=flow(index0)
            RCF(index0,index) = .5*(1+cos(2*pi*f/FVect(index0)));
        end
        if f<fhigh(index0) && f>=FVect(index0)
            RCF(index0,index) = .5*(1-cos(2*pi*f/(FVect(index0)+1)));
        end
    end
end
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Filter the Poisson sequence through the six bandpass filters.

frameLength = 441;
numFrames = length(randSeq)/frameLength;
y = zeros(length(randSeq),6);
for index=1:numFrames
    x = randSeq((index-1)*frameLength+1:index*frameLength);
    X = sfft(x);
    X = X.*RCF.';
    y((index-1)*frameLength+1:index*frameLength,:) = isfft(X);
end

Combine the Filtered Sequences

Construct the impulse response by weighting the filtered random sequences sample-wise using the
envelope (histogram) values.

Compute the times corresponding to the impulse response samples.

impTimes = (1/fs)*(0:size(y,1)-1);

Compute the times corresponding to the histogram bins.

hisTimes = histTimeStep/2 + histTimeStep*(0:nTBins);

Compute the weighting factors (equation 5.47 in [2] on page 1-850).

W = zeros(size(impTimes,2),numel(FVect));
BW = fhigh-flow;
for k=1:size(TFHist,1)
    gk0 = floor((k-1)*fs*histTimeStep)+1;
    gk1 = floor(k*fs*histTimeStep);
    yy = y(gk0:gk1,:).^2;
    val = sqrt(TFHist(k,:)./sum(yy,1)).*sqrt(BW/(fs/2));
    for iRay=gk0:gk1
        W(iRay,:)= val;
    end
end

Create the impulse response.

y = y.*W;
ip = sum(y,2);
ip = ip./max(abs(ip));

Auralization

Plot the impulse response.

figure
plot((1/fs)*(0:numel(ip)-1),ip)
grid on
xlabel("Time (s)")
ylabel("Impulse Response")
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Apply the impulse response to an audio signal.

[audioIn,fs] = audioread("FunkyDrums-44p1-stereo-25secs.mp3");
audioIn = audioIn(:,1);

Simulate the received audio by filtering with the impulse response.

audioOut = filter(ip,1,audioIn);
audioOut = audioOut/max(audioOut);

Listen to a few seconds of the original audio.

T = 10;
sound(audioIn(1:T*fs),fs)
pause(T)

Listen to a few seconds of the received audio.

sound(audioOut(1:T*fs),fs)

References

[1] "Overview of geometrical room acoustic modeling techniques", Lauri Savioja, Journal of the
Acoustical Society of America 138, 708 (2015).

1 Audio Toolbox Examples

1-850



[2] "Physically Based Real-Time Auralization of Interactive Virtual Environments", Dirk Schröder,
Aachen, Techn. Hochsch., Diss., 2011.

[3] "Auralization: Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual
Reality", Michael Vorlander, Second Edition, Springer.

[4] https://www.acoustic.ua/st/web_absorption_data_eng.pdf

[5] "Scattering in Room Acoustics and Related Activities in ISO and AES", Jens Holger Rindel, 17th
ICA Conference, Rome, Italy, September 2001.

Helper Functions

function plotRoom(roomDimensions,receiverCoord,sourceCoord,figHandle)
% PLOTROOM Helper function to plot 3D room with receiver/transmitter points
figure(figHandle)
X = [0;roomDimensions(1);roomDimensions(1);0;0];
Y = [0;0;roomDimensions(2);roomDimensions(2);0];
Z = [0;0;0;0;0];
figure;
hold on;
plot3(X,Y,Z,"k",LineWidth=1.5);   
plot3(X,Y,Z+roomDimensions(3),"k",LineWidth=1.5); 
set(gca,"View",[-28,35]); 
for k=1:length(X)-1
    plot3([X(k);X(k)],[Y(k);Y(k)],[0;roomDimensions(3)],"k",LineWidth=1.5);
end
grid on
xlabel("X (m)")
ylabel("Y (m)")
zlabel("Z (m)")
plot3(sourceCoord(1),sourceCoord(2),sourceCoord(3),"bx",LineWidth=2)
plot3(receiverCoord(1),receiverCoord(2),receiverCoord(3),"ro",LineWidth=2)
end

function X=RandSampleSphere(N)
% RANDSAMPLESPHERE Return random ray directions

% Sample the unfolded right cylinder
z = 2*rand(N,1)-1;
lon = 2*pi*rand(N,1);

% Convert z to latitude
z(z<-1) = -1;
z(z>1) = 1;
lat = acos(z);

% Convert spherical to rectangular co-ords
s = sin(lat);
x = cos(lon).*s;
y = sin(lon).*s;

X = [x y z];
end
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function [surfaceofimpact,displacement] = getImpactWall(ray_xyz,ray_dxyz,roomDims)
% GETIMPACTWALL Determine which wall the ray encounters
surfaceofimpact = -1;
displacement = 1000;
%  Compute time to intersection with x-surfaces
if (ray_dxyz(1) < 0)
    displacement = -ray_xyz(1) / ray_dxyz(1);
    if displacement==0
        displacement=1000;
    end
    surfaceofimpact = 0;
elseif (ray_dxyz(1) > 0)
    displacement = (roomDims(1) - ray_xyz(1)) / ray_dxyz(1);
    if displacement==0
        displacement=1000;
    end
    surfaceofimpact = 1;
end
% Compute time to intersection with y-surfaces
if ray_dxyz(2)<0
    t = -ray_xyz(2) / ray_dxyz(2);
    if (t<displacement) && t>0
        surfaceofimpact = 2;
        displacement = t;
    end
elseif ray_dxyz(2)>0
    t = (roomDims(2) - ray_xyz(2)) / ray_dxyz(2);
    if (t<displacement) && t>0
        surfaceofimpact = 3;
        displacement = t;
    end
end
% Compute time to intersection with z-surfaces
if ray_dxyz(3)<0
    t = -ray_xyz(3) / ray_dxyz(3);
    if (t<displacement) && t>0
        surfaceofimpact = 4;
        displacement = t;
    end
elseif ray_dxyz(3)>0
    t = (roomDims(3) - ray_xyz(3)) / ray_dxyz(3);
    if (t<displacement) && t>0
        surfaceofimpact = 5;
        displacement = t;
    end
end
surfaceofimpact = surfaceofimpact + 1;

displacement = displacement * ray_dxyz;

end

function N = getWallNormalVector(surfaceofimpact)
% GETWALLNORMALVECTOR Get the normal vector of a surface
switch surfaceofimpact
    case 1
        N = [1 0 0];
    case 2

1 Audio Toolbox Examples

1-852



        N = [-1 0 0];
    case 3
        N = [0 1 0];
    case 4
        N = [0 -1 0];
    case 5
        N = [0 0 1];
    case 6
        N = [0 0 -1];
end

end
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Feature Selection for Audio Classification

Feature selection reduces the dimensionality of data by selecting a subset of measured features to
create a model. Performing feature selection enables you to train smaller models quickly without
sacrificing accuracy. For some tasks, properly selected features used with simple thresholding can
provide adequate results, especially in situations where model size and complexity must be
minimized.

In this example, you walk through a standard machine learning pipeline to develop an audio
classification system. The pipeline has been abstracted so that you can apply the same steps to either
speaker recognition or word recognition tasks.

Dataset Management and Labeling

Download the Free Spoken Digit Dataset (FSDD) [1] on page 1-865. FSDD consists of short audio
files with spoken digits (0-9). The data is sampled at 8 kHz.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","FSDD.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
dataset = fullfile(dataFolder,"FSDD");

Create an audioDatastore to manage the audio dataset.

ads = audioDatastore(dataset,IncludeSubfolders=true);

Choose a task and set the audioDatastore labels accordingly.

task = ;
[~,filenames] = fileparts(ads.Files);
switch task
    case "speaker recognition"
        ads.Labels = extractBetween(filenames,"_","_");
    case "word recognition"
        ads.Labels = extractBefore(filenames,"_");
end

Split data into train and test sets. Use 80% for training and 20% for testing.

[adsTrain,adsTest] = splitEachLabel(ads,0.8);

Listen to a sample from the training set. Plot the waveform and display the associated label.

[x,xinfo] = read(adsTrain);
sound(x,xinfo.SampleRate)

t = (0:numel(x)-1)/xinfo.SampleRate;
figure
plot(t,x)
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title("Label: " + xinfo.Label)
grid on
axis tight
ylabel("Amplitude")
xlabel("Time (s)")

Feature Extraction Pipeline

Audio signals can broadly be categorized as stationary or non-stationary. Stationary signals have
spectrums that do not change over time, like pure tones. Non-stationary signals have spectrums that
change over time, like speech signals. To make machine learning-based tasks tractable, non-
stationary signals can be approximated as stationary when analyzed at appropriately small time
scales. Generally, speech signals are considered stationary when viewed at time scales around 30 ms.
Therefore, speech can be characterized by extracting features from 30 ms analysis windows over
time.

Use the helper function, helperVisualizeBuffer, to visualize the analysis windows of an audio
file. Specify a 30 ms analysis window with 20 ms overlap between adjacent windows. The overlap
duration must be less than the window duration. The Analysis Windows of Signal plot shows the
individual analysis windows from which features are extracted.
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windowDuration = ;

overlapDuration = ;
helperVisualizeBuffer(x,xinfo.SampleRate,WindowDuration=windowDuration,OverlapDuration=overlapDuration);

Create an audioFeatureExtractor to extract features from 30 ms windows with 20 ms overlap
between windows.

afe = audioFeatureExtractor(SampleRate=xinfo.SampleRate, ...
    Window=hann(round(windowDuration*xinfo.SampleRate),"periodic"), ...
    OverlapLength=round(overlapDuration*xinfo.SampleRate))

afe = 
  audioFeatureExtractor with properties:

   Properties
                     Window: [240×1 double]
              OverlapLength: 160
                 SampleRate: 8000
                  FFTLength: []
    SpectralDescriptorInput: 'linearSpectrum'
        FeatureVectorLength: 0

   Enabled Features
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     none

   Disabled Features
     linearSpectrum, melSpectrum, barkSpectrum, erbSpectrum, mfcc, mfccDelta
     mfccDeltaDelta, gtcc, gtccDelta, gtccDeltaDelta, spectralCentroid, spectralCrest
     spectralDecrease, spectralEntropy, spectralFlatness, spectralFlux, spectralKurtosis, spectralRolloffPoint
     spectralSkewness, spectralSlope, spectralSpread, pitch, harmonicRatio, zerocrossrate
     shortTimeEnergy

   To extract a feature, set the corresponding property to true.
   For example, obj.mfcc = true, adds mfcc to the list of enabled features.

Configure the audioFeatureExtractor to extract all features.

in = info(afe,"all");
featureSwitches = fields(in);
cellfun(@(x)afe.set(x,true),featureSwitches)

afe

afe = 
  audioFeatureExtractor with properties:

   Properties
                     Window: [240×1 double]
              OverlapLength: 160
                 SampleRate: 8000
                  FFTLength: []
    SpectralDescriptorInput: 'linearSpectrum'
        FeatureVectorLength: 306

   Enabled Features
     linearSpectrum, melSpectrum, barkSpectrum, erbSpectrum, mfcc, mfccDelta
     mfccDeltaDelta, gtcc, gtccDelta, gtccDeltaDelta, spectralCentroid, spectralCrest
     spectralDecrease, spectralEntropy, spectralFlatness, spectralFlux, spectralKurtosis, spectralRolloffPoint
     spectralSkewness, spectralSlope, spectralSpread, pitch, harmonicRatio, zerocrossrate
     shortTimeEnergy

   Disabled Features
     none

   To extract a feature, set the corresponding property to true.
   For example, obj.mfcc = true, adds mfcc to the list of enabled features.

You can use the extract object function of audioFeatureExtractor to extract all the enabled
features from an audio signal. The features are concatenated into a matrix with analysis windows
along the rows and features along the columns.

featureMatrix = extract(afe,x);
[numWindows,numFeatures] = size(featureMatrix)

numWindows = 62

numFeatures = 306
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You can use info to get a mapping between the columns of the output matrix and the feature names.
The term "features" is overloaded in the literature. features can refer to the feature group, such as
"linearSpectrum", "mfcc", or "spectralCentroid", or the individual feature elements, such as the first
element of the linear spectrum or the third element of the MFCC. The output map returned by info
is a struct where each field corresponds to a feature group and the values correspond to which
columns in the feature matrix the feature groups occupy.

outputMap = info(afe)

outputMap = struct with fields:
          linearSpectrum: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 … ]
             melSpectrum: [122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153]
            barkSpectrum: [154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185]
             erbSpectrum: [186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213]
                    mfcc: [214 215 216 217 218 219 220 221 222 223 224 225 226]
               mfccDelta: [227 228 229 230 231 232 233 234 235 236 237 238 239]
          mfccDeltaDelta: [240 241 242 243 244 245 246 247 248 249 250 251 252]
                    gtcc: [253 254 255 256 257 258 259 260 261 262 263 264 265]
               gtccDelta: [266 267 268 269 270 271 272 273 274 275 276 277 278]
          gtccDeltaDelta: [279 280 281 282 283 284 285 286 287 288 289 290 291]
        spectralCentroid: 292
           spectralCrest: 293
        spectralDecrease: 294
         spectralEntropy: 295
        spectralFlatness: 296
            spectralFlux: 297
        spectralKurtosis: 298
    spectralRolloffPoint: 299
        spectralSkewness: 300
           spectralSlope: 301
          spectralSpread: 302
                   pitch: 303
           harmonicRatio: 304
           zerocrossrate: 305
         shortTimeEnergy: 306

This figure is intended to help you interpret the feature matrix returned from extract.
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Use transform to create a transformed datastore that extracts features when reading from the
audio datastore. The transform function is applied after calling read on the underlying datastore.
Use readall to extract audio features from all audio files and place them into memory. If you have
Parallel Computing Toolbox™, spread the computation across multiple workers.

The output is a (Number of files)-by-1 cell array. Each element of the cell array is a (Number of hops)-
by-(Number of features) matrix, where the number of hops depends on the length of the audio file.

pFlag = ~isempty(ver("parallel"));

adsTrainT = transform(adsTrain,@(x){extract(afe,x)});
features = readall(adsTrainT,UseParallel=pFlag)

features=1600×1 cell array
    {62×306 double}
    {51×306 double}
    {66×306 double}
    {59×306 double}
    {49×306 double}
    {56×306 double}
    {60×306 double}
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    {61×306 double}
    {53×306 double}
    {50×306 double}
    {63×306 double}
    {61×306 double}
    {51×306 double}
    {60×306 double}
    {57×306 double}
    {58×306 double}
      ⋮

Feature/Label Correspondence

Once you have extracted features from approximately stationary windows in time, the next question
is whether to feed the window-level features to your machine learning model or to combine the
features into file-level representations. The choice of window-level or file-level features depends on
your application and requirements. For file-level features, you will generally create summary
statistics of the window-level features to collapse the time dimension. Common summary statistics
include the mean and standard deviation. This example uses window-level features.

To train a machine learning model on window-level features, replicate the file-level labels so that they
are in one-to-one correspondence with the features.

N = cellfun(@(x)size(x,1),features);
T = repelem(adsTrain.Labels,N);

Concatenate the features into a single matrix for consumption by machine-learning tools.

X = cat(1,features{:});

Feature Selection

Statistics and Machine Learning Toolbox™ provides several tools to aid in feature selection. The best
feature selector will depend on your intended model. Use fscmrmr (Statistics and Machine Learning
Toolbox) to rank features for classification using the minimum-redundancy/maximum-relevance
(MRMR) algorithm. The MRMR is a sequential algorithm that finds an optimal set of features that is
mutually and maximally dissimilar and can represent the response variable effectively.

rng("default") % for reproducibility
[featureSelectionIdx,featureSelectionScores] = fscmrmr(X,T);

The fscmrmr function considers each column of the input feature matrix as a unique feature. Plot the
scores of each scalar in the feature matrix returned by audioFeatureExtractor.

figure
bar(featureSelectionScores)
ylabel("Feature Score")
xlabel("Feature Matrix Column")
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The audioFeatureExtractor extracts feature groups with varying numbers of elements. For
example, the default number of elements of the MFCC feature group is 13, while the spectral
centroid feature always consists of 1 element. The output map returned by calling info on
audioFeatureExtractor is a struct with fields equal to the feature group and values equal to the
columns that feature group occupies in the matrix output by extract. Use the output map and the
supporting function uniqueFeatureName on page 1-865 to create a unique name for each scalar
feature, then plot the scores of the top 25 performing features.

featurenames = uniqueFeatureName(outputMap);

featurenamesSorted = featurenames(featureSelectionIdx);
figure
bar(reordercats(categorical(featurenames),featurenamesSorted),featureSelectionScores)
xlim([featurenamesSorted(1),featurenamesSorted(25)])
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Depending on your application, you can approximate grouped feature selection by averaging the
scores of feature groups. Using grouped features (for example, all MFCC) may help you deploy more
efficient feature extraction. In this example, you use the top-performing feature scalars, regardless of
which feature group they belong to.

Select some top scoring features. The number you select will depend on the model you are training
and the final constraints of your application.

numFeatures = ;
selectedFeatureIndex = featureSelectionIdx(1:numFeatures);

Train Model

To train a KNN model using your selected features, use fitcknn (Statistics and Machine Learning
Toolbox). If you are unsure of which machine learning model you want to use, try fitcauto
(Statistics and Machine Learning Toolbox) to automatically select a classification model with
optimized parameters, or try the Classification Learner (Statistics and Machine Learning Toolbox).

Mdl = fitcknn(X(:,selectedFeatureIndex),T,Standardize=true);

Evaluate Model

Spot-check the model's performance.
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Read a sample from the test set. Listen to the sample and then plot its waveform and display the
ground-truth label.

[x,xInfo] = read(adsTest);
sound(x,xInfo.SampleRate)

t = (0:numel(x)-1)/xInfo.SampleRate;
figure
plot(t,x)
title("Label: " + xInfo.Label)
grid on
axis tight
ylabel("Amplitude")
xlabel("Time (s)")

Extract features from analysis windows.

yPerWindow = extract(afe,x);

Predict the correct label per window.

t = predict(Mdl,yPerWindow(:,selectedFeatureIndex));

trueLabel = categorical(xInfo.Label)

 Feature Selection for Audio Classification

1-863



trueLabel = categorical
     0 

predictionsPerWindow = categorical(t')

predictionsPerWindow = 1×39 categorical
     0      0      3      3      3      3      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      0      4      4      0      0      0      0      0      0 

Create a file-level prediction by taking the mode of window-level predictions.

prediction = mode(predictionsPerWindow)

prediction = categorical
     0 

Analyze the whole-word performance over the entire test set.

Tfile = categorical(adsTest.Labels);
adsTestT = transform(adsTest,@(x)extract(afe,x));
adsTestTT = transform(adsTestT,@(x)mode(categorical(predict(Mdl,x(:,selectedFeatureIndex)))));
Y = readall(adsTestTT);
figure
confusionchart(Tfile,Y,Title="Accuracy = " + 100*mean(Tfile==Y) + " (%)")
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You can apply a similar pattern as above to also select an optimal window, window length, window
overlap, DFT length, and input to spectral descriptors.

Supporting Functions

function c = uniqueFeatureName(afeInfo)
%UNIQUEFEATURENAME Create unique feature names
%c = uniqueFeatureName(featureInfo) creates a unique set of feature names
%for each element of each feature described in the afeInfo struct. The
%afeInfo struct is returned by the info object function of
%audioFeatureExtractor.
a = repelem(fields(afeInfo),structfun(@numel,afeInfo));
b = matlab.lang.makeUniqueStrings(a);
d = find(endsWith(b,"_1"));
c = strrep(b,"_","");
c(d-1) = strcat(c(d-1),"0");
end

References
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Jakobovski/free-spoken-digit-dataset.
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Transfer Learning with Pretrained Audio Networks in Deep
Network Designer

This example shows how to interactively fine-tune a pretrained network to classify new audio signals
using Deep Network Designer.

Transfer learning is commonly used in deep learning applications. You can take a pretrained network
and use it as a starting point to learn a new task. Fine-tuning a network with transfer learning is
usually much faster and easier than training a network with randomly initialized weights from
scratch. You can quickly transfer learned features to a new task using a smaller number of training
signals.

This example retrains YAMNet, a pretrained convolutional neural network, to classify a new set of
audio signals.

Load Data

Download and unzip the air compressor data set [1] on page 1-874. This data set consists of
recordings from air compressors in a healthy state or one of seven faulty states.

zipFile = matlab.internal.examples.downloadSupportFile('audio','AirCompressorDataset/AirCompressorDataset.zip');
dataFolder = fileparts(zipFile);
unzip(zipFile,dataFolder);

Create an audioDatastore object to manage the data.

ads = audioDatastore(dataFolder,IncludeSubfolders=true,LabelSource="foldernames");

Split the data into training, validation, and test sets using the splitEachLabel function.

[adsTrain,adsValidation,adsTest] = splitEachLabel(ads,0.7,0.2,0.1);

Use the transform function to preprocess the data using the function audioPreprocess, found at
the end of this example. For each signal:

• Use yamnetPreprocess to generate mel spectrograms suitable for training using YAMNet. Each
audio signal produces multiple spectrograms.

• Duplicate the class label for each of the spectrograms.

tdsTrain = transform(adsTrain,@audioPreprocess,IncludeInfo=true);
tdsValidation = transform(adsValidation,@audioPreprocess,IncludeInfo=true);
tdsTest = transform(adsTest,@audioPreprocess,IncludeInfo=true);

Select Pretrained Network

Prepare and train the network interactively using Deep Network Designer (Deep Learning Toolbox).
To open Deep Network Designer, on the Apps tab, under Machine Learning and Deep Learning,
click the app icon. Alternatively, you can open the app from the command line.

deepNetworkDesigner

Deep Network Designer provides a selection of pretrained audio classification networks. These
models require both Audio Toolbox™ and Deep Learning Toolbox™.
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Under Audio Networks, select YAMNet from the list of pretrained networks and click Open. If the
Audio Toolbox model for YAMNet is not installed, click Install instead. Deep Network Designer
provides a link to the location of the network weights. Unzip the file to a location on the MATLAB
path. Now close the Deep Network Designer Start Page and reopen it. When the network is correctly
installed and on the path, you can click the Open button on YAMNet. The YAMNet model can classify
audio into one of 521 sound categories. For more information, see yamnet.

Deep Network Designer displays a zoomed-out view of the whole network in the Designer pane. To
zoom in with the mouse, use Ctrl+scroll wheel. To pan, use the arrow keys, or hold down the scroll
wheel and drag the mouse. Select a layer to view its properties. Clear all layers to view the network
summary in the Properties pane.
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Prepare Network for Transfer Learning

To prepare the network for transfer learning, in the Designer pane, replace the last learnable layer
and the final classification layer.

Replace Last Learnable Layer

To use a pretrained network for transfer learning, you must change the number of classes to match
your new data set. First, find the last learnable layer in the network. For YAMNet, the last learnable
layer is the last fully connected layer, dense.

Drag a new fullyConnectedLayer onto the canvas. The OutputSize property defines the number
of classes for classification problems. Change OutputSize to the number of classes in the new data,
in this example, 8.

Change the learning rates so that learning is faster in the new layer than in the transferred layers by
setting WeightLearnRateFactor and BiasLearnRateFactor to 10.

Delete the last fully connected layer and connect your new layer instead.
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Replace Output Layer

For transfer learning, you need to replace the output layer. Scroll to the end of the Layer Library and
drag a new classificationLayer onto the canvas. Delete the original classification layer and
connect your new layer in its place.

For a new output layer, you do not need to set OutputSize. At training time, Deep Network Designer
automatically sets the output classes of the layer from the data.
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Check Network

To check that the network is ready for training, click Analyze. If the Deep Learning Network
Analyzer reports zero errors, then the edited network is ready for training.
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Import Data

To load the data into Deep Network Designer, on the Data tab, click Import Data > Import
Datastore. Select tdsTrain as the training data and tdsValidation as the validation data.

Using Deep Network Designer, you can inspect the training and validation data in the Data tab. You
can see that the data is as expected prior to training.
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Select Training Options

To specify the training options, select the Training tab and click Training Options. Set the initial
learning rate to a small value to slow down learning in the transferred layers. In combination with the
increased learning rate factors for the fully connected layer, learning is now fast only in the new
layers and slower in the other layers.

For this example, set Solver to adam, InitialLearnRate to 0.0001, and MaxEpochs to 2.
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Train Network

To train the network with the specified training options, click Close and then click Train.

Deep Network Designer allows you to visualize and monitor the training progress. You can then edit
the training options and retrain the network, if required. To find the optimal training options, create a
deep learning experiment using Experiment Manager. You can create a deep learning experiment in
Deep Network Designer by clicking Export > Create Experiment.

To export the results from training, on the Training tab, select Export > Export Trained Network
and Results. Deep Network Designer exports the trained network as the variable
trainedNetwork_1 and the training info as the variable trainInfoStruct_1.

You can also generate MATLAB code, which recreates the network and the training options used. On
the Training tab, select Export > Generate Code for Training. Examine the MATLAB code to learn
how to programmatically prepare the data for training, create the network architecture, and train the
network.

Test Network

Classify the test data using the exported network and the classify function.

data = readall(tdsTest);
YTest = [data{:,2}];
YPred = classify(trainedNetwork_1,tdsTest);

accuracy = sum(YPred == YTest')/numel(YTest)
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accuracy = 0.9830

Supporting Function

The function audioPreprocess uses yamnetPreprocess to generate mel spectrograms from
audioIn that you can feed to the YAMNet pretrained network. Each input signal generates multiple
spectrograms, so the labels must be duplicated to create a one-to-one correspondence with the
spectrograms.

function [data,info] = audioPreprocess(audioIn,info)
class = info.Label;
fs = info.SampleRate;
features = yamnetPreprocess(audioIn,fs);

numSpectrograms = size(features,4);

data = cell(numSpectrograms,2);
for index = 1:numSpectrograms
    data{index,1} = features(:,:,:,index);
    data{index,2} = class;
end
end

References
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Speech Command Recognition Code Generation with Intel MKL-
DNN Using Simulink

This example demonstrates how to deploy feature extraction and a convolutional neural network
(CNN) for speech command recognition on Intel® processors. To generate the feature extraction and
network code, you use Embedded Coder in Simulink® and the Intel® Math Kernel Library for Deep
Neural Networks (MKL-DNN). In this example you generate Software-in-the-loop (SIL) code
for a reference model which performs feature extraction and predicts the speech command. The
generated SIL code is called in a Simulink model which displays the predicted speech command and
predicted scores for the given inputs. For details about audio preprocessing and network training, see
“Train Speech Command Recognition Model Using Deep Learning” on page 1-332.

Prerequisites

• The MATLAB® Coder Interface for Deep Learning Libraries
• Intel Processor with support for Advanced Vector Extension 2 (AVX2)
• Intel Math Kernel Library for Deep Neural Networks (MKL-DNN)
• Environment Variables for Intel MKL-DNN

For supported versions of libraries and for information about setting up environment variables, see
“Prerequisites for Deep Learning with MATLAB Coder” (MATLAB Coder).

Prepare Simulink Model to Deploy

Create a Simulink model and capture the feature extraction, convolutional neural network and
postprocessing as developed in “Speech Command Recognition in Simulink” on page 1-40. This model
is shipped with this example. Open the shipped model to understand its configurations.

modelToDeploy = "recognizeSpeechCommand";
open_system(modelToDeploy)

Set the Data type, Port dimensions, Sample time, and Signal type of the input port block as
shown.
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Configure Code Generation Settings

Open the recognizeSpeechCommand model. Go to the MODELING Tab and click on Model Settings
or press Ctrl+E. Select Code Generation and set the System Target File to ert.tlc whose
Description is Embedded Coder. Set the Language to C++, which will automatically set the
Language Standard to C++11 (ISO).
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Alternatively, use set_param to configure the settings programmatically,

set_param(modelToDeploy,SystemTargetFile="ert.tlc")
set_param(modelToDeploy,TargetLang="C++")
set_param(modelToDeploy,TargetLangStandard="C++11 (ISO)")

To set Intel MKL-DNN Deep Learning Config, expand Code Generation and select Interface. Now
set the Deep Learning Target Library to MKL-DNN as shown.
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Alternatively, use set_param to configure the Deep learning target library programmatically.

set_param(modelToDeploy,DLTargetLibrary="mkl-dnn")

Select a solver that supports code generation. Set Solver to auto (Automatic solver
selection) and Solver type to Fixed-step.

set_param(modelToDeploy,SolverName="FixedStepAuto")
set_param(modelToDeploy,SolverType="Fixed-step")

In Configuration > Hardware Implementation, set Device vendor to Intel and Device type to
x86-64 (Windows64) or x86-64 (Linux 64) or x86-64 (Mac OS X) depending on your target
system. Alternatively, use set_param to configure the settings programmatically.

switch(computer("arch"))
    case "win64"
        ProdHWDeviceType = "Intel->x86-64 (Windows64)";
    case "glnxa64"
        ProdHWDeviceType = "Intel->x86-64 (Linux 64)";
    case "maci64"
        ProdHWDeviceType = "Intel->x86-64 (Mac OS X)";
end
set_param(modelToDeploy, "ProdHWDeviceType", ProdHWDeviceType)
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To automate setting the Device type, add the above code in Property Inspector > Properties >
Callbacks > PreLoadFcn of the recognizeSpeechCommand model.

Use Embedded Coder app to generate and build the code. Click on APPS tab and then click on
Embedded coder as shown.

It will open a new C++ CODE tab, then click on Build to generate and build the code. It will
generate the code in a folder named recognizeSpeechCommand_ert_rtw. After generating the
code, you view the report by clicking on Open Report.

Alternatively, you can use slbuild to generate the code programatically.

slbuild(modelToDeploy);

### Starting build procedure for: recognizeSpeechCommand
### Generating code and artifacts to 'Model specific' folder structure
### Generating code into build folder: C:\ExampleMatlab\ExampleManager\sporwal.Bdoc22b.j1956443.1\deeplearning_shared-ex14618832\recognizeSpeechCommand_ert_rtw
### Generated code for 'recognizeSpeechCommand' is up to date because no structural, parameter or code replacement library changes were found.
### Saving binary information cache.
### Skipping makefile generation and compilation because C:\ExampleMatlab\ExampleManager\sporwal.Bdoc22b.j1956443.1\deeplearning_shared-ex14618832\recognizeSpeechCommand.exe is up to date
### Successful completion of build procedure for: recognizeSpeechCommand

Build Summary
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0 of 1 models built (1 models already up to date)
Build duration: 0h 0m 16.398s

Now close the recognizeSpeechCommand model.

save_system(modelToDeploy)
close_system(modelToDeploy)

Warning: Method 'getInstance' is not defined for class
'CloneDetector.ExclusionEditorUIService' or is removed from MATLAB's search
path. 

Create a Simulink Model that Calls recognizeSpeechCommand and Displays its Output

Create a new simulink model and add recognizeSpeechCommand as a model reference block to it.
Add the same base workspace variables, source blocks, and sink blocks as developed in “Speech
Command Recognition in Simulink” on page 1-40. Use a radio button group for selecting speech
command files. For your reference, this model is shipped with this example. Open the same simulink
model.

mainModel = "slexSpeechCommRecognitionCodegenWithMklDnnExample";
open_system(mainModel)
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To set the Software-in-the-loop (SIL) simulation mode for the model reference block, click on
MODELING tab.

Now click on the drop-down button as shown above, and it will open a window. Select Property
Inspector as shown below.
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You will get a Property Inspector window at the right of your model. Click on the Model block to get
its Property Inspector. If the * Model name* is not set, browse for the
recognizeSpeechCommand.slx and set the Model name. Now set Simulation mode to
Software-in-the-loop (SIL) as shown.
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Run the model to deploy the recognizeSpeechCommand.slx on your computer and perform speech
command recognition.

set_param(mainModel,StopTime="20")
sim(mainModel)

### Starting serial model reference code generation build
### Starting build procedure for: recognizeSpeechCommand
### Generating code and artifacts to 'Model specific' folder structure
### Code for the model reference code generation target for model recognizeSpeechCommand is up to date because no functional changes were found in the referenced model.
### Saving binary information cache.
### Model reference code generation target for recognizeSpeechCommand is up to date.

Build Summary

0 of 1 models built (1 models already up to date)
Build duration: 0h 0m 12.677s
### Preparing to start SIL simulation ...
### Skipping makefile generation and compilation because C:\ExampleMatlab\ExampleManager\sporwal.Bdoc22b.j1956443.1\deeplearning_shared-ex14618832\slprj\ert\recognizeSpeechCommand\sil\recognizeSpeechCommand.exe is up to date
### Starting SIL simulation for component: recognizeSpeechCommand
### Application stopped
### Stopping SIL simulation for component: recognizeSpeechCommand

ans = 

  Simulink.SimulationOutput:
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     SimulationMetadata: [1x1 Simulink.SimulationMetadata] 
           ErrorMessage: [0x0 char] 

Now close the mainModel.

save_system(mainModel)
close_system(mainModel)

Warning: Method 'getInstance' is not defined for class
'CloneDetector.ExclusionEditorUIService' or is removed from MATLAB's search
path. 

Other Things to Try

• Simulate “Speech Command Recognition in Simulink” on page 1-40 model using Intel® MKL-DNN
library by setting the Configuration > Simulation Target > Language to C++.

• Compare the simulation speed of the “Speech Command Recognition in Simulink” on page 1-40
model with and without Intel® MKL-DNN library. Use Simulink Profiler (Simulink) to profile the
model by setting the Configuration > Simulation Target > Language to C and C++.

Copyright 2021 The MathWorks, Inc.
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Loudspeaker Modeling with Simscape™

This example shows how to model a dynamic loudspeaker using linear and nonlinear lumped element
models.

Introduction to Loudspeaker Modeling

Dynamic loudspeaker drivers convert electrical signals into acoustic waves using electromagnetic
energy to produce mechanical movements in a cone-shaped diaphragm. Therefore, three main
domains must be represented in the model: electrical, mechanical, and acoustical, in addition to the
bidirectional energy conversions between these.
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A common linear model for a loudspeaker is to represent it as an electrical circuit, which is known as
a lumped element model. The mechanical and acoustic effects are represented by electrical circuits
that are mathematically equivalent models.
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For the electrical model, the motor is composed of the voice coil and the magnet. The voice coil is
driven by a voltage  and has a resistance  and an inductance . These two parameters depend
on the wire material, diameter, length, turn radius, number of turns, and other physical properties.
The magnet also has an impact on the coil inductance  because of the addition of a ferrous core.

The magnet creates a field in the gap with a flux density . Multiplied by the wire length , this is
known as the force factor . This is also the conversion factor between the electrical and mechanical
domains, as there is a force  applied to the voice coil, where  is the electrical
current applied at the input. Inversely, there is a voltage  generated by  which is
analogous to the cone velocity. When converting the mechanical model to an electrical model, the
coupling between them is represented by a gyrator, where velocity corresponds to the electrical
current and force corresponds to the voltage.

For the mechanical model, lumped electrical components are used as analogues to mechanical
properties such as mass and compliance. First, the inertia of the total moving mass (including the
coil, cone, and dust cap) is analogous to the effect of an inductance  on varying electrical
currents. Second, the stiffness of the suspension and spider is analogous to the effect of a capacitor

. Thirdly, the mechanical loss in the suspension system is analogous to a resistor . This
mechanical model forms a circuit with resonant frequency , which implies
that the efficient frequency range of the driver depends on its mass.

For the acoustical model, the driver cone surface interface with the air is analogous to a transformer.
The larger the cone is, the more mechanical energy is transformed to acoustic energy (at least for a
given mass). An impedance  (formed by ,  and ) models the radiation resistance for the
front and the back of the cone. For a non-enclosed driver, this value is nonlinear but relatively small.
An enclosed driver has a fixed amount of air, which creates a compliance modeled by a capacitor ,
and any air leaks (including a vent) will contribute to the resistance . For a vented enclosure, the
mass of air moving in and out acts as an inductor .

For simplicity, the remainder of this example assumes a loudspeaker in free space, i.e. no enclosure
( ).

The equation for the electrical part of the model is:

The equation for the mechanical part of the model is:

Where: 

The equations for a gyrator are:
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Linear Loudspeaker Models

Using Simscape™, a loudspeaker can be modeled using a mixed-domain approach (mixing electrical
and mechanical domains), or with a familiar model that converts the mechanical domain into the
electrical domain.

First, implement the electrical model shown above, using a gyrator directly.

model = 'LinearGyrator';
open_system(model);
sim(model,1);
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close_system(model,0)
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For analysis, the gyrator is often removed by rearranging the circuit topology and the elements
values.
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It can be shown that this circuit behaves the same as above with the following components:

This simplified ciruit produces the exact same results as before.

model = 'LinearCircuit';
open_system(model);
sim(model,1);

 Loudspeaker Modeling with Simscape™

1-889

https://www.diagrams.net/doc/faq/svg-export-text-problems


close_system(model,0)
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Simscape™ also allows mixing electrical and mechanical elements, so the loudspeaker model can be
simulated without any physical domain conversions. Again, the same results are obtained.

model = 'LinearMixedDomain';
open_system(model);
sim(model,1);

 Loudspeaker Modeling with Simscape™

1-891



close_system(model,0)

Other elements can easily be added to this circuit model to account for a closed or vented enclosure.
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Adding DSP to a Physical Model

In addition to combining two physical domains in one simulation, digital signal processing algorithms
can be included. The following model represents an active loudspeaker with a woofer and a tweeter.
The crossover, parametric EQ and shelving filters are implemented in the digital domain, followed by
an optimized power amplifier for each driver. The output of each driver is measured separately, and
the combined output is compared to the log-chirp input in the frequency domain.

model = 'MixedModeling';
open_system(model);
sim(model,3);
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close_system(model,0)
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Modeling Nonlinear Elements

Several loudspeaker elements are nonlinear. For example, the voice coil force factor and inductance
vary with its position in the magnet. Furthermore, the suspension spring rate changes at the
extremities of its displacement range.

Linear components in the previous model can be replaced by custom versions that implement the
nonlinearities that are required. For example, the spring component can define the spring rate  as

, where  is the displacement and  are the
polynomial coefficients (  being the spring rate at displacement zero).

Plot sample values for compliance, force factor and inductance. Run model that implements the
"woofer" driver of the previous model, but with three linear components replaced by nonlinear
components.

plotNonLinearBHK;

model = 'NonLinearBHK';
open_system(model);
sim(model,3);
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close_system(model,0)

Starting from these examples, add components to model an enclosure, or implement your own
nonlinear elements. Simscape™ will allow you to do this using the domain of your choice (electrical,
mechanical). You can also test any digital pre-processing that is required, all in one model.

Definitions

 input voltage

 input current

 voice coil inductance

 voice coil resistance

 force factor

 force applied to the diaphragm

 diaphragm velocity
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 diaphragm displacement

 moving mass

 mechanical loss

 suspension compliance

 acoustical impedance
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Investigate Audio Classifications Using Deep Learning
Interpretability Techniques

This example shows how to use interpretability techniques to investigate the predictions of a deep
neural network trained to classify audio data.

Deep learning networks are often described as "black boxes" because why a network makes a certain
decision is not always obvious. You can use interpretability techniques to translate network behavior
into output that a person can interpret. This interpretable output can then answer questions about
the predictions of a network. This example uses interpretability techniques that explain network
predictions using visual representations of what a network is “looking” at. You can then use these
visual representations to see which parts of the input images the network is using to make decisions.

This example uses transfer learning to retrain VGGish, a pretrained convolutional neural network, to
classify a new set of audio signals.

Load Data

Download and unzip the environmental sound classification data set. This data set consists of
recordings labeled as one of 10 different audio sound classes (ESC-10). Download the ESC-10.zip
zip file from the MathWorks website, then unzip the file.

rng("default")
zipFile = matlab.internal.examples.downloadSupportFile("audio","ESC-10.zip");

filepath = fileparts(zipFile);
dataFolder = fullfile(filepath,"ESC-10");
unzip(zipFile,dataFolder)

Create an audioDatastore object to manage the data and split it into training and validation sets.
Use countEachLabel to display the distribution of sound classes and the number of unique labels.

ads = audioDatastore(dataFolder,IncludeSubfolders=true,LabelSource="foldernames");
labelTable = countEachLabel(ads)

labelTable=10×2 table
        Label         Count
    ______________    _____

    chainsaw           40  
    clock_tick         40  
    crackling_fire     40  
    crying_baby        40  
    dog                40  
    helicopter         40  
    rain               40  
    rooster            38  
    sea_waves          40  
    sneezing           40  

Determine the total number of classes.

classes = labelTable.Label;
numClasses = size(labelTable,1);
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Use splitEachLabel to split the data set into training and validation sets. Use 80% of the data for
training and 20% for validation.

[adsTrain,adsValidation] = splitEachLabel(ads,0.8,0.2);

The VGGish pretrained network requires preprocessing of the audio signals into log mel
spectrograms. The supporting function helperAudioPreprocess, defined at the end of this
example, takes as input an audioDatastore object and the overlap percentage between log mel
spectrograms and returns matrices of predictors and responses suitable for input to the VGGish
network. Each audio file is split into several segments to feed into the VGGish network.

overlapPercentage = 75;

[trainFeatures,trainLabels] = helperAudioPreprocess(adsTrain,overlapPercentage);
[validationFeatures,validationLabels,segmentsPerFile] = helperAudioPreprocess(adsValidation,overlapPercentage);

Visualize Data

View a random sample of the data.

numImages = 9;
idxSubset = randi(numel(trainLabels),1,numImages);

viewingAngle = ;

figure
tiledlayout("flow",TileSpacing="compact");
for i = 1:numImages
    img = trainFeatures(:,:,:,idxSubset(i));
    label = trainLabels(idxSubset(i));
    nexttile
    surf(img,EdgeColor="none")
    view(viewingAngle)
    title("Class: " + string(label),interpreter="none")
end
colormap parula
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Build Network

This example uses transfer learning to retrain VGGish, a pretrained convolutional neural network, to
classify a new set of audio signals.

Download VGGish Network

Download and unzip the Audio Toolbox™ model for VGGish.

Type vggish in the Command Window. If the Audio Toolbox model for VGGish is not installed, then
the function provides a link to the location of the network weights. To download the model, click the
link. Unzip the file to a location on the MATLAB path.

Load the VGGish model and convert it to a layerGraph object.

pretrainedNetwork = vggish;
lgraph = layerGraph(pretrainedNetwork.Layers);
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Prepare Network for Transfer Learning

Prepare the network for transfer learning by replacing the final layers with new layers suitable for
the new data. You can adapt VGGish for the new data programmatically or interactively using Deep
Network Designer. For an example showing how to use Deep Network Designer to perform transfer
learning with an audio classification network, see “Transfer Learning with Pretrained Audio
Networks in Deep Network Designer” (Deep Learning Toolbox).

Use removeLayers to remove the final regression output layer from the graph. After you remove the
regression layer, the new final layer of the graph is a ReLU layer named EmbeddingBatch.

lgraph = removeLayers(lgraph,"regressionoutput");
lgraph.Layers(end)

ans = 
  ReLULayer with properties:

    Name: 'EmbeddingBatch'

Use addLayers to add a fullyConnectedLayer, a softmaxLayer, and a classificationLayer
to the layer graph.

lgraph = addLayers(lgraph,fullyConnectedLayer(numClasses,Name="FCFinal"));
lgraph = addLayers(lgraph,softmaxLayer(Name="softmax"));
lgraph = addLayers(lgraph,classificationLayer(Name="classOut"));

Use connectLayers to append the fully connected, softmax, and classification layers to the layer
graph.

lgraph = connectLayers(lgraph,"EmbeddingBatch","FCFinal");
lgraph = connectLayers(lgraph,"FCFinal","softmax");
lgraph = connectLayers(lgraph,"softmax","classOut");

Specify Training Options

To define the training options, use the trainingOptions function. Set the solver to "adam" and
train for five epochs with a mini-batch size of 128. Specify an initial learning rate of 0.001 and drop
the learning rate after two epochs by multiplying by a factor of 0.5. Monitor the network accuracy
during training by specifying validation data and the validation frequency.

miniBatchSize = 128;
options = trainingOptions("adam", ...
    MaxEpochs=5, ...
    MiniBatchSize=miniBatchSize, ...
    InitialLearnRate = 0.001, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropPeriod=2, ...
    LearnRateDropFactor=0.5, ...
    ValidationData={validationFeatures,validationLabels}, ...
    ValidationFrequency=50, ...
    Shuffle="every-epoch");

Train Network

To train the network, use the trainNetwork function. By default, trainNetwork uses a GPU if one
is available. Otherwise, it uses a CPU. Training on a GPU requires Parallel Computing Toolbox™ and a
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supported GPU device. For information on supported devices, see “GPU Computing Requirements”
(Parallel Computing Toolbox). You can also specify the execution environment by using the
ExecutionEnvironment name-value argument of trainingOptions.

[net,netInfo] = trainNetwork(trainFeatures,trainLabels,lgraph,options);

Training on single GPU.
|======================================================================================================================|
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Validation  |  Mini-batch  |  Validation  |  Base Learning  |
|         |             |   (hh:mm:ss)   |   Accuracy   |   Accuracy   |     Loss     |     Loss     |      Rate       |
|======================================================================================================================|
|       1 |           1 |       00:00:17 |        3.91% |       20.07% |       2.4103 |       2.1531 |          0.0010 |
|       2 |          50 |       00:00:22 |       96.88% |       82.57% |       0.1491 |       0.7013 |          0.0010 |
|       3 |         100 |       00:00:27 |       92.19% |       83.75% |       0.1730 |       0.7196 |          0.0005 |
|       4 |         150 |       00:00:32 |       94.53% |       85.15% |       0.1654 |       0.8350 |          0.0005 |
|       5 |         200 |       00:00:37 |       96.09% |       85.96% |       0.1747 |       0.8034 |          0.0003 |
|       5 |         210 |       00:00:38 |       93.75% |       86.03% |       0.1643 |       0.7835 |          0.0003 |
|======================================================================================================================|
Training finished: Max epochs completed.

Test Network

Classify the validation mel spectrograms using the trained network.

[validationPredictions,validationScores] = classify(net,validationFeatures);

Each audio file produces multiple mel spectrograms. Combine the predictions for each audio file in
the validation set using a majority-rule decision and calculate the classification accuracy.

idx = 1;
validationPredictionsPerFile = categorical;
for ii = 1:numel(adsValidation.Files)
    validationPredictionsPerFile(ii,1) = mode(validationPredictions(idx:idx+segmentsPerFile(ii)-1));
    idx = idx + segmentsPerFile(ii);
end

accuracy = mean(validationPredictionsPerFile==adsValidation.Labels)*100

accuracy = 92.5000

Use confusionchart to evaluate the performance of the network on the validation set.

figure(Units="normalized",Position=[0.2 0.2 0.5 0.5]);
cm = confusionchart(adsValidation.Labels,validationPredictionsPerFile);
cm.Title = sprintf("Confusion Matrix for Validation Data \nAccuracy = %0.2f %%",accuracy);
cm.ColumnSummary = "column-normalized";
cm.RowSummary = "row-normalized";
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Visualize Predictions

View a random sample of the input data with the true and predicted class labels.

numImages = ;
idxSubset = randi(numel(validationLabels),1,numImages);

viewingAngle = ;

figure
t1 = tiledlayout("flow",TileSpacing="compact");
for i = 1:numImages
    img = validationFeatures(:,:,:,idxSubset(i));
    YPred = validationPredictions(idxSubset(i));
    YTrue = validationLabels(idxSubset(i));

    nexttile
    surf(img,EdgeColor="none")
    view(viewingAngle)
    title({"True: " + string(YTrue),"Predicted: " + string(YPred)},interpreter= "none")
end
colormap parula
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The x-axis represents time, the y-axis represents frequency, and the colormap represents decibels.
For several of the classes, you can see interpretable features. For example, the spectrogram for the
clock_tick class shows a repeating pattern through time representing the ticking of a clock. The
first spectrogram from the helicopter class has the constant, loud, low-frequency sound of the
helicopter engine and a repeating high-frequency sound representing the spinning of the helicopter
blades.

As the network is a convolutional neural network with image input, the network might use these
features when making classification decisions. You can investigate this hypothesis using deep
learning interpretability techniques.

Investigate Predictions

Investigate the predictions of the validation mel spectrograms. For each input, generate the Grad-
CAM (gradCAM (Deep Learning Toolbox)), LIME (imageLIME (Deep Learning Toolbox)), and
occlusion sensitivity (occlusionSensitivity (Deep Learning Toolbox)) maps for the predicted
classes. These methods take an input image and a class label and produce a map indicating the
regions of the image that are important to the score for the specified class. Each visualization method
has a specific approach that determines the output it produces.

• Grad-CAM — Use the gradient of the classification score with respect to the convolutional features
determined by the network to understand which parts of the image are most important for
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classification. The places where the gradient is large are the places where the final score depends
most on the data.

• LIME — Approximate the classification behavior of a deep learning network using a simpler, more
interpretable model, such as a linear model or a regression tree. The simple model determines the
importance of features of the input data as a proxy for the importance of the features to the deep
learning network.

• Occlusion sensitivity — Perturb small areas of the input by replacing them with an occluding
mask, typically a gray square. As the mask moves across the image, the technique measures the
change in probability score for a given class.

Comparing the results of different interpretability techniques is important for verifying the
conclusions you make. For more information about these techniques, see “Deep Learning
Visualization Methods” (Deep Learning Toolbox).

Using the supporting function helperPlotMaps, defined at the end of this example, plot the input
log mel spectrogram and the three interpretability maps for a selection of images and their predicted
classes.

viewingAngle = ;
imgIdx = [250 500 750];
numImages = length(imgIdx);

figure
t2 = tiledlayout(numImages,4,TileSpacing="compact");
for i = 1:numImages

    img = validationFeatures(:,:,:,imgIdx(i));
    YPred = validationPredictions(imgIdx(i));
    YTrue = validationLabels(imgIdx(i));

    mapClass = YPred;

    mapGradCAM = gradCAM(net,img,mapClass, ...
        OutputUpsampling="nearest");

    mapLIME = imageLIME(net,img,mapClass, ...
        OutputUpsampling="nearest", ...
        Segmentation="grid");

    mapOcclusion = occlusionSensitivity(net,img,mapClass, ...
        OutputUpsampling="nearest");

    maps = {mapGradCAM,mapLIME,mapOcclusion};
    mapNames = ["Grad-CAM","LIME","Occlusion Sensitivity"];

    helperPlotMaps(img,YPred,YTrue,maps,mapNames,viewingAngle,mapClass)
end
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The interpretability mappings highlight regions of interest for the predicted class label of each
spectrogram.

• For the clock_tick class, all three methods focus on the same area of interest. The network uses
the region corresponding to the ticking sound to make its prediction.

• For the helicopter class, all the three methods focus on the same region at the bottom of the
spectrogram.

• For the crying_baby class, the three methods highlight different areas of the spectrogram,
possibly because this spectrogram contains many small features. Methods like Grad-CAM, which
produce lower resolution maps, might have difficulty picking out meaningful features. This
example highlights the limits of using interpretability methods to understand individual network
predictions.

As the results of training have an element of randomness, if you run this example again, you might
see different results. Additionally, to produce interpretable output for different images, you might
need to adjust the map parameters for the occlusion sensitivity and LIME maps. Grad-CAM does not
require parameter tuning, but it can produce lower resolution maps than the other two methods.

Investigate Predictions for Specific Class

Investigate the interpretability maps for spectrograms from a particular class.

Find the spectrograms corresponding to the helicopter class.
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classToInvestigate = ;
idxClass = find(classes == classToInvestigate);
idxSubset = validationLabels==classes(idxClass);

subsetLabels = validationLabels(idxSubset);
subsetImages = validationFeatures(:,:,:,idxSubset);
subsetPredictions = validationPredictions(idxSubset);

imgIdx = [25 50 100];
numImages = length(imgIdx);

Generate and plot the interpretability maps using the input spectrograms and the predicted class
labels.

viewingAngle = ;

figure
t3 = tiledlayout(numImages,4,"TileSpacing","compact");
for i = 1:numImages

    img = subsetImages(:,:,:,imgIdx(i));
    YPred = subsetPredictions(imgIdx(i));
    YTrue = subsetLabels(imgIdx(i));

    mapClass = YPred;

    mapGradCAM = gradCAM(net,img,mapClass, ...
        OutputUpsampling="nearest");

    mapLIME = imageLIME(net,img,mapClass, ...
        OutputUpsampling="nearest", ...
        Segmentation="grid");

    mapOcclusion = occlusionSensitivity(net,img,mapClass, ...
        OutputUpsampling="nearest");

    maps = {mapGradCAM,mapLIME,mapOcclusion};
    mapNames = ["Grad-CAM","LIME","Occlusion Sensitivity"];

    helperPlotMaps(img,YPred,YTrue,maps,mapNames,viewingAngle,mapClass)
end
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The maps for each image show that the network is focusing on the area of high intensity and low
frequency. The result is surprising as you might expect the network to also be interested in the high-
frequency noise that repeats through time. Spotting patterns like this is important for understanding
the features a network is using to make predictions.

Investigate Misclassifications

Use the interpretability maps to investigate misclassifications.

Investigate a spectrogram with the true class chainsaw but the predicted class helicopter.

trueClass = ;

predictedClass = ;

incorrectIdx = find(validationPredictions == predictedClass & validationLabels' == trueClass);

idxToInvestigate = incorrectIdx(1);
YPred = validationPredictions(idxToInvestigate);
YTrue = validationLabels(idxToInvestigate);

Generate and plot the maps for both the true class (chainsaw) and the predicted class
(helicopter).

 Investigate Audio Classifications Using Deep Learning Interpretability Techniques

1-913



figure
t4 = tiledlayout(2,4,"TileSpacing","compact");
img = validationFeatures(:,:,:,idxToInvestigate);

for mapClass = [YPred, YTrue]

    mapGradCAM = gradCAM(net,img,mapClass, ...
        OutputUpsampling="nearest");

    mapLIME = imageLIME(net,img,mapClass, ...
        OutputUpsampling="nearest", ...
        Segmentation="grid");

    mapOcclusion = occlusionSensitivity(net,img,mapClass, ...
        OutputUpsampling="nearest");

    maps = {mapGradCAM,mapLIME,mapOcclusion};
    mapNames = ["Grad-CAM","LIME","Occlusion Sensitivity"];

    helperPlotMaps(img,YPred,YTrue,maps,mapNames,viewingAngle,mapClass)
end
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The network focuses on the area of low frequency for the helicopter class. The result matches the
interpretability maps generated for the helicopter class. Visual inspection is important for
investigating what parts of an input the network is using to make its classification decisions.

Supporting Functions

helperPlotMaps

The supporting function helperPlotMap generates a plot of the input image and the specified
interpretability maps.

function helperPlotMaps(img,YPred,YTrue,maps,mapNames,viewingAngle,mapClass)
nexttile
surf(img,EdgeColor="none")
view(viewingAngle)
title({"True: "+ string(YTrue), "Predicted: " + string(YPred)}, ...
    interpreter="none")
colormap parula

numMaps = length(maps);
for i = 1:numMaps
    map = maps{i};
    mapName = mapNames(i);

    nexttile
    surf(map,EdgeColor="none")
    view(viewingAngle)
    title(mapName,mapClass,interpreter="none")
end
end

helperAudioPreprocess

The supporting function helperAudioPreprocess takes as input an audioDatastore object and
the overlap percentage between log mel spectrograms and returns matrices of predictors and
responses suitable for input to the VGGish network.

function [predictor,response,segmentsPerFile] = helperAudioPreprocess(ads,overlap)

numFiles = numel(ads.Files);

% Extract predictors and responses for each file
for ii = 1:numFiles
    [audioIn,info] = read(ads);

    fs = info.SampleRate;
    features = vggishPreprocess(audioIn,fs,OverlapPercentage=overlap); 
    numSpectrograms = size(features,4);

    predictor{ii} = features;
    response{ii} = repelem(info.Label,numSpectrograms);
    segmentsPerFile(ii) = numSpectrograms;

end

% Concatenate predictors and responses into arrays
predictor = cat(4,predictor{:});
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response = cat(2,response{:});
end
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Speech Command Recognition on Raspberry Pi Using Simulink

This example shows how to deploy feature extraction and a convolutional neural network (CNN) for
speech command recognition on Raspberry Pi™. In this example you develop a simulink® model that
captures audio from the microphone connected to the Raspberry Pi board and performs speech
command recognition. You run the Simulink model on Raspberry Pi in External Mode and display
the recognized speech command. For details about audio preprocessing and network training, see
“Train Speech Command Recognition Model Using Deep Learning” on page 1-332.

Prepare Simulink Model

Create a Simulink model and capture the feature extraction, convolutional neural network and
postprocessing as developed in “Speech Command Recognition in Simulink” on page 1-40. Add the
ALSA Audio Capture (Simulink Support Package for Raspberry Pi Hardware) block from the
Simulink Support Package for Raspberry Pi Hardware library as shown.

Connect a microphone to your Raspberry Pi board and use listAudioDevices (Simulink
Support Package for Raspberry Pi Hardware) to list all the audio capture devices connected
to your board.

r = raspi("raspiname","pi","password");
a = listAudioDevices(r,"capture");
a(1)
a(2)

ans =

struct with fields:
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           Name: 'USB-Audio-LogitechUSBHeadsetH340-LogitechInc.LogitechUSBHeadsetH340atusb-0000:01:00.0-1.3,fullspeed'
         Device: '2,0'
       Channels: {}
       BitDepth: {}
   SamplingRate: {}

ans =

struct with fields:

           Name: 'USB-Audio-PlantronicsBT600-PlantronicsPlantronicsBT600atusb-0000:01:00.0-1.1,fullspeed'
         Device: '3,0'
       Channels: {'1'}
       BitDepth: {'16-bit integer'}
   SamplingRate: {'16000'}

ALSA Audio Capture (Simulink Support Package for Raspberry Pi Hardware) block captures the audio
signal from the default audio device on the Raspberry Pi hardware. You can also enter the name of an
audio device such as plughw:2,0 to capture audio from a device other than the default audio device.
Double click on the ALSA Audio Capture (Simulink Support Package for Raspberry Pi Hardware)
block and set Device name to plughw:2,0. Set the other parameters as shown.

ALSA Audio Capture (Simulink Support Package for Raspberry Pi Hardware) outputs 16-bit fixed-
point audio samples with values in the interval of . You cast the ALSA Audio Capture
(Simulink Support Package for Raspberry Pi Hardware) ouput to single-precision data and multiply it
by  to change the numerical range to . Note that you are changing the numerical range
because the subsequent blocks expect the audio in the range . Use Audio File Read (Simulink
Support Package for Raspberry Pi Hardware) block and a Manual Switch to switch the audio from the
microphone to the audio file and back.

model = "slexSpeechCommandRecognitionRaspiExample";
open_system(model)
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Configure Code Generation Settings

Open the SpeechCommRecognitionRaspi model, go to MODELING Tab and Click on Model
Settings or press Ctrl+E. Select Code Generation and set the System Target File to ert.tlc
whose Description is Embedded Coder. Set the Language to C++, which will automatically set the
Language Standard to C++11 (ISO).

Alternatively, use set_param to configure the settings programmatically,

set_param(model,SystemTargetFile="ert.tlc")
set_param(model,TargetLang="C++")
set_param(model,TargetLangStandard="C++11 (ISO)")
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To run your model in External Mode, set Code Interface packaging to Nonreusable function
and check variable-size signals in Code Generation > Interface > Support as shown.

Select a solver that supports code generation. Set Solver to auto (Automatic solver
selection) and Solver type to Fixed-step.

set_param(model,SolverName="FixedStepAuto")
set_param(model,SolverType="Fixed-step")

In Configuration > Hardware Implementation, set Hardware board to Raspberry Pi and enter
your Raspberry Pi credentials in the Board Parameters as shown.
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In the same window, set External mode > Communication interface to XCP on TCP/IP as
shown.

Check Signal logging in Data Import/Export to enable signal monitoring in External Mode.
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Deploy the Model on Raspberry Pi and Perform Speech Command Recognition

Go to Hardware tab and click on Monitor & Tune as shown.

Now close the model.

save_system(model);
close_system(model);

Other Things To Try

• Simulate “Speech Command Recognition Code Generation with Intel MKL-DNN Using Simulink”
on page 1-875 Example in Processor-in-the-loop (PIL) mode on Raspberry Pi.

• Use LED (Simulink Support Package for Raspberry Pi Hardware) block of Simulink Support
Package for Raspberry Pi Hardware and light it up for the Go speech command. Use Deploy pane
in Hardware tab to deploy the standalone application on Raspberry Pi.
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Speech Command Recognition Using Deep Learning

This example shows how to perform speech command recognition on streaming audio. The example
uses a pretrained deep learning model. To learn how the deep learning model was trained, see “Train
Speech Command Recognition Model Using Deep Learning” on page 1-332.

Load the pre-trained network. The network is trained to recognize the following speech commands:
yes, no, up, down, left, right, on, off, stop, and go, and to otherwise classify audio as an unknown
word or as background noise.

load("commandNet.mat")
labels = trainedNet.Layers(end).Classes'

labels = 1×12 categorical
     down      go      left      no      off      on      right      stop      up      yes      unknown      background 

Load one of the following audio signals: noise, someone saying stop, or someone saying play. The
word stop is recognized by the network as a command. The word play is an unknown word to the
network. Listen to the signal.

audioData = ;
sound(audioData{1},audioData{2})

The pre-trained network takes auditory-based spectrograms as inputs. Use the supporting function
extractAuditorySpectrogram on page 1-928 to extract the spectrogram. Classify the audio
based on its auditory spectrogram.

auditorySpectrogram = extractAuditorySpectrogram(audioData{1},audioData{2});
prediction = classify(trainedNet,auditorySpectrogram);

Use the supporting function visualizeClassificationPipeline on page 1-929, to plot the
audio signal, the auditory spectrogram, the network prediction, and a word cloud indicating the
prediction scores.

visualizeClassificationPipeline(audioData,trainedNet)
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Detect Commands from Streaming Audio

The model was trained to classify auditory spectrograms that correspond to 1-second chunks of audio
data. It has no concept of memory between classifications. To adapt this model for streaming
applications, you can add logic to build up decision confidence over time.

Create a 9-second long audio clip of the background noise, the unknown word, and the known
command.

fs = 16e3;
audioPlay = audioread("playCommand.flac");
audioStop = audioread("stopCommand.flac");
audioBackground = 0.02*pinknoise(fs);
audioIn = repmat([audioBackground;audioPlay;audioStop],3,1);

Specify the classification rate in hertz. The classification rate is the number of classifications per
second. Every classification requires 1 second of audio data.

classificationRate = ; % Hz

Specify the time window for decisions. Decisions are made by considering all individual classifications
in a decision time window.

decisionTimeWindow = ; % seconds
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Specify thresholds for the decision logic. The frameAgreementThreshold is the percent of frames
within a decisionTimeWindow that must agree to recognize a word. The probabilityThreshold
is the threshold that at least one of the classification probabilities in the decisionTimeWindow must
pass.

frameAgreementThreshold = ; % percent

probabilityThreshold = ;

Use the supporting function, detectCommands on page 1-931, to simulate streaming command
detection. The function uses your default audio device to play the streaming audio.

detectCommands( ...
    Input=audioIn, ...
    SampleRate=fs, ...
    Network=trainedNet, ...
    ClassificationRate=classificationRate, ...
    DecisionTimeWindow=decisionTimeWindow, ...
    FrameAgreementThreshold=frameAgreementThreshold, ...
    ProbabilityThreshold=probabilityThreshold);
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Detect Commands from Microphone Input

You can test the model by performing speech command recognition on data input from your
microphone. In this case, audio is read from your default audio input device. The TimeLimit
parameter controls the duration of the audio recording. You can end the recording early by closing
the scopes.

The network is trained to recognize the following speech commands: yes, no, up, down, left, right, on,
off, stop, and go, and to otherwise classify audio as an unknown word or as background noise.

detectCommands( ...
    SampleRate=fs, ...
    Network=trainedNet, ...

    ClassificationRate= , ...

    DecisionTimeWindow= , ...

    FrameAgreementThreshold= , ...

    ProbabilityThreshold= , ...

    TimeLimit= );
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Supporting Functions

Extract Auditory Spectrogram

function features = extractAuditorySpectrogram(x,fs)
%extractAuditorySpectrogram Compute auditory spectrogram
%
% features = extractAuditorySpectrogram(x,fs) computes an auditory (Bark)
% spectrogram in the same way as done in the Train Speech Command
% Recognition Model Using Deep Learning example. Specify the audio input,
% x, as a mono audio signal with a 1 second duration.
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% Design audioFeatureExtractor object
persistent afe segmentSamples
if isempty(afe)
    designFs = 16e3;
    segmentDuration = 1;
    frameDuration = 0.025;
    hopDuration = 0.01;

    numBands = 50;
    FFTLength = 512;

    segmentSamples = round(segmentDuration*designFs);
    frameSamples = round(frameDuration*designFs);
    hopSamples = round(hopDuration*designFs);
    overlapSamples = frameSamples - hopSamples;

    afe = audioFeatureExtractor( ...
        SampleRate=designFs, ...
        FFTLength=FFTLength, ...
        Window=hann(frameSamples,"periodic"), ...
        OverlapLength=overlapSamples, ...
        barkSpectrum=true);
    setExtractorParams(afe,"barkSpectrum",NumBands=numBands,WindowNormalization=false);
end

% Resample to 16 kHz if necessary
if double(fs)~=16e3
    x = cast(resample(double(x),16e3,double(fs)),like=x);
end

% Ensure the input is equal to 1 second of data at 16 kHz.
x = trimOrPad(x,segmentSamples);

% Extract features
features = extract(afe,x);

% Apply logarithm
features = log10(features + 1e-6);

end

Visualize Classification Pipeline

function visualizeClassificationPipeline(audioData,trainedNet)
%visualizeClassificationPipeline Visualize classification pipeline
%
% visualizeClassificationPipeline(audioData,trainedNet) creates a tiled
% layout of the audio data, the extracted auditory spectrogram, and a word
% cloud indicating the relative prediction probability of each class.

% Unpack audio data
audio = audioData{1};
fs = audioData{2};
label = audioData{3};
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% Create tiled layout
tiledlayout(3,1)

% Plot audio signal in first tile
nexttile
plotAudio(audio,fs)
title("Known Class = "+label)

% Plot auditory spectrogram in second tile
nexttile
auditorySpectrogram = extractAuditorySpectrogram(audio,fs);
plotAuditorySpectrogram(auditorySpectrogram)

% Plot network predictions as word cloud in third tile
nexttile
[prediction,scores] = classify(trainedNet,auditorySpectrogram);
wordcloud(trainedNet.Layers(end).Classes,scores)
title("Predicted Class = "+string(prediction))

    function plotAuditorySpectrogram(auditorySpectrogram)
        %plotAuditorySpectrogram Plot auditory spectrogram

        % extratAuditorySpectrogram uses 25 ms windows with 10 ms hops.
        % Create a time vector with instants corresponding to the center of
        % the windows
        t = 0.0125:0.01:(1-0.0125);

        bins = 1:size(auditorySpectrogram,2);

        pcolor(t,bins,auditorySpectrogram')
        shading flat
        xlabel("Time (s)")
        ylabel("Bark (bins)")

    end
    function plotAudio(audioIn,fs)
        %plotAudio Plot audio

        t = (0:size(audioIn,1)-1)/fs;
        plot(t,audioIn)
        xlabel("Time (s)")
        ylabel("Amplitude")
        grid on
        axis tight

    end
end

Trim or Pad

function y = trimOrPad(x,n)
%trimOrPad Trim or pad audio
%
% y = trimOrPad(x,n) trims or pads the input x to n samples along the first
% dimension. If x is trimmed, it is trimmed equally on the front and back.
% If x is padded, it is padded equally on the front and back with zeros.
% For odd-length trimming or padding, the extra sample is trimmed or padded
% from the back.
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a = size(x,1);
if a < n
    frontPad = floor((n-a)/2);
    backPad = n - a - frontPad;
    y = [zeros(frontPad,size(x,2),like=x);x;zeros(backPad,size(x,2),like=x)];
elseif a > n
    frontTrim = floor((a-n)/2) + 1;
    backTrim = a - n - frontTrim;
    y = x(frontTrim:end-backTrim,:);
else
    y = x;
end

end

Plot Streaming Features

function detectCommands(nvargs)
%detectCommand Detect commands
%
% detectCommand(SampleRate=fs,Network=net,ClassificationRate=cr, ...
%   DecisionTimeWindow=dtw,FrameAgreementThreshold=fat,ProbabilityThreshold=pt, ...
%   Input=audioIn)
% opens a timescope to visualize streaming audio and a dsp.MatrixViewer to
% visualize auditory spectrograms extracted from a simulation of streaming
% audioIn. The scopes display the detected speech command after it has been
% processed by the streaming algorithm. The streaming audio is played to
% your default audio output device.
%
% detectCommand(SampleRate=fs,Network=net,ClassificationRate=cr, ...
%   DecisionTimeWindow=dtw,FrameAgreementThreshold=fat,ProbabilityThreshold=pt, ...
%   TimeLimit=tl)
% opens a timescope to visualize streaming audio and a dsp.MatrixViewer to
% visualize auditory spectrograms extracted from audio streaming from your
% default audio input device. The scopes display the detected speech
% command after it has been processed by the streaming algorithm.

arguments
    nvargs.SampleRate
    nvargs.Network
    nvargs.ClassificationRate
    nvargs.DecisionTimeWindow
    nvargs.FrameAgreementThreshold
    nvargs.ProbabilityThreshold
    nvargs.Input = []
    nvargs.TimeLimit = inf;
end

% Isolate the labels
labels = nvargs.Network.Layers(end).Classes;

if isempty(nvargs.Input)
    % Create an audioDeviceReader to read audio from your microphone.
    adr = audioDeviceReader(SampleRate=nvargs.SampleRate,SamplesPerFrame=floor(nvargs.SampleRate/nvargs.ClassificationRate));
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    % Create a dsp.AsyncBuffer to buffer the audio streaming from your
    % microphone into overlapping segments.
    audioBuffer = dsp.AsyncBuffer(nvargs.SampleRate);
else
    % Create a dsp.AsyncBuffer object. Write the audio to the buffer so that
    % you can read from it in a streaming fashion.
    audioBuffer = dsp.AsyncBuffer(size(nvargs.Input,1));
    write(audioBuffer,nvargs.Input);

    % Create an audioDeviceWriter object to write the audio to your default
    % speakers in a streaming loop.
    adw = audioDeviceWriter(SampleRate=nvargs.SampleRate);
end

newSamplesPerUpdate = floor(nvargs.SampleRate/nvargs.ClassificationRate);

% Convert the requested decision time window to the number of analysis frames.
numAnalysisFrame = round((nvargs.DecisionTimeWindow-1)*(nvargs.ClassificationRate) + 1);

% Convert the requested frame agreement threshold in percent to the number of frames that must agree.
countThreshold = round(nvargs.FrameAgreementThreshold/100*numAnalysisFrame);

% Initialize buffers for the classification decisions and probabilities of the streaming audio.
YBuffer = repmat(categorical("background"),numAnalysisFrame,1);
probBuffer = zeros(numel(labels),numAnalysisFrame,"single");

% Create a timescope object to visualize the audio processed in the
% streaming loop. Create a dsp.MatrixViewer object to visualize the
% auditory spectrogram used to make predictions.
wavePlotter = timescope( ...
    SampleRate=nvargs.SampleRate, ...
    Title="...", ...
    TimeSpanSource="property", ...
    TimeSpan=1, ...
    YLimits=[-1,1], ...
    Position=[600,640,800,340], ...
    TimeAxisLabels="none", ...
    AxesScaling="manual");
show(wavePlotter)
specPlotter = dsp.MatrixViewer( ...
    XDataMode="Custom", ...
    AxisOrigin="Lower left corner", ...
    Position=[600,220,800,380], ...
    ShowGrid=false, ...
    Title="...", ...
    XLabel="Time (s)", ...
    YLabel="Bark (bin)");
show(specPlotter)

% Initialize variables for plotting
currentTime = 0;
colorLimits = [-1,1];

% Run the streaming loop.
loopTimer = tic;
while whileCriteria(loopTimer,nvargs.TimeLimit,wavePlotter,specPlotter,nvargs.Input,audioBuffer)

    if isempty(nvargs.Input)
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        % Extract audio samples from the audio device and add the samples to
        % the buffer.
        audioIn = adr();
        write(audioBuffer,audioIn);
    end

    % Read samples from the buffer
    y = read(audioBuffer,nvargs.SampleRate,nvargs.SampleRate - newSamplesPerUpdate);
    
    % Extract an auditory spectrogram from the audio
    spec = extractAuditorySpectrogram(y,nvargs.SampleRate);
    
    % Classify the current spectrogram, save the label to the label buffer,
    % and save the predicted probabilities to the probability buffer.
    [YPredicted,probs] = classify(nvargs.Network,spec);
    YBuffer = [YBuffer(2:end);YPredicted];
    probBuffer = [probBuffer(:,2:end),probs(:)];
    
    % Plot the current waveform and spectrogram.
    ynew = y(end-newSamplesPerUpdate+1:end);
    wavePlotter(ynew)
    specPlotter(spec')

    % Declare a detection and display it in the figure if the following hold: 
    %   1) The most common label is not background. 
    %   2) At least countThreshold of the latest frame labels agree. 
    %   3) The maximum probability of the predicted label is at least probThreshold.
    % Otherwise, do not declare a detection.
    [YMode,count] = mode(YBuffer);
    maxProb = max(probBuffer(labels == YMode,:));
    if YMode == "background" || count < countThreshold || maxProb < nvargs.ProbabilityThreshold
        wavePlotter.Title = "...";
        specPlotter.Title = "...";
    else
        wavePlotter.Title = string(YMode);
        specPlotter.Title = string(YMode);
    end
    
    % Update variables for plotting
    currentTime = currentTime + newSamplesPerUpdate/nvargs.SampleRate;
    colorLimits = [min([colorLimits(1),min(spec,[],"all")]),max([colorLimits(2),max(spec,[],"all")])];
    specPlotter.CustomXData = [currentTime-1,currentTime];
    specPlotter.ColorLimits = colorLimits;

    if ~isempty(nvargs.Input)
        % Write the new audio to your audio output device.
        adw(ynew);
    end
end
release(wavePlotter)
release(specPlotter)

    function tf = whileCriteria(loopTimer,timeLimit,wavePlotter,specPlotter,Input,audioBuffer)
        if isempty(Input)
            tf = toc(loopTimer)<timeLimit && isVisible(wavePlotter) && isVisible(specPlotter);
        else
            tf = audioBuffer.NumUnreadSamples > 0;
        end
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    end
end
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Keyword Spotting in Simulink

This example shows a Simulink® model that identifies a keyword in speech using a pretrained deep
learning model. This model was trained to identify the keyword "yes". To learn about the model
architecture and training, see “Keyword Spotting in Noise Using MFCC and LSTM Networks” on
page 1-496.

Download Pretrained Keyword Spotting Network

Download and unzip the pretrained network and the standardization factors. The standardization
factors are the global mean and standard deviation of the features used to train the model.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","KeywordSpotting.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
netFolder = fullfile(dataFolder,"KeywordSpotting");
addpath(netFolder)

Model Description

The deep learning network was trained on mel-frequency cepstral coefficients (MFCC) computed
using an audioFeatureExtractor. The MFCC block in the model has been configured to extract the
same features that the network was trained on.

The MFCC block extracts feature vectors from the audio stream using 512-point analysis windows with
384-point overlap and then applies a buffer to output 16 feature vectors consisting of 39 features
each. Buffering the feature vectors enables vectorized computations on the Stateful Classify
block, which enables the system to keep pace with real time (given a short time delay).

After the MFCC block, the features are standardized using precomputed coefficients and then
transposed so that time is along the second dimension.

The Stateful Classify block outputs a binary decision for each feature vector. The decisions are
converted to doubles and then upsampled to create a decision mask the same length as the
corresponding audio.

open_system("keywordSpotting.slx")

Run Model

Use the Manual Switch block to select either a live stream from your microphone or a test signal
from an audio file.
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sim("keywordSpotting.slx");

Close the model and remove the path to the pretrained network.

close_system("keywordSpotting.slx",0);
rmpath(netFolder)
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Audio Transfer Learning Using Experiment Manager

This example shows how to configure an experiment that compares the performance of multiple
pretrained networks when applied to a speech command recognition task using transfer learning. It
highlights Experiment Manager (Deep Learning Toolbox)'s capability to tune hyperparameters and
easily compare results between the different pretrained networks using both built-in and user-defined
metrics.

Audio Toolbox™ provides a variety of pretrained networks for audio processing, and each consists of
a different architecture that requires different data pre-processing. These differences result in
tradeoffs between the accuracy, speed, and size of the various networks. Experiment Manager
organizes the results of training experiments to highlight the strengths and weaknesses of each
individual network so you can select the network that best fits your constraints.

The example compares the performance of the YAMNet and VGGish pretrained networks, as well as a
custom-designed network that is trained from scratch. See Deep Network Designer (Deep Learning
Toolbox) to explore other pretrained network options supported by Audio Toolbox™.

In this example you will download the Google Speech Commands Dataset [1] and the pretrained
networks and store them in your temp directory if they are not already present. The dataset takes up
1.96 GB of disk space and the networks in total take up 470 MB.

Open Experiment Manager

Load the example by clicking the Open Example button. This opens the project in Experiment
Manager in your MATLAB editor.
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Built-in training experiments consist of a description, a table of hyperparameters, a setup function,
and a collection of metric functions to evaluate the results of the experiment. For more information,
see “Configure Built-In Training Experiment” (Deep Learning Toolbox).

The Description field contains a textual description of the experiment.

The Hyperparameters section specifies the strategy (Exhaustive Sweep) and hyperparameter values
to use for the experiment. When you run the experiment, Experiment Manager trains the network
using every combination of hyperparameter values specified in the hyperparameter table. This
example demonstrates how to test the different network types. Define one hyperparameter, Network,
to represent the network names stored as strings.

The Setup Function field contains the name of the main function that configures the training data,
network architecture, and training options for the experiment. The input to the setup function is a
structure with fields from the hyperparameter table. The setup function returns the training data,
network architecture, and training parameters as outputs. This has already been implemented for
you.
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The Metrics list enables you to define your own custom metrics to compare across different trials of
the training experiment. A couple of example custom metric functions are defined for you later in this
example. Experiment Manager runs each of the listed metrics against the networks trained in each
trial. The metrics defined for you in this example are listed here. Any additional custom metric you
intend to use must be listed in this section.

Define Setup Function

In this example, the Setup Function downloads the dataset, selects the desired network, performs
the requisite data pre-processing, and sets the network training options. The input to this function is
a structure with fields for each of the hyperparameters defined in the Experiment Manager interface.
In the Setup Function for this example the input variable is named params and the output variables
are named trainingData, layers, and options representing the training data, network structure,
and training parameters, respectively. The key steps of the Setup Function for this example are
explained below. Open the example in MATLAB to see the full definition of compareNetSetup, the
name of the Setup Function used in this example.

Download and Extract Data

To speed up the example, open compareNetSetup and toggle the speedUp flag to true. This
reduces the size of the dataset to quickly test the basic functionality of the experiment.

speedUp = false;

The helper function setupDatastores downloads the Google Speech Commands Dataset [1], selects
the commands for networks to recognize, and randomly partitions the data into training and
validation datastores.

[adsTrain,adsValidation] = setupDatastores(speedUp);

Select the Desired Network and Preprocess Data

Initially transform the datastores based on the preprocessing required by the network type defined in
the hyperparameter table, which is accessed as params.Network. The helper function
extractSpectrogram processes the input data to the format expected by each respective network
type. The helper function getLayers returns a layerGraph (Deep Learning Toolbox) object that
represents the architecture of the desired network.

tdsTrain = transform(adsTrain,@(x)extractSpectrogram(x,params.Network));
tdsValidation = transform(adsValidation,@(x)extractSpectrogram(x,params.Network));

layers = getLayers(classes,classWeights,numClasses,netName);

Now that the datastores are properly set up, read the data into the trainingData and
validationData variables.

trainingData = readall(tdsTrain,UseParallel=canUseParallelPool);
validationData = readall(tdsValidation,UseParallel=canUseParallelPool);

validationData = table(validationData(:,1),adsValidation.Labels);
trainingData = table(trainingData(:,1),adsTrain.Labels);

Set the Training Options

Set the training parameters by assigning a trainingOptions (Deep Learning Toolbox) object into
the options output variable. Train the networks for a maximum of 30 epochs with a patience of 8
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epochs using the Adam optimizer. Set the ExecutionEnvironment field to "auto" to use a GPU if
available. Without using a GPU, training may be very time consuming.

maxEpochs = 30;
miniBatchSize = 256;
validationFrequency = floor(numel(TTrain)/miniBatchSize);
options = trainingOptions("adam", ...
    GradientDecayFactor=0.7, ...
    InitialLearnRate=params.LearnRate, ...
    MaxEpochs=maxEpochs, ...
    MiniBatchSize=miniBatchSize, ...
    Shuffle="every-epoch", ...
    Plots="training-progress", ...
    Verbose=false, ...
    ValidationData=validationData, ...
    ValidationFrequency=validationFrequency, ...
    ValidationPatience=10, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropFactor=0.2, ...
    LearnRateDropPeriod=round(maxEpochs/3), ...
    ExecutionEnvironment="auto");

Define Custom Metrics

Experiment Manager enables you to define custom metric functions to evaluate the performance of
the networks trained in each trial. Basic metrics like accuracy and loss are computed by default. In
this example you compare the size of each of the models as memory usage is an important metric
when deploying deep neural networks to real-world applications.

Custom metric functions must take one input argument trialInfo which is a structure containing
the fields trainedNetwork, trainingInfo, and parameters.

• trainedNetwork is the SeriesNetwork (Deep Learning Toolbox) object or DAGNetwork (Deep
Learning Toolbox) object returned by the trainNetwork (Deep Learning Toolbox) function.

• trainingInfo is a struct containing the training information returned by the trainNetwork
(Deep Learning Toolbox) function.

• parameters is a struct with fields from the hyperparameter table

The metric functions must return a scalar number, logical output, or string which gets displayed in
the results table. The custom metrics defined for you in this experiment are listed below:

• sizeMB computes the memory allocated to store the networks in megabytes
• numLearnableParams counts the number of learnable parameters within each model
• numIters computes the number of mini-batches each network trained on before hitting either

MaxEpochs or violating the ValidationPatience parameter in the trainingOptions object.

Run Experiment

Press 'Run' in the top pane of the Experiment Manager app to run the experiment. You can select to
either run each trial sequentially, simultaneously, or in batches by toggling the mode option. For this
experiment, the trials were run sequentially.
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Evaluate Results

When the experiment finishes, the results for each trial appear and the metrics are displayed in
tabular format. The progress bar shows how many epochs each network trained for before violating
the patience parameter in terms of the percentage of MaxEpochs.

The table can be sorted by entries in each column by hovering over the right side of the column name
cell and clicking the arrow that appears. Click the table icon on the top right to select which columns
to show or hide. To first compare the networks by accuracy, sort the table over the Validation
Accuracy in descending order.

In terms of accuracy, the Yamnet network performs the best followed by VGGish, and lastly the
custom network. However, the Elapsed Time column shows that Yamnet takes the longest to train. To
compare the size of these networks, sort the table by the sizeMB column.

The custom network is the smallest, Yamnet is a few orders of magnitude larger, and VGGish is the
largest.

These results highlight the tradeoffs between the different network designs. The Yamnet network
performs the best at the classification task at the cost of more training time and a moderately large
memory consumption. The VGGish network performs slightly worse in terms of accuracy but requires
over 20 times more memory than YAMNet. Lastly, the custom network has the worst accuracy by a
small margin but also uses the least memory.

Notice that even though Yamnet and VGGish are pretrained networks, the custom network
converges the fastest. Looking at the NumIters column, the custom network takes the most batch
iterations to converge because it is learning from scratch. But, since the custom network is much
smaller and shallower than the deep pretrained models, each of these batch updates are processed
much faster so the overall training time is reduced.

To save one of the trained networks from any of the trials, right click on the corresponding row in the
results table and select Export Trained Network.

To further analyze any of the individual trials, single click on the corresponding row, and under the
Review Results tab in the top pane, you can choose to bring up a plot of the training progress or a
confusion matrix of the resulting trained model. Below shows the confusion matrix for the Yamnet
model from trial 2 of the experiment.
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The model struggles most at differentiating between the pair of commands "off" and "up" as well as
the pair "no" and "go", although the accuracy is generally uniform across all classes. Further, the
model is very confident in predicting the "yes" command as the false positive rate for that class is
only .4%.

References

[1] Warden P. "Speech Commands: A public dataset for single-word speech recognition", 2017.
Available from https://storage.googleapis.com/download.tensorflow.org/data/
speech_commands_v0.01.tar.gz. Copyright Google 2017. The Speech Commands Dataset is licensed
under the Creative Commons Attribution 4.0 license, available here: https://creativecommons.org/
licenses/by/4.0/legalcode.
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Model Smart Speaker in Simulink

This example shows how to model a smart speaker system in Simulink. The smart speaker
incorporates voice command recognition and operates in real time.

Introduction

A smart speaker is a speaker that can be controlled by your voice. This example shows a smart
speaker model that responds to a number of voice commands. You make the smart speaker play
music with the command "Go". You make it stop playing music by saying "Stop". You increase or
decrease the music volume with the commands "Up" and "Down", respectively.

Model Summary

The model comprises three main parts:

1 An audio input path, representing microphone preprocessing.
2 An audio output path, representing loudspeaker output processing.
3 Audio devices and scopes, including components to monitor the audio and plot output signals in

the time and frequency domains.

open_system("audioSmartSpeaker");

Voice Command Source

You can drive the smart speaker in two ways:

1 You can specify commands directly as the model is running through a microphone. Set up your
microphone through the dialog of the Audio Device Reader block.

2 You can also simulate the reception of signals into a microphone array. In this case, the source of
the voice commands is a set of audio files containing prerecorded commands.
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Select the voice command source by toggling the manual switch in the Audio Input Path section of the
model.

Acoustic Beamforming

You apply acoustic beamforming when you simulate a microphone array. In this case, you model three
sound sources in the Voice Command subsystem (the voice command, plus two background noise
sources). The Acoustic Beamformer subsystem processes the different sound signals to isolate and
enhance the voice command.

Acoustic Echo Cancellation

When you utter commands as music is playing, the music is picked up by the microphone after it
reverberates around the room, creating an undesired feedback effect.

The Acoustic Echo Cancellation (AEC) subsystem removes the playback audio from the input signal
by using a Normalized LMS adaptive filter. This component applies only when you simulate a
microphone array using acoustic beamforming.

You can include or exclude the AEC component by changing the value of the check box on its mask
dialog.

To hear the effect of AEC on the input audio signal, flip the manual switch in the Audio Devices and
Scopes section of the model.

Speech Command Recognition

You pass the preprocessed speech command to the Speech Command Recognition subsystem. Speech
command recognition is based on a pretrained deep learning convolutional network identical to the
one in the “Train Speech Command Recognition Model Using Deep Learning” on page 1-332
example.

You extract auditory (Bark) spectrograms from the input audio, which you feed to the pretrained
network. The network outputs the predicted command. You use this command to drive the Audio
Output Path section of the model.

Control Audio Output Path with State Charts

The decoded speech command goes into two different state charts:

1 The first chart controls playback. Music starts paying when the "Go" command is received, and
stops playing when "Stop" is received.

2 The second chart controls the playback volume by reacting to the commands "Up" and "Down".

Speaker Output Processing

When playback is triggered, the Speaker Output Processing subsystem is enabled. This subsystem
contains blocks commonly used to tune audio, such as a Graphic EQ, a multiband parametric
equalizer, and a dynamic range controller (limiter). You can tune your system sound as the model is
playing by opening the mask dialog of these blocks and changing the values of parameters (for
example, the frequencies of the Graphic EQ).
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Smoothed Mute

When the music stops playing, it fades smoothly rather than stopping suddenly. This is achieved by
the Smoothed Mute block which applies a time-varying gain on the audio signal. This block is based
on the System object SmoothedMute.

Speaker Modeling

After Speaker Output Processing and Smoothed Mute, the signal goes into a Speaker Model
subsystem. This subsystem allows you to control how the loudspeaker is modeled:

1 You can choose a behavioral model which implements the speaker model using basic
mathematics Simulink blocks (such as sum, delay, integrator, and gain).

2 You can choose a circuit model which implements the speaker model using SimScape
components.

3 You may also bypass these models if you are using a real, physical loudspeaker to listen to the
audio.

Change the value of the variable speakerMode in the base workspace to select one of bypass
(speakerMode=0), behavioral (speakerMode=1), or circuit (speakerMode=2).

Audio Devices and Scopes

The model uses a Spectrum Analyzer block to plot the audio signal in the frequency domain, and a
time scope to visualize the streaming time-domain audio.
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Train 3-D Speech Enhancement Network Using Deep Learning

In this example, you train a filter and sum network (FaSNet) [1] on page 1-959 to perform speech
enhancement (SE) using ambisonic data. The model has been updated to use stacked dual-path
recurrent neural networks (DPRNNs) which enable memory-efficient joint modeling of short- and
long-term sequences [4] on page 1-960. To explore the model trained in this example, see “3-D
Speech Enhancement Using Trained Filter and Sum Network” on page 1-968.
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Introduction

The aim of speech enhancement (SE) is to suppress the noise in a noisy speech signal. The SE system
may be used as a front end in teleconferencing systems, where intelligibility and listening experience
are important metrics, or a speech-to-text system, where the word error rate of the downstream
speech-to-text system is the important metric.

In this example, you use the L3DAS 2021 Task 1 dataset [2] on page 1-960 to train and evaluate a
model that uses B-format ambisonic data to perform speech enhancement. The enhanced speech is
output as a mono audio signal. To explore the model trained in this example, see “3-D Speech
Enhancement Using Trained Filter and Sum Network” on page 1-968.

Optionally Reduce Data Set

To train the network with the entire data set, set speedupExample to false. To run this example
quickly, set speedupExample to true. This network requires a large amount of data to achieve
reasonable results.

speedupExample = ;

Download and Prepare Data

This example uses the L3DAS21 task 1 challenge data set [2] on page 1-960. The train data sets
contains 2 multiple-source and multiple-perspective (MSMP) B-format ambisonic recordings collected
at a sampling rate of 16 kHz. The two microphones are labeled as "A" and "B". In this example, you
discard recordings from microphone B. Including microphone B data in the training should improve
the final performance. The train and validation splits are provided with the data set. The 3-D speech
enhancement data set contains more than 30,000 virtual 3-D audio environments with a duration up
to 10 seconds. Each sample contains a spoken voice and other office-like background noises. The
target data is the clean monophonic voice signal. The dev dataset is 2.6 GB, the train100 dataset is
7.6 GB, and the train360 dataset is 28.6 GB.

Download the data set and point to it using audioDatastore.

downloadLocation = tempdir;

datasetLocationDev = fullfile(downloadLocation,"L3DAS_Task1_dev");
datasetLocationTrain100 = fullfile(downloadLocation,"L3DAS_Task1_train100");
datasetLocationTrain360 = fullfile(downloadLocation,"L3DAS_Task1_train360");
if speedupExample
    if ~datasetExists(datasetLocationDev)
        urlDev = "https://zenodo.org/record/4642005/files/L3DAS_Task1_dev.zip";
        unzip(urlDev,downloadLocation)
    end

    ads = audioDatastore(fullfile(downloadLocation,"L3DAS_Task1_dev"),IncludeSubfolders=true);
else
    if ~datasetExists(datasetLocationDev)
        urlDev = "https://zenodo.org/record/4642005/files/L3DAS_Task1_dev.zip";
        unzip(urlDev,downloadLocation)
    end
    if ~datasetExists(datasetLocationTrain100)
        urlTrain100 = "https://zenodo.org/record/4642005/files/L3DAS_Task1_train100.zip";
        unzip(urlTrain100,downloadLocation)
    end
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    if ~datasetExists(datasetLocationTrain360)
        urlTrain360 = "https://zenodo.org/record/4642005/files/L3DAS_Task1_train360.zip";
        unzip(urlTrain360,downloadLocation)
    end
    adsValidation = audioDatastore(fullfile(downloadLocation,"L3DAS_Task1_dev"),IncludeSubfolders=true);
    adsTrain = audioDatastore([fullfile(downloadLocation,"L3DAS_Task1_train100"), ...
        fullfile(downloadLocation,"L3DAS_Task1_train360")],IncludeSubfolders=true);
end

To subset the datastores into targets and predictors, use subset. Only use microphone A predictors.
Using both microphones should increase model performance at the cost of more training time.

if speedupExample
    [~,fileNames] = fileparts(ads.Files);
    targetFiles = ~endsWith(fileNames,["A","B"]);
    micAFiles = endsWith(fileNames,"A");
    T = subset(ads,targetFiles);
    X = subset(ads,micAFiles);
    XTrain = subset(X,1:40);
    TTrain = subset(T,1:40);
    XValidation = subset(X,41:50);
    TValidation = subset(T,41:50);
else
    [~,fileNames] = fileparts(adsTrain.Files);
    targetFiles = ~endsWith(fileNames,["A","B"]);
    micAFiles = endsWith(fileNames,"A");
    TTrain = subset(adsTrain,targetFiles);
    XTrain = subset(adsTrain,micAFiles);

    [~,fileNames] = fileparts(adsValidation.Files);
    targetFiles = ~endsWith(fileNames,["A","B"]);
    micAFiles = endsWith(fileNames,"A");
    TValidation = subset(adsValidation,targetFiles);
    XValidation = subset(adsValidation,micAFiles);
end

Remove any files that do not overlap between targets and predictors.

[~,hFiles] = fileparts(TTrain.Files);
[~,kFiles] = fileparts(XTrain.Files);
kFiles = erase(kFiles,"_A");
validFiles = intersect(kFiles,hFiles);
targetValidFiles = ismember(validFiles,kFiles);
predictorsValidFiles = ismember(kFiles,validFiles);
TTrain = subset(TTrain,targetValidFiles);
XTrain = subset(XTrain,predictorsValidFiles);

[~,hFiles] = fileparts(TValidation.Files);
[~,kFiles] = fileparts(XValidation.Files);
kFiles = erase(kFiles,"_A");
validFiles = intersect(kFiles,hFiles);
targetValidFiles = ismember(validFiles,kFiles);
predictorsValidFiles = ismember(kFiles,validFiles);
TValidation = subset(TValidation,targetValidFiles);
XValidation = subset(XValidation,predictorsValidFiles);

To combine the predictor and target datastores so that reading from the combined datastore returns
the predictors and associated target, use combine.
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dsTrain = combine(XTrain,TTrain);
dsValidation = combine(XValidation,TValidation);

Inspect Data

Preview the ambisonic recordings and plot the data.

predictor = preview(XTrain);
target = preview(TTrain);

fs = 16e3; % Known sampling rate of data.
t = (0:size(target,1)-1)/fs;

tiledlayout(2,1,TileSpacing="tight")

nexttile
plot(t,target)
title("Target")
xlabel("Time (s)")
axis tight

nexttile
plot(t,predictor)
title("Predictor")
xlabel("Time (s)")
legend(["W","X","Y","Z"])
axis tight

 Train 3-D Speech Enhancement Network Using Deep Learning

1-949



Listen to the target data, the mean of the ambisonic channels, or one of the ambisonic channels
individually.

soundSource = ;
soundsc(soundSource,fs)

Word Error Rate (WER)

Choosing an appropriate metric to evaluate a SE system performance depends on the final task of the
system. For speech-to-text applications, evaluating the word error rate (WER) using the target
speech-to-text system is a common approach. For teleconferencing applications, the short-time
objective intelligibility measure (STOI) is a common approach. Similarly, the choice of loss function
should depend on the final application of the speech enhancement system. In this example, you
attempt to optimize the system to reduce WER for a downstream speech-to-text system. One option
for the loss function is to use the WER directly, however this can be prohibitively time-consuming for
training, and couples the speech enhancement module tightly with the speech-to-text module.
Another approach is to use an auditory-based representation of the targets and predictors and
calculate the mean square error between them. This example takes the second approach. To get a
baseline for performance analysis, calculate the WER of the target (clean) signal, and the noisy signal
using a naive approach to SE (mean over channels). The supporting function, wordErrorRate on
page 1-960, uses the wav2vec2.0 option of the speech2text functionality. If you have not
downloaded the pretrained wav2vec 2.0 model, the function throws an error with a link to the
download. The WER is calculated using Text Analytics Toolbox™.

tds = fileDatastore(datasetValidation, ...
    ReadFcn=@(x)readcell(x), ...
    IncludeSubfolders=true,FileExtensions=".txt");
dsWER = combine(XValidation,TValidation,tds);

WERa = wordErrorRate(dsWER,TargetWER=true,BaselineWER=true);

progress = 1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.40.41.42.43.44.45.46.47.48.49.50.51.52.53.54.55.56.57.58.59.60.61.62.63.64.65.66.67.68.69.70.71.72.73.74.75.76.77.78.79.80.81.82.83.84.85.86.87.88.89.90.91.92.93.94.95.96.97.98.99....complete.

WERa.Target

ans = 0.0296

WERa.Baseline

ans = 0.4001

Filter and Sum Network (FaSNet)

This example uses the filter and sum network (FaSNet) architecture with dual-path recurrent neural
networks (DPRNN). FaSNet is a time-domain adaptive beamforming framework consisting of two
stages:

1 Estimate the beamforming filter for selected reference channel, and then denoise the reference
signal.

2 Beamform remaining channels using the denoised reference channel.

The FaSNet using DPRNN architecture is implemented in the supporting function FaSNet, which is
in the current folder when you open this example.
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Stage 1: Denoise Reference Mic

In stage one, a normalized cross correlation (NCC) metric is computed between the windows of the
reference channel with context and windows of the remaining channels. This example uses cosine
similarity as the correlation metric. The metric is pooled across the channels, passed through a
temporal convolutional network (TCN), and then through the beamforming filter learner. The output
from the beamformer module blocks is then used to filter the reference channel.

Stage 2: Create Beamformed Signal

In stage two, a NCC metric is computed between the denoised windows of the reference channel and
windows of the remaining channels with context. A beamforming filter is learned for each of the
remaining channels. Each channel is separately denoised, and then the channels are summed to
create the beamformed final signal.

Beamformer

The beamformer module follows the design of [1] on page 1-959 except replaces the stacked TCN
blocks with stacked DPRNN blocks.
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Dual-Path Recurrent Neural Network

Dual-path recurrent neural networks (DPRNN) were introduced in [4] on page 1-960 as a method of
organizing RNN layers in a deep structure to model extremely long sequences. DPRNN splits
sequential input into chunks and then applies intra- and inter-chunk operations iteratively. The
approach has been shown to perform as well or better than 1-D CNN architectures with a
significantly smaller model size. The DPRNN model consists of three stages: segmentation, DPRNN
blocks (which may be stacked), and then overlap-add reconstruction.

Segmentation

The sequence is split into S segments of length K with overlap P. In this example, K = 2P.

DPRNN Block

The segmented signal passes through B DPRNN blocks. In this example, B is set to 6. Each block
contains two sub-modules corresponding to intra- and inter-chunk processing. The intra-chunk RNN
is always bi-directional. The intra-chunk RNN processes each segment individually. The inter-chunk
RNN may be uni- or bi-directional, depending on latency requirements of your system. In this
example, the inter-chunk RNN is bi-directional. The inter-chunk RNN processes along the stacked
dimension of length S. The output of each DPRNN block is the same size as the input.
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Overlap-Add

The output from the stacked DPRNN blocks is overlapped and added to reconstruct the sequence
data.
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Define Parameters

Define system-level, FaSNet-level, and DPRNN-level parameters.

% System-level parameters
parameters.SampleRate = fs;
parameters.AnalysisLength = 2*parameters.SampleRate;

% FaSNet-level parameters
parameters.WindowLength = 256;    % L in FaSNet
parameters.EncoderDimension = 64; % Number filters in TCN
parameters.NumDPRNNBlocks = 6;    % Number of stacked DPRNN blocks

% DPRNN-level parameters
parameters.FeatureDimension = 64; % Number of filters in convolutional blocks
parameters.SegmentSize = 24;      % 2P
parameters.HiddenDimension = 128; % RNN size

Initialize Network Learnables

Use the supporting function, intitializeLearnables on page 1-966, to initialize the FaSNet
architecture for the specified parameters.

learnables = initializeLearnables(parameters);

Input Pipeline

Define the mini-batch size. Create minibatchqueue (Deep Learning Toolbox) objects to read mini-
batches from the training data set. The supporting function preprocessMiniBatch on page 1-963
randomly selects a single clip of the specified parameters.AnalysisLength on page 1-954 from
each audio file in the mini-batch. This approach avoids the need to buffer and save individual audio
files, which reduces disk space requirements. The approach has the added benefit of changing the
exact sequences seen between epochs. However, this approach puts more emphasis on shorter files in
the training data.

miniBatchSize = ;

mbqTrain = minibatchqueue(dsTrain, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@(x,t)preprocessMiniBatch(x,t,parameters.AnalysisLength), ...
    DispatchInBackground=canUseParallelPool);

mbqValidation = minibatchqueue(dsValidation, ...
    MiniBatchSize=miniBatchSize, ...
    MiniBatchFcn=@(x,t)preprocessMiniBatch(x,t,parameters.AnalysisLength), ...
    DispatchInBackground=canUseParallelPool);

Training Options

Choose a loss metric as auditory-mse, sample-mse, or sample-sisdr.
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• auditory-mse: Use the mean-square-error (MSE) between a mel spectrogram computed from
the target and a mel spectrogram computed from the prediction.

• sample-mse: Use the sample-level MSE between the target and predictor.
• sample-sisdr: Use the sample-level scale-invariant signal-to-distortion ratio defined in [3] on

page 1-960.

lossType = ;

Define the maximum number of epochs, the initial learn rate, and piece-wise learning parameters
such as validation patience, learn rate drop factor, and minimum learn rate. The default settings
correspond to those reported in [4] on page 1-960 for the task of speaker separation.

maxEpochs = ;

initialLearnRate = ;

validationPatience = ;

learnRateDropFactor = ;

learnRateDropPeriod = ;

if speedupExample
    maxEpochs = 1;
end

Initialize parameters required for the training loop.

iteration = 0;
bestLoss = inf;
averageGrad = [];
averageSqGrad = [];
learnRate = initialLearnRate;

Train Network

Create a trainingProgressMonitor to monitor the training loss and validation loss while training.

monitor = trainingProgressMonitor( ...
    Metrics=["TrainingLoss","ValidationLoss"], ...
    Info=["Epoch","LearnRate"]);
groupSubPlot(monitor,"Loss",["TrainingLoss","ValidationLoss"])

Record the loss for the untrained network.

validationLoss = mbqLoss(mbqValidation,learnables,parameters,lossType);
recordMetrics(monitor,0,ValidationLoss=validationLoss)

Run the training loop.

for epoch = 1:maxEpochs

    % Update plot info
    updateInfo(monitor,Epoch=epoch,LearnRate=learnRate)

    % Shuffle dataset each epoch
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    shuffle(mbqTrain)

    while hasdata(mbqTrain)
        iteration = iteration + 1;

        % Get next mini batch
        [X,T] = next(mbqTrain);

        % Pass the predictors through the network and return the loss and
        % gradients.
        [loss,gradients] = dlfeval(@modelLoss,learnables,parameters,X,T,lossType);

        % Update the network parameters using the ADAM optimizer.
        [learnables,averageGrad,averageSqGrad] = adamupdate(learnables,gradients, ...
            averageGrad,averageSqGrad,iteration,learnRate);

        % Update training progress visualization
        loss = gather(extractdata(loss));
        recordMetrics(monitor,iteration,TrainingLoss=loss)

        if monitor.Stop
            break
        end
    end
    if monitor.Stop
        break
    end

    % Compute validation loss
    validationLoss = mbqLoss(mbqValidation,learnables,parameters,lossType);

    % Update validation progress visualization
    recordMetrics(monitor,iteration,ValidationLoss=validationLoss)

    % Checkpoint
    if validationLoss < bestLoss
        bestLoss = validationLoss;
        bestLossEpoch = epoch;
        save("CheckPoint.mat","bestLoss","learnables","epoch", ...
            "averageGrad","averageSqGrad","iteration","learnRate")
    end

    if (epoch - bestLossEpoch) > validationPatience
        display("Validation loss did not improve for "+validationPatience+" epochs.")
        break
    end

    % Reduce the learning rate according to schedule
    if rem(epoch,learnRateDropPeriod)==0
        learnRate = learnRate*learnRateDropFactor;
    end
end
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    "Validation loss did not improve for 10 epochs."

Evaluate System

Load the best performing model.

load("CheckPoint.mat")

Spot Check Performance

Compare the results of the baseline speech enhancement approach against the FaSNet approach
using listening tests and common metrics.

dsValidation = shuffle(dsValidation);
[x,t] = read(dsValidation);
predictor = x{1};
target = x{2};

As a baseline speech enhancement system, simply take the mean of the predictors across the
channels.

yBaseline = mean(predictor,2);

Pass the noisy speech through the network. The network was trained to process data in 2-second
segments. The architecture does accept longer and shorter segments, but performs best on inputs of
the same size as it was trained on. Use the preprocessSignal on page 1-963 supporting function
to split the audio input into the same segment length as your model was trained on. Pass the
segments through the FaSNet model. Treat each segment individually by placing the segment
dimension along the third dimension, which the FaSNet model recognizes as the batch dimension.

y = preprocessSignal(predictor,parameters.AnalysisLength);
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y = FaSNet(dlarray(y),parameters,learnables);

y = gather(extractdata(y)); % Convert to regular array
y = y(:); % Concatenate the segments
y = y(1:size(predictor,1)); % Trim off any zero-padding used to make complete segments

Listen to the clean, baseline speech enhanced, and FaSNet speech enhanced signals.

dur = size(target,1)/fs;
soundsc(target,fs),pause(dur+1)
soundsc(yBaseline,fs),pause(dur+1)
soundsc(y,fs),pause(dur+1)

Compute the baseline and FaSNet sample MSE, auditory-based MSE, and SISDR. Another common
metric not implemented in this example is short-time objective intelligibility (STOI) [5] on page 1-
960, which is often used both as a training loss function and for system evaluation.

yBaselineMSE = 2*mse(yBaseline,target,DataFormat="TB")/size(target,1);
yMSE = 2*mse(y,target,DataFormat="TB")/size(target,1);

yABaseline = extractdata(dlmelspectrogram(yBaseline,parameters.SampleRate));
yA = extractdata(dlmelspectrogram(y,parameters.SampleRate));
targetA = extractdata(dlmelspectrogram(target,parameters.SampleRate));
yBaselineAMSE = mse(yABaseline,targetA,DataFormat="CTB")/(size(targetA,1)*size(targetA,2));
yAMSE = mse(yA,targetA,DataFormat="CTB")/(size(targetA,1)*size(targetA,2));

yBaselineSISDR = sisdr(yBaseline,target);
ySISDR = sisdr(y,target);

Plot the target signal, the baseline SE result, and the FaSNet SE result. Display performance metrics
in the plot titles.

tiledlayout(3,1)

nexttile
plot(yBaseline)
title("Baseline:"+" MSE="+yBaselineMSE+" Auditory MSE="+yBaselineAMSE+" SISDR="+yBaselineSISDR)
grid on
axis tight

nexttile
plot(y)
title("FaSNet: "+" MSE="+yMSE+" Auditory MSE="+yAMSE+" SISDR="+ySISDR)
grid on
axis tight

nexttile
plot(target)
grid on
title("Target")
axis tight
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Word Error Rate

Evaluate the word error rate after FaSNet processing and compare to the target (clean) signal and
the baseline approach.

WER = wordErrorRate(dsWER,parameters,learnables,FaSNetWER=true);

progress = 1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.40.41.42.43.44.45.46.47.48.49.50.51.52.53.54.55.56.57.58.59.60.61.62.63.64.65.66.67.68.69.70.71.72.73.74.75.76.77.78.79.80.81.82.83.84.85.86.87.88.89.90.91.92.93.94.95.96.97.98.99....complete.

WERa.Baseline

ans = 0.4001

WER.FaSNet

ans = 0.2760

WERa.Target

ans = 0.0296
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Supporting Functions

Word Error Rate (WER)

function out = wordErrorRate(ds,parameters,learnables,nvargs)
%wordErrorRate Word error rate (WER)
% wordErrorRate(ds,parameters,learnables) calculates the word error rate
% over all files in the datastore. Specify ds as a combined datastore that
% outputs the predictors and targets and also the text labels.
%
% wordErrorRate(ds,net,TargetWER=TF1,BaselineWER=TF2,FaSNetWER=TF2)
% specifies which signals to calculate the word error rate for. Choose any
% combination of target (the clean monoaural signal), baseline (the noisy
% ambisonic signal converted to monoaural through channel mean) and FaSNet
% (the beamform output from the FaSNet model). By default, WER is computed
% for all options.
%
% This function requires Text Analytics Toolbox(TM).

arguments
    ds
    parameters = [];
    learnables = [];
    nvargs.TargetWER = false;
    nvargs.BaselineWER = false;
    nvargs.FaSNetWER = false;
    nvargs.Verbose = true;
end

% Create a speech client object to perform transcription.
transcriber = speechClient("wav2vec2.0",Segmentation="none");
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% Initialize counters
editDistanceTotal_t = 0;
editDistanceTotal_b = 0;
editDistanceTotal_y = 0;
numWordsTotal = 0;
p = 0;

% Reset the datastore
reset(ds)
fprintf("progress = ")
while hasdata(ds)

    % Read from datastore and unpack.
    [data,audioInfo] = read(ds);
    predictors = data{1};
    targets = data{2};
    txt = lower(data{3});
    fs = audioInfo{1}.SampleRate;

    % Put data on GPU if available
    if canUseGPU && nvargs.TargetWER
        targets = gpuArray(targets);
    end
    if canUseGPU && (nvargs.BaselineWER || nvargs.FaSNetWER)
        predictors = gpuArray(predictors);
    end

    % Update the total number of words.
    numWordsTotal = numWordsTotal + numel(split(txt));

    % Tokenize the text.
    tokenizedGroundTruth = tokenizedDocument(txt);
    tokenizedGroundTruth = correctSpelling(tokenizedGroundTruth);

    % Update the total edit distance by passing the signal through
    % speech-to-text, tokenizing the document, and then computing the edit
    % distance against the ground truth text.
    if nvargs.TargetWER
        targetsText = speech2text(transcriber,targets,fs);
        T = tokenizedDocument(targetsText);
        T = correctSpelling(T);
        editDistanceTotal_t = editDistanceTotal_t + editDistance(T,tokenizedGroundTruth);
    end
    if nvargs.BaselineWER
        predictorsTextBaseline = speech2text(transcriber,mean(predictors,2),fs);
        B = tokenizedDocument(predictorsTextBaseline);
        B = correctSpelling(B);
        editDistanceTotal_b = editDistanceTotal_b + editDistance(B,tokenizedGroundTruth);
    end
    if nvargs.FaSNetWER
        x = preprocessSignal(predictors,parameters.AnalysisLength);
        y = FaSNet(dlarray(x),parameters,learnables);
        y = y.extractdata();
        y = y(:);
        predictorsText = speech2text(transcriber,y,fs);
        Y = tokenizedDocument(predictorsText);
        Y = correctSpelling(Y);
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        editDistanceTotal_y = editDistanceTotal_y + editDistance(Y,tokenizedGroundTruth);
    end

    % Print status
    if nvargs.Verbose && (100*progress(ds))>p+1
        p = round(100*progress(ds));
        fprintf(string(p)+".")
    end

end
fprintf("...complete.\n")

% Output the results as a struct.
out = struct();
if nvargs.FaSNetWER
    out.FaSNet = editDistanceTotal_y/numWordsTotal;
end
if nvargs.BaselineWER
    out.Baseline = editDistanceTotal_b/numWordsTotal;
end
if nvargs.TargetWER
    out.Target = editDistanceTotal_t/numWordsTotal;
end

end

Model Loss

function [loss,gradients] = modelLoss(learnables,parameters,X,T,lossType)
%modelLoss Model loss for FaSNet
% loss = modelLoss(learnables,parameters,X,T,lossType) calculates the
% FaSNet model loss using the specified loss type. Specify learnables and
% parameters as the learnables and parameters of the FaSNet model. X and T
% are the predictors and targets, respectively. lossType is "sample-mse",
% "sample-sisdr", or "auditory-mse".
%
% [loss,gradients] = modelLoss(...) also calculates the gradients when
% training a model.

% Beamform ambisonic data using FaSNet
Y = FaSNet(X,parameters,learnables);

% Compute specified loss type
switch lossType
    case "sample-sisdr"
        loss = -sisdr(Y,T);
        loss = sum(loss)/size(T,2);
    case "sample-mse"
        loss = 2*mse(Y,T,DataFormat="TB")/size(T,1);
    case "auditory-mse"
        Ym = dlmelspectrogram(Y,parameters.SampleRate);
        Tm = dlmelspectrogram(T,parameters.SampleRate);
        loss = mse(Ym,Tm,DataFormat="CTB")./(size(Tm,1)*size(Tm,2));
end

% If gradients requested, compute them
if nargout==2
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    gradients = dlgradient(loss,learnables);
end

end

Preprocess Mini Batch

function [X,T] = preprocessMiniBatch(Xcell,Tcell,N)
%preprocessMiniBatch Preprocess mini batch
% [X,T] = preprocessMiniBatch(Xcell,Tcell,N) takes the mini-batch of data
% read from the combined datastore and preprocesses the data using the
% preprocessSignalTrain supporting function.

for ii = 1:numel(Xcell)
    [Xcell{ii},idx] = preprocessSignalTrain(Xcell{ii},Samples=N);
    Tcell{ii} = preprocessSignalTrain(Tcell{ii},Samples=N,Index=idx);
end

X = cat(3,Xcell{:});
T = cat(2,Tcell{:});

end

Preprocess Signal for FaSNet

function y = preprocessSignal(x,L)
%preprocessSignal Preprocess signal for FaSNet
% y = preprocessSignal(x,L) splits the multi-channel
% signal x into analysis frames of length L and hop L. The output is a
% L-by-size(x,2)-by-numHop array, where the number of hops depends on the
% input signal length and L.

% Cast the input to single precision
x = single(x);

% Get the input dimensions
N = size(x,1);
nchan = size(x,2);

% Pad as necessary.
if N<L
    numToPad = L-N;
    x = cat(1,x,zeros(numToPad,size(x,2),like=x));
else
    numHops = floor((N-L)/L) + 1;
    numSamplesUsed = L+(L*(numHops-1));
    if numSamplesUsed < N
        numSamplesUnused = N-numSamplesUsed;
        numToPad = L - numSamplesUnused;
        x = cat(1,x,zeros(numToPad,nchan,like=x));
    end
end

% Buffer the input signal
x = audio.internal.buffer(x,L,L);
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% Reshape the signal to Time-Channel-Hop.
numHops = size(x,2)/nchan;
x = reshape(x,L,numHops,nchan);
y = permute(x,[1,3,2]);
end

Mel Spectrogram Compatible with dlarray

function y = dlmelspectrogram(x,fs)
%dlmelspectrogram Mel spectrogram compatible with dlarray
% y = dlmelspectrogram(x,fs) computes a mel spectrogram from the audio
% input.

persistent win overlap fftLength filterBank
if isempty(filterBank)
    win = hann(round(0.03*fs),"periodic");
    overlap = round(0.02*fs);
    fftLength = numel(win);
    filterBank = designAuditoryFilterBank(fs,FFTLength=fftLength);
end

% Short-time Fourier transform
[yr,yi] = dlstft(x,DataFormat="TBC", ...
    Window=win,OverlapLength=overlap,FFTLength=fftLength);

% Power spectrum
y = abs(yr).^2 + abs(yi).^2;

% Apply filter bank
y = permute(y,[1,4,3,2]); % FFTLength-by-NumHops-by-BatchSize
y = pagemtimes(filterBank,y); % NumBins-by-NumHops-by-BatchSize

% Apply log10.
y = log(y+eps)/log(10);
end

Scale-Invariant Signal-to-Distortion Ratio (SDR)

function metric = sisdr(y,t)
%sisdr Scale-Invariant Signal-to-Distortion Ratio (SDR)
% metric = sisdr(estimate,target) calculates the scale-invariant SDR
% described in [1].
%
% [1] Roux, Jonathan Le, et al. "SDR – Half-Baked or Well Done?" ICASSP 2019 -
% 2019 IEEE International Conference on Acoustics, Speech and Signal
% Processing (ICASSP), IEEE, 2019, pp. 626–30. DOI.org (Crossref),
% https://doi.org/10.1109/ICASSP.2019.8683855.

y = y - mean(y,1);
t = t - mean(t,1);

alpha = sum(y.*t,1)./(sum(t.^2,1) + eps);

etarget = alpha.*t;
eres = y - etarget;

top = sum(etarget.^2);
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bottom = sum(eres.^2);
metric = 10*log(top./(bottom+eps))/log(10);

end

Preprocess Signal for Training

function [y,idx] = preprocessSignalTrain(x,options)
%preprocessSignalTrain Preprocess signal for training
% y = preprocessSignalTrain(x) clips out 32000 contiguous samples from x
% and returns as y. The clip starting point is determined randomly. If x is
% less than 32000, the signal is padded to 32000.
%
% y = preprocessSignalTrain(x,Samples=N) specifies the number of samples to
% clip as N. If unspecified, Samples defaults to 32000.
%
% y = preprocessSignalTrain(...,Index=K) specifies the starting index for
% clipping. If unspecified, Index is selected randomly with the condition
% that there are N samples in the clip.

arguments
    x
    options.Samples = 32000
    options.Index = []
end

numSamples = size(x,1);
numChannels = size(x,2);

% If signal shorter than requested number of samples, pad it.
if numSamples < options.Samples
    x = cat(1,x,zeros(options.Samples - numSamples,numChannels,like=x));
    numSamples = options.Samples;
end

% Choose a random starting index in the signal, then clip a segment out of
% the signal.
if isempty(options.Index)
    idx = randi(numSamples-options.Samples+1);
else
    idx = options.Index;
end
y = x(idx:idx+options.Samples-1,:);

end

Calculate Loss Over Mini-Batch Queue

function loss = mbqLoss(mbq,learnables,parameters,lossType)
%mbqLoss Mini-batch queue loss
% loss = mbqLoss(mbq,learnables,parameters) calculates the total loss over
% the mini-batch queue.

numMiniBatch = 0;
validationLoss = 0;

reset(mbq)
while hasdata(mbq)
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    [X,T] = next(mbq);
    numMiniBatch = numMiniBatch + 1;
    validationLoss = validationLoss + modelLoss(learnables,parameters,X,T,lossType);
end

loss = validationLoss/numMiniBatch;

end

Initialize FaSNet Learnables

function learnables = initializeLearnables(parameters)
%initializeLearnables Initialize FaSNet learnables
% learnables = initializeLearnables(parameters) creates a structure
% containing the randomly initialized learnable weights of FaSNet.

validateattributes(parameters.SegmentSize,["single","double"],["even","positive"],"intializeLearnables","SegmentSize")
validateattributes(parameters.WindowLength,["single","double"],["even","positive"],"initialzieLearnables","WindowLenth")

filterDimension = 2*parameters.WindowLength+1;
learnables.TCN.conv.weight = dlarray(permute(initializeGlorot(1,parameters.EncoderDimension,3*parameters.WindowLength),[2,1,3]));
learnables.TCN.norm.offset = dlarray(zeros(parameters.EncoderDimension,1,"single"));
learnables.TCN.norm.scaleFactor = dlarray(ones(parameters.EncoderDimension,1,"single"));

for jj = 1:2 % Loop over reference mic and other mics

    learnables.("Beamformer"+jj).BN.conv.weight = dlarray(squeeze(initializeGlorot(1,parameters.FeatureDimension,filterDimension + parameters.EncoderDimension)));

    for ii = 1:parameters.NumDPRNNBlocks % Loop over DPRNN blocks

        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+1).rnn.forward.weights = dlarray(initializeGlorot(parameters.HiddenDimension*4,parameters.FeatureDimension,1));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+1).rnn.forward.recurrentWeights = dlarray(initializeOrthogonal(parameters.HiddenDimension));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+1).rnn.forward.bias = dlarray(permute(initializeUnitForgetGate(parameters.HiddenDimension),[2,1]));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+1).rnn.reverse.weights = dlarray(initializeGlorot(parameters.HiddenDimension*4,parameters.FeatureDimension,1));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+1).rnn.reverse.recurrentWeights = dlarray(initializeOrthogonal(parameters.HiddenDimension));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+1).rnn.reverse.bias = dlarray(permute(initializeUnitForgetGate(parameters.HiddenDimension),[2,1]));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+1).projection.weights = dlarray(initializeGlorot(parameters.FeatureDimension,2*parameters.HiddenDimension,1));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+1).projection.bias = dlarray(initializeZeros([1,parameters.FeatureDimension]));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+1).norm.offset = dlarray(initializeZeros([1,parameters.FeatureDimension]));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+1).norm.scaleFactor = dlarray(initializeOnes([1,parameters.FeatureDimension]));

        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+2).rnn.weights = dlarray(initializeGlorot(parameters.HiddenDimension*4,parameters.FeatureDimension,1));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+2).rnn.recurrentWeights = dlarray(initializeOrthogonal(parameters.HiddenDimension));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+2).rnn.bias = dlarray(permute(initializeUnitForgetGate(parameters.HiddenDimension),[2,1]));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+2).rnn.reverse.weights = dlarray(initializeGlorot(parameters.HiddenDimension*4,parameters.FeatureDimension,1));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+2).rnn.reverse.recurrentWeights = dlarray(initializeOrthogonal(parameters.HiddenDimension));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+2).rnn.reverse.bias = dlarray(permute(initializeUnitForgetGate(parameters.HiddenDimension),[2,1]));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+2).projection.weights = dlarray(initializeGlorot(parameters.FeatureDimension,2*parameters.HiddenDimension,1));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+2).projection.bias = dlarray(initializeZeros([1,parameters.FeatureDimension]));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+2).norm.offset = dlarray(initializeZeros([1,parameters.FeatureDimension]));
        learnables.("Beamformer"+jj).("DPRNN_" + ii).("pass"+2).norm.scaleFactor = dlarray(initializeOnes([1,parameters.FeatureDimension]));
    end

    learnables.("Beamformer"+jj).Output.prelu.alpha = dlarray(0.25);

    learnables.("Beamformer"+jj).Output.conv.weight = dlarray(initializeGlorot(parameters.FeatureDimension,parameters.FeatureDimension,1));
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    learnables.("Beamformer"+jj).Output.conv.bias = dlarray(initializeZeros([1,parameters.FeatureDimension]));

    learnables.("Beamformer"+jj).GenerateFilter.X1.weight = dlarray(permute(initializeGlorot(parameters.FeatureDimension,filterDimension,1),[2,1]));
    learnables.("Beamformer"+jj).GenerateFilter.X1.bias = dlarray(initializeZeros([1,filterDimension]));

    learnables.("Beamformer"+jj).GenerateFilter.X2.weight = dlarray(permute(initializeGlorot(parameters.FeatureDimension,filterDimension,1),[2,1]));
    learnables.("Beamformer"+jj).GenerateFilter.X2.bias = dlarray(initializeZeros([1,filterDimension]));

end
    function weights = initializeGlorot(filterSize,numChannels,numFilters)
        sz = [filterSize,numChannels,numFilters];
        numOut = prod(filterSize)*numFilters;
        numIn = prod(filterSize)*numFilters;

        Z = 2*rand(sz,"single") - 1;
        bound = sqrt(6/(numIn + numOut));

        weights = bound*Z;
        weights = dlarray(weights);

    end
    function parameter = initializeOrthogonal(numHiddenUnits)
        sz = [4*numHiddenUnits,numHiddenUnits];
        Z = randn(sz,"single");
        [Q,R] = qr(Z,0);
        D = diag(R);
        Q = Q * diag(D./abs(D));
        parameter = dlarray(Q);
    end
    function bias = initializeUnitForgetGate(numHiddenUnits)
        bias = zeros(4*numHiddenUnits,1,"single");
        idx = numHiddenUnits+1:2*numHiddenUnits;
        bias(idx) = 1;
        bias = dlarray(bias);
    end
    function parameter = initializeZeros(sz)
        parameter = zeros(sz,"single");
        parameter = dlarray(parameter);
    end
    function parameter = initializeOnes(sz)
        parameter = ones(sz,"single");
        parameter = dlarray(parameter);
    end
end
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3-D Speech Enhancement Using Trained Filter and Sum
Network

In this example, you perform speech enhancement using a pretrained deep learning model. For
details about the model and how it was trained, see “Train 3-D Speech Enhancement Network Using
Deep Learning” on page 1-946. The speech enhancement model is an end-to-end deep beamformer
that takes B-format ambisonic audio recordings and outputs enhanced mono speech signals.

Download Pretrained Network

Download the pretrained speech enhancement (SE) network, ambisonic test files, and labels. The
model architecture is based on [1] on page 1-972 and [4] on page 1-972, as implemented in the
baseline system for the L3DAS21 challenge task 1 [2] on page 1-972. The data the model was
trained on and the ambisonic test files are provided as part of [2] on page 1-972.

downloadFolder = matlab.internal.examples.downloadSupportFile("audio","speechEnhancement/FaSNet.zip");
dataFolder = tempdir;
unzip(downloadFolder,dataFolder)
netFolder = fullfile(dataFolder,"speechEnhancement");
addpath(netFolder)

Load and Inspect Data

Load the clean speech and listen to it.

[cleanSpeech,fs] = audioread("cleanSpeech.wav");

soundsc(cleanSpeech,fs)

In the L3DAS21 challenge, "clean" speech files were taken from the LibriSpeech dataset and
augmented to obtain synthetic tridimensional acoustic scenes containing a randomly placed speaker
and other sound sources typical of background noise in an office environment. The data is encoded as
B-format ambisonics. Load the ambisonic data. First order B-format ambisonic channels correspond
to the sound pressure captured by an omnidirectional microphone (W) and sound pressure gradients
X, Y, and Z that correspond to front/back, left/right, and up/down captured by figure-of-eight capsules
oriented along the three spatial axes.

[ambisonicData,fs] = audioread("ambisonicRecording.wav");

Listen to a channel of the ambisonic data.

channel = ;
soundsc(ambisonicData(:,channel),fs)

To plot the clean speech and the noisy ambisonic data, use the supporting function compareAudio
on page 1-972.

compareAudio(cleanSpeech,ambisonicData,SampleRate=fs)
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To visualize the spectrograms of the clean speech and the noisy ambisonic data, use the supporting
function compareSpectrograms on page 1-974.

compareSpectrograms(cleanSpeech,ambisonicData)

Mel spectrograms are auditory-inspired transformations of spectrograms that emphasize, de-
emphasize, and blur frequencies similar to how the auditory system does. To visualize the mel
spectrograms of the clean speech and the noisy ambisonic data, use the supporting function
compareSpectrograms on page 1-974 and set Warp to mel.

compareSpectrograms(cleanSpeech,ambisonicData,Warp="mel")

 3-D Speech Enhancement Using Trained Filter and Sum Network

1-969



Perform 3-D Speech Enhancement

Use the supporting object, seModel, to perform speech enhancement. The seModel class definition
is in the current folder when you open this example. The object encapsulates the SE model developed
in “Train 3-D Speech Enhancement Network Using Deep Learning” on page 1-946. Create the model,
then call enhanceSpeech on the ambisonic data to perform speech enhancement.

model = seModel(netFolder);
enhancedSpeech = enhanceSpeech(model,ambisonicData);

Listen to the enhanced speech. You can compare the enhanced speech listening experience with the
clean speech or noisy ambisonic data by selecting the desired sound source from the dropdown.

soundSource = ;
soundsc(soundSource,fs)

Compare the clean speech, noisy speech, and enhanced speech in the time domain, as spectrograms,
and as mel spectrograms.

compareAudio(cleanSpeech,ambisonicData,enhancedSpeech)

compareSpectrograms(cleanSpeech,ambisonicData,enhancedSpeech)
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compareSpectrograms(cleanSpeech,ambisonicData,enhancedSpeech,Warp="mel")

Speech Enhancement for Speech-to-Text Applications

Compare the performance of the speech enhancement system on a downstream speech-to-text
system. Use the wav2vec 2.0 speech-to-text model. This model requires a one-time download of
pretrained weights to run. If you have not downloaded the wav2vec weights, the first call to
speechClient will provide a download link.

Create the wav2vec 2.0 speech client to perform transcription.

transcriber = speechClient("wav2vec2.0",segmentation="none");

Perform speech-to-text transcription using the clean speech, the ambisonic data, and the enhanced
speech.

cleanSpeechResults = speech2text(transcriber,cleanSpeech,fs)

cleanSpeechResults = 
"i tell you it is not poison she cried"

noisySpeechResults = speech2text(transcriber,ambisonicData(:,channel),fs)

noisySpeechResults = 
"i tell you it is not parzona she cried"

enhancedSpeechResults = speech2text(transcriber,enhancedSpeech,fs)

enhancedSpeechResults = 
"i tell you it is not poison she cried"
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Speech Enhancement for Telecommunications Applications

Compare the performance of the speech enhancement system using the short-time objective
intelligibility (STOI) measurement [5]. STOI has been shown to have a high corelation with the
intelligibility of noisy speech and is commonly used to evaluate speech enhancement systems.

Calculate STOI for the omnidirectional channel of the ambisonics, and for the enhanced speech.
Perfect intelligibility has a score of 1.

stoi(cleanSpeech,ambisonicData(:,channel),fs)

ans = 0.6950

stoi(cleanSpeech,enhancedSpeech,fs)

ans = 0.8393
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Supporting Functions

Compare Audio

function compareAudio(target,x,y,parameters)
%compareAudio Plot clean speech, B-format ambisonics, and predicted speech
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% over time

arguments
    target
    x
    y = []
    parameters.SampleRate = 16e3
end

numToPlot = 2 + ~isempty(y);

f = figure;
tiledlayout(4,numToPlot,TileSpacing="compact",TileIndexing="columnmajor")
f.Position = [f.Position(1),f.Position(2),f.Position(3)*numToPlot,f.Position(4)];

t = (0:(size(x,1)-1))/parameters.SampleRate;

xmax = max(x(:));
xmin = min(x(:));

nexttile(1,[4,1])
plot(t,target,Color=[0 0.4470 0.7410])
axis tight
ylabel("Amplitude")
xlabel("Time (s)")
title("Clean Speech (Target Data)")
grid on

nexttile(5)
plot(t,x(:,1),Color=[0.8500 0.3250 0.0980])
title("Noisy Speech (B-Format Ambisonic Data)")
axis([t(1),t(end),xmin,xmax])
set(gca,Xticklabel=[],YtickLabel=[])
grid on
yL = ylabel("W",FontWeight="bold");
set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")

nexttile(6)
plot(t,x(:,2),Color=[0.8600 0.3150 0.0990])
axis([t(1),t(end),xmin,xmax])
set(gca,Xticklabel=[],YtickLabel=[])
grid on
yL = ylabel("X",FontWeight="bold");
set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")

nexttile(7)
plot(t,x(:,3),Color=[0.8700 0.3050 0.1000])
axis([t(1),t(end),xmin,xmax])
set(gca,Xticklabel=[],YtickLabel=[])
grid on
yL = ylabel("Y",FontWeight="bold");
set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")

nexttile(8)
plot(t,x(:,4),Color=[0.8800 0.2950 0.1100])
axis([t(1),t(end),xmin,xmax])
xlabel("Time (s)")
set(gca,YtickLabel=[])
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grid on
yL = ylabel("Z",FontWeight="bold");
set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")

if numToPlot==3
    nexttile(9,[4,1])
    plot(t,y,Color=[0 0.4470 0.7410])
    axis tight
    xlabel("Time (s)")
    title("Enhanced Speech")
    grid on
    set(gca,YtickLabel=[])
end

end

Compare Spectrograms

function compareSpectrograms(target,x,y,parameters)
%compareSpectrograms Plot spectrograms of clean speech, B-format
% ambisonics, and predicted speech over time

arguments
    target
    x
    y = []
    parameters.SampleRate = 16e3
    parameters.Warp = "linear"
end
fs = parameters.SampleRate;

switch parameters.Warp
    case "linear"
        fn = @(x)spectrogram(x,hann(round(0.03*fs),"periodic"),round(0.02*fs),round(0.03*fs),fs,"onesided","power","yaxis");
    case "mel"
        fn = @(x)melSpectrogram(x,fs);
end

numToPlot = 2 + ~isempty(y);

f = figure;
tiledlayout(4,numToPlot,TileSpacing="tight",TileIndexing="columnmajor")
f.Position = [f.Position(1),f.Position(2),f.Position(3)*numToPlot,f.Position(4)];

nexttile(1,[4,1])
fn(target)
fh = gcf;
fh.Children(1).Children(1).Visible="off";
title("Clean Speech")

nexttile(5)
fn(x(:,1))
fh = gcf;
fh.Children(1).Children(1).Visible="off";
set(gca,Yticklabel=[],XtickLabel=[],Xlabel=[])
yL = ylabel("W",FontWeight="bold");
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set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")
title("Noisy Speech (B-Format Ambisonic Data)")

nexttile(6)
fn(x(:,2))
fh = gcf;
fh.Children(1).Children(1).Visible="off";
set(gca,Yticklabel=[],XtickLabel=[],Xlabel=[])
yL = ylabel("X",FontWeight="bold");
set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")

nexttile(7)
fn(x(:,3))
fh = gcf;
fh.Children(1).Children(1).Visible="off";
set(gca,Yticklabel=[],XtickLabel=[],Xlabel=[])
yL = ylabel("Y",FontWeight="bold");
set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")

nexttile(8)
fn(x(:,4))
fh = gcf;
fh.Children(1).Children(1).Visible="off";
set(gca,Yticklabel=[])
yL = ylabel("Z",FontWeight="bold");
set(yL,Rotation=0,VerticalAlignment="middle",HorizontalAlignment="right")

if numToPlot==3
    nexttile(9,[4,1])
    fn(y)
    fh = gcf;
    fh.Children(1).Children(1).Visible="off";
    set(gca,Yticklabel=[],Ylabel=[])
    title("Enhanced Speech")
end
end

Short-Time Objective Intelligibility (STOI) Measure

function metric = stoi(t,y,fs)
%STOI Short-time objective intelligibility measure (STOI)
% metric = stoid(t,y,fs) returns the short-time objective intelligibility
% measurement (STOI) defined in [1] and [2]. t is the clean speech signal,
% y is the predicted speech signal, and fs is the sample rate.
%
% References
%   [1] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen. A Short-Time
%   Objective Intelligibility Measure for Time-Frequency Weighted Noisy
%   Speech. In Acoustics Speech and Signal Processing (ICASSP), pages
%   4214-4217. IEEE, 2010.
%
%   [2] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen. An Algorithm
%   for Intelligibility Prediction of Time-Frequency Weighted Noisy Speech.
%   IEEE Transactions on Audio, Speech and Language Processing,
%   19(7):2125-2136, 2011.

% Define parameters
designFs = 10e3;
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windowLength = 256;
fttLength = 512;
numBands = 15;
cf1 = 150; % Center frequency of first 1/3 octave band in Hz.
N = 30; % Number of frames for intermediate intelligibility
Beta = -15; % Lower bound of signal to distortion ratio (SDR)
clipConstant = 10^(-Beta/20);
energyThreshold = 40; % Speech dynamic range

if fs ~= designFs
    t = cast(resample(double(t),designFs,fs),like=t);
    y = cast(resample(double(y),designFs,fs),like=y);
end

% Remove silent frames
[t,y] = removeSilentFrames(t,y,energyThreshold,windowLength);

% Compute magnitude short-time Fourier transform
T = stft(t,FFTLength=fttLength,Window=hann(windowLength), ...
    OverlapLength=windowLength/2,FrequencyRange="onesided");
Y = stft(y,FFTLength=fttLength,Window=hann(windowLength), ...
    OverlapLength=windowLength/2,FrequencyRange="onesided");
T = abs(T);
Y = abs(Y);

% Design frequency-domain octave filter bank
fb = designOctaveFilterBank(designFs,fttLength,numBands,cf1);

% Apply octave filter bank
T = fb*T;
Y = fb*Y;

% Compute intelligibility measurement
djm = zeros(numBands,length(N:size(T,2)));
for m = N:size(T,2)
    % Isolate region of N consecutive TF-units
    Tj = T(:,(m-N+1):m);
    Yj = Y(:,(m-N+1):m);

    % Calculate alpha
    alpha = sqrt(sum(Tj.^2,2)./sum(Yj.^2,2));

    alphaYj = Yj.*alpha;
    Ypj = min(alphaYj,Tj+Tj*clipConstant); % Eq 3 from [1]

    % Eq 4 from [1]
    yn = Ypj - mean(Ypj,2);
    xn = Tj - mean(Tj,2);
    djm(:,m-N+1) = dot(xn./vecnorm(xn,2,2),yn./vecnorm(yn,2,2),2);
end

% Average intermediate intelligibility over all bands and frames (eq 5 in
% [1])
metric = mean(djm(:));

    % Remove Silent Frames
    function [tS,yS] = removeSilentFrames(t,y,eThreshold,N)

1 Audio Toolbox Examples

1-976



        win = hanning(N);

        tb = buffer(t,N,N/2,"nodelay");
        tbwin = tb.*win;

        frameEnergy = 20*log10(vecnorm(tbwin)./sqrt(N));

        mask = (frameEnergy-max(frameEnergy)+eThreshold)>0;

        tS = tbwin;
        tS(:,~mask) = [];
        tS = tS(1:N/2,2:end) + tS(N/2+1:end,1:end-1);
        tS = [tb(1:N/2,1);tS(:);tb(N/2+1:end,end)];

        yb = buffer(y,N,N/2,"nodelay");
        ybwin = yb.*win;
        yS = ybwin;
        yS(:,~mask) = [];
        yS = yS(1:N/2,2:end) + yS(N/2+1:end,1:end-1);
        yS = [yb(1:N/2,1);yS(:);yb(N/2+1:end,end)];

    end

    % Design Octave Filter Bank
    function  fb = designOctaveFilterBank(fs,fftLength,numBands,cf1)
        f = linspace(0,fs,fftLength+1);
        f = f(1:(fftLength/2+1));
        k = 0:(numBands-1);

        cf = 2.^(k/3)*cf1;
        fl = sqrt((2.^(k/3)*cf1).*2.^((k-1)/3)*cf1);
        fr = sqrt((2.^(k/3)*cf1).*2.^((k+1)/3)*cf1);

        fb  = zeros(numBands,numel(f));

        fp = f';
        [~,bandLow] = min((fp-fl).^2);
        [~,bandHigh] = min((fp-fr).^2);

        for ii = 1:numel(cf)
            fb(ii,bandLow(ii):(bandHigh(ii)-1)) = 1;
        end
    end
end
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Automated Design of Audio Filters for Room Equalization

This example combines Optimization Toolbox™ and Audio Toolbox™ to develop an algorithm that
automatically tunes a set of filter parameters.

There are many audio applications where it is desirable to compute parametric equalizer parameters
to fit an arbitrary frequency response. For instance, one could fit a filter response to a measured
impulse response (IR) to obtain a lower-order implementation of the same filter. Alternatively, one can
apply correction to a measured loudspeaker response (anechoic or in-room) to smooth out any
imperfections and create a perceptually flat frequency response. The latter is demonstrated here by
designing an algorithm that automatically tunes the parameters of N parametric equalizers such that
when the resulting EQ is applied to the speaker, the frequency response is perceived as flat in the
room.

This example goes over the following steps:

• Measure the in-room response of a loudspeaker using the Impulse Response Measurer
• Compute a fractional-octave smoothed response
• Take into account the microphone calibration data
• Compute a target response that is perceptually optimal for the given loudspeaker system and

room configuration
• Optimize a set of filter parameters that modifies the response to better fit the target
• Produce an audio filter or audio files to evaluate the results using headphones or listening room

In-Room Measurement

The first step is to obtain measurements for the system that needs to be improved.

Set up a full duplex sound interface so that it can both play on the loudspeaker, and record with a
calibration microphone (such as a Behringer ECM8000 connected to a sound interface capable of
supplying phantom power). Place the microphone on a stand so that you can move it into the listening
position(s). You can start with the microphone centered in the listener's position, but measuring at
several positions will help reduce the chances of overcorrecting for issues like a high frequency dip in
the response that could only be present in a region smaller than a listener's head.

Launch the Impulse Response Measurer application.

impulseResponseMeasurer

Verify that the correct audio device is selected. Change the sample rate if desired (this example uses
96 kHz). Set the player and recorder channels to the loudspeaker and microphone, respectively.

Select the Swept Sine method. Set the number of runs to average several measurement together. This
example uses five. Set the duration per run to have time for a long enough swept sine and a period of
silence that is long enough for the reverberation to completely die off, which can be several seconds
in a typical room.

In the advanced settings, set a pause between runs that allows time to move the microphone around
the initial "center" position. You must keep silent during the "silence" part of the measurement, but
you can move the microphone and make noise during this pause. The start frequency should be set
below the range of the loudspeaker (10 Hz might be a good starting point). The stop frequency can be
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set to half the sampling rate, unless measuring a subwoofer with limited high-frequency range. Set
the sweep duration to a few seconds, and make sure there is enough duration left for silence at the
end.

You may test levels with the level meter or try a first capture with 1 short run. Set playback level loud
enough to hide any background noise in the room and set the microphone level so that it is high but
does not overload/clip.

Now you can capture and save export the data to a MAT file. The rest of this example uses a file
provided here.

Import the Measurement

Import the last measurement that was exported by the application (by addressing with end). The
data used here is in a similar (but compatible) format.

load('measured_ir_data.mat','measurementData');
Fs = measurementData.SampleRate(end);
ir = measurementData.ImpulseResponse(end).Amplitude;
frequency = measurementData.MagnitudeResponse(end).Frequency;
if isfield(measurementData.MagnitudeResponse,'PowerDb')
    magnitudeDB = measurementData.MagnitudeResponse(end).PowerDb;
else % Version R2022b of IRM has renamed this field to Magnitude (dB)
    magnitudeDB = measurementData.MagnitudeResponse(end).MagnitudeDB;
end

Using a helper function provided here, smooth the response by 1/24-octave sections. Since powerDB
is a measurement, add extra smoothing (last argument set to true).

fullRange = [10,Fs/2]; % Full audio range (for the plots)
[powerFR,cfFR] = octaveAverage(frequency,db2mag(magnitudeDB),24,fullRange,true);
pdbFR = 20*log10(powerFR);

Plot the measurement and the smoothed response.

semilogx(frequency,magnitudeDB,'g:')
hold on
plot(cfFR,pdbFR,'b',LineWidth=2)
title('Measured Speaker Response')
legend('Raw Data','Octave Smoothed',Location='southwest')
xlabel('Frequency (Hz) \rightarrow')
ylabel('Magnitude (dB) \rightarrow')
yrange = [-50 0];
axis([30 22e3 yrange])
hold off
grid on
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Microphone Calibration

If there is calibration data available for the microphone, subtract it from the measurement.

In this case, generic calibration data for the Behringer ECM8000 microphone is used. Calling the
helper function without capturing the output produces a convenience plot.

getMicCalibration()
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Subtract the microphone calibration data from the measured response, using the same frequency
values.

micGainDB = getMicCalibration(cfFR);
pdbFRmic = pdbFR - micGainDB;

Determine a "range of interest" (ROI) for the optimization based on the measurement above and the
manufacturer specifications for our loudspeaker. The bookshelf speaker measured above has a range
of 60 Hz to 22 kHz according to the manufacturer. Set the ROI to a range of 40 Hz to 20 kHz to
slightly increase the low end and to take into account the steep decline above 20 kHz.

ROI = [40 20e3]; % specify the region of interest for the optimization

Plot the corrected response and the ROI region.

semilogx(frequency,magnitudeDB,'g:')
hold on
plot(cfFR, pdbFRmic, 'b', LineWidth=2)
plot([ROI(1) ROI(1)], yrange, ':m', LineWidth=1.5);
plot([ROI(2) ROI(2)], yrange, ':m', LineWidth=1.5);
title('Measured Speaker Response')
legend('Raw Data','Octave Smoothed',...
       'ROI Low End','ROI High End',Location='southwest')
xlabel('Frequency (Hz) \rightarrow')
ylabel('Magnitude (dB) \rightarrow')
axis([30 24e3 -50 0])
hold off
grid on
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Compute a Target Response

The next step is to determine a suitable target response for the system in the ROI. The main goal is to
provide a response that is perceived as "flat", and potentially extend the low frequencies (within
reasonable limits).

It is important to consider whether the response being optimized is a loudspeaker measurement in an
anechoic chamber, or a loudspeaker in a room measured from a listening position. In the former case,
the target could be a constant level (with a roll off outside of the loudspeaker's range). In the later
case, which is the case for this example, the response at the listening position also depends on the
room. The loudspeaker is perceived as "flat" if it exhibits a constant slope down. The degree of that
slope depends on factors such as the distance of the listener. The perceived quality also depends on
the low frequency cutoff point (approximately -10 dB), so the target curve can be used to extend the
low frequencies if the boost remains moderate. Keep in mind that loudspeaker distortion increases in
the lower frequencies, and the overall limits of the amplifier and loudspeaker should not be exceeded.

To compute a target response, fit a straight line (in the log-frequency domain) onto the frequency
response (in dB) for a subset of the ROI. Add a roll off to the lower frequencies.

% Compute the octave average (only for the region of interest)
[power,cf] = octaveAverage(frequency,db2mag(magnitudeDB),24,ROI,true);
pdb = 20*log10(power) - getMicCalibration(cf);

% Set the range of the linear fit
lfCutOff = 2.5*ROI(1); % lowest frequency to linearize
hfMaxFit = 0.6*ROI(2); % max frequency to fit for
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% Fit a straight line in the log-frequency domain
linIdx = cf>=lfCutOff & cf<=hfMaxFit;
if license('test','statistics_toolbox')
    pfit = robustfit(log(cf(linIdx)),pdb(linIdx));
else % if Statistics Toolbox is not available, use a simple linear regression
    pfit = [ones(nnz(linIdx),1) log(cf(linIdx))] \ pdb(linIdx);
end
targetResp = pfit(1)+pfit(2)*log(cf);

% Roll off the low frequencies, starting slightly above the linear range above
lfcutoff = 1.05*lfCutOff;
idx = cf<lfcutoff;
targetResp(idx) = targetResp(idx) - min(30,ROI(1)/2)*((lfcutoff-cf(idx))/lfcutoff).^2;

% Plot the target response
semilogx(frequency, magnitudeDB, 'g:');
hold on
axis([20 24e3 yrange]);
plot(cfFR, pdbFRmic, 'b', LineWidth=2)
plot(cf, targetResp, 'k', LineWidth=2.5);
plot([ROI(1) ROI(1)], yrange, ':m', LineWidth=1.5);
plot([ROI(2) ROI(2)], yrange, ':m', LineWidth=1.5);
title('Target Response for Loudspeaker');
legend('Measured Response (raw data)','Measured Response (octave smoothed)',...
       'Target Response','ROI Low','ROI High',Location='southwest')
xlabel('Frequency (Hz) \rightarrow')
ylabel('Magnitude (dB) \rightarrow')
grid on
hold off

 Automated Design of Audio Filters for Room Equalization

1-983



The target response (in black) has a slight downward tilt and a roll off for the low frequencies that
allows for some boost (10 to 12 dB).

Parametric Filter Overview

The variables being tuned by the optimization algorithm are typical audio parametric EQ parameters:
Center Frequency, Filter Bandwidth, and Peak Gain.

Use the response to produce settings for a 12-band parametric filter (10 peak filters and 2 shelf
filters).

Use the designParamEQ function from Audio Toolbox to design the filter. Use the lsqnonlin
(Optimization Toolbox) function to perform the fit by tuning the parameters of the EQ bands until the
speaker response is as flat as possible.

Before configuring the optimization algorithm, you can look at what a manual filter design looks like
for 2 filters. Use the following controls to manually tune the filter parameters and observe the output
response using fvtool. This allow us to visualize the parameters that the optimization algorithm
automatically tunes.

gain = [ , ...

      ]; 
  

centerFreq = [ , ...
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              ]; 
          

bandwidth = [ , ...

              ];

Next, generate the filter coefficients using the specified parameters by calling designParamEQ:

[B,A] = designParamEQ(2, gain, (centerFreq/(Fs/2)), (bandwidth/(Fs/2)), Orientation='row');

Visualize the filter design.

fvtool([B,A],'Fs',Fs);

Parametric Filter Optimization

To produce the optimized parametric filters, call a helper function that sets starting values and limits
for every filter parameter, then calls lsqnonlin. The optimizer uses the eqObjectiveFct function
that computes the response of the given EQ and compares it to the desired response. The lsqnonlin
optimizer attempts to minimize that error on every iteration.

% Run the optimization with a selected number of filters
numFilters = 10+2; % 10 peak filters, one low shelf, and one high shelf
[EQ,outputResp] = eqOptimizer(numFilters,frequency,pdb,targetResp,ROI,Fs);

Starting parallel pool (parpool) using the 'Processes' profile ...
Connected to the parallel pool (number of workers: 12).
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                                         Norm of      First-order 
 Iteration  Func-count     f(x)          step          optimality
     0         37        0.162731                         0.425
     1         74       0.0545925             10          0.524      
     2        111        0.029003             20          0.107      
     3        148       0.0281875        27.6549          0.226      
     4        185       0.0190838        6.91372          0.185      
     5        222       0.0154649       0.363843          0.172      
     6        259       0.0124883        13.8274          0.265      
     7        296      0.00960446        13.8274        0.00804      
     8        333      0.00960446        13.8274        0.00804      
     9        370      0.00880994        3.45686         0.0602      
    10        407      0.00783472        6.91372         0.0337      
    11        444      0.00683998        13.8274        0.00974      
    12        481      0.00683998        18.3506        0.00974      
    13        518      0.00586536        4.58764         0.0265      
    14        555      0.00501176        9.17528          0.176      
    15        592      0.00501176        18.3506          0.176      
    16        629      0.00479109        4.58764        0.00689      
    17        666      0.00452196        9.17528        0.00319      
    18        703      0.00439189        18.3506        0.00367      
    19        740      0.00439189        29.4721        0.00367      
    20        777      0.00428672        7.36803        0.00647      
    21        814      0.00421999        14.7361         0.0101      
    22        851      0.00421999        13.6165         0.0101      
    23        888      0.00415243        3.40414         0.0161      
    24        925      0.00409154        6.80827        0.00932      
    25        962      0.00408776         4.5222         0.0618      
    26        999      0.00404253        1.13055           0.01      
    27       1036      0.00403082         2.2611        0.00123      
    28       1073      0.00403082         4.5222        0.00123      
    29       1110       0.0040269        1.13055       0.000929      
    30       1147      0.00401891         2.2611        0.00118      
    31       1184      0.00401891         4.5222        0.00118      
    32       1221      0.00401264        1.13055        0.00697      
    33       1258      0.00400196         2.2611        0.00219      
    34       1295      0.00399005        2.64062         0.0293      
    35       1332      0.00398255       0.942539         0.0297      
    36       1369      0.00398095     0.00158519         0.0193      
    37       1406      0.00396954        2.32058        0.00346      
    38       1443      0.00396416         4.5222        0.00523      
    39       1480       0.0039604         4.5222        0.00736      
    40       1517      0.00395368        1.13055        0.00675      
    41       1554      0.00395283      0.0817624        0.00665      
    42       1591       0.0039523     0.00153207        0.00972      
    43       1628      0.00394466         2.2611         0.0038      
    44       1665      0.00394466         4.5222         0.0038      
    45       1702      0.00394163        1.13055       0.000864      
    46       1739       0.0039407         2.2611        0.00219      
    47       1776      0.00393601         2.2611       0.000768      
    48       1813      0.00393601         4.5222       0.000768      
    49       1850      0.00393507        1.13055       0.000608      
    50       1887      0.00393386         2.2611       0.000886      
    51       1924       0.0039316         2.2611       0.000763      
    52       1961       0.0039316         4.5222       0.000763      
    53       1998      0.00393043        1.13055       0.000336      
    54       2035       0.0039288         2.2611       0.000594      
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    55       2072      0.00392822         4.5222         0.0028      
    56       2109      0.00392417        1.13055       0.000859      
    57       2146      0.00392201         2.2611       0.000753      
    58       2183       0.0039197         4.5222        0.00175      
    59       2220      0.00391665         4.5222        0.00277      
    60       2257      0.00391665         4.5222        0.00277      
    61       2294      0.00391252        1.13055       0.000355      
    62       2331      0.00390875         2.2611        0.00063      
    63       2368      0.00390675         4.5222         0.0011      
    64       2405      0.00389385         4.5222        0.00323      
    65       2442      0.00389385        9.04439        0.00323      
    66       2479      0.00388782         2.2611       0.000559      
    67       2516      0.00387956         4.5222        0.00132      
    68       2553       0.0038636         4.5222        0.00152      
    69       2590       0.0038636        9.04439        0.00152      
    70       2627      0.00384844         2.2611        0.00137      
    71       2664      0.00380638         4.5222        0.00297      
    72       2701      0.00375203        9.04439        0.00391      
    73       2738      0.00375203        5.01271        0.00391      
    74       2775      0.00344858        1.25318        0.00451      
    75       2812      0.00342408       0.022837         0.0408      
    76       2849      0.00303217        2.50636        0.00787      
    77       2886      0.00290266       0.191662        0.00952      
    78       2923      0.00274184        3.19804         0.0163      
    79       2960      0.00274184        5.01271         0.0163      
    80       2997      0.00272131        1.25318        0.00308      
    81       3034      0.00272131        2.50636        0.00308      
    82       3071      0.00271664       0.626589        0.00157      
    83       3108      0.00271134       0.954732        0.00159      
    84       3145      0.00271043        1.25318       0.000773      
    85       3182      0.00271043        2.50636       0.000773      
    86       3219      0.00271016       0.626589       0.000532      
    87       3256      0.00271006        1.25318       0.000149      
    88       3293      0.00270985       0.313295       0.000121      
    89       3330      0.00270983      0.0915959       0.000141      
    90       3367      0.00270983       0.313295       0.000141      
    91       3404      0.00270981      0.0783237       4.58e-05      
    92       3441      0.00270981      0.0169018       5.03e-05      

Optimization stopped because the relative sum of squares (r) is changing
by less than options.FunctionTolerance = 1.000000e-08.

Results

Examine the results. Start by computing the filter frequency response over a larger frequency range.

freqzResp = eqFreqz(EQ,frequency,Fs);
pFR = octaveAverage(frequency,abs(freqzResp),24,fullRange,false);
filtRespFR = 20*log10(pFR);
outputRespFR = pdbFRmic + filtRespFR;

Plot the system response.

% Plot the system response
semilogx(frequency, magnitudeDB, 'g:');
hold on
axis([20 24e3 yrange]);
plot(cfFR, pdbFRmic, 'b', LineWidth=2)
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plot(cf, targetResp, 'k', LineWidth=2.5);
plot([ROI(1) ROI(1)], yrange, ':m', LineWidth=1.5);
plot([ROI(2) ROI(2)], yrange, ':m', LineWidth=1.5);
plot(cfFR, outputRespFR, 'r', LineWidth=2);
title('Measured Speaker Response with and without EQ');
legend('Measured Response (raw data)',...
       'Measured Response (octave smoothed)',...
       'Target Response','ROI Low','ROI High',...
       'Corrected Response',Location='southwest')
xlabel('Frequency (Hz) \rightarrow')
ylabel('Magnitude (dB) \rightarrow')
grid on
hold off

Also plot error relative to target, but invert the error curves to make it easier to compare them with
the optimized EQ.

% Plot error relative to target
errorOld = targetResp - pdb;
errorNew = targetResp - outputResp;
semilogx(cf([1,end]), [0 0], 'k', LineWidth=2);
hold on;
plot(cf, errorOld, 'b', LineWidth=2);
plot(cf, errorNew, 'g', LineWidth=2);
plot(cfFR, filtRespFR, 'r', LineWidth=1.5);
hold off; grid on;
axis([20 24e3 -15 15])
title('Error Relative to Target');
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xlabel('Frequency (Hz) \rightarrow');
ylabel('Magnitude (dB) \rightarrow');
legend('Target','Original Error (inverted)',...
       'Corrected Error (inverted)',...
       'Optimized EQ',Location='southwest');

Sort peak filters by center frequency and convert to table format.

EQpk = EQ(1:end-2,:);
[~,idx] = sort(EQpk(:,3));
EQ(1:end-2,:) = EQpk(idx,:);

% Create a table with all the EQ settings
filterType =  [repmat("PK",numFilters-2,1);"LS";"HS"];
EQt = table(filterType,EQ(:,3),EQ(:,1),EQ(:,2),VariableNames=...
                   {'Type','Frequency (Hz)','Gain (dB)','Q/S'})

EQt=12×4 table
    Type    Frequency (Hz)    Gain (dB)      Q/S  
    ____    ______________    _________    _______

    "PK"        72.306          3.8183      2.1746
    "PK"        122.75         -6.0424      3.0235
    "PK"        207.73         -9.0488     0.99342
    "PK"        489.87         -5.5155      4.3583
    "PK"        1067.2          6.0749       7.627
    "PK"        1234.6          2.8505      7.8139
    "PK"          1983         -5.0972      2.6455
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    "PK"        3787.6         -4.8124       10.19
    "PK"        6725.8          2.3008      4.7693
    "PK"         10654         -7.8231      1.4828
    "LS"        1707.6          6.6801         0.1
    "HS"         16712         -2.4408      4.5093

Compute an overall gain that avoids any tones increasing in amplitude. This is not a guarantee that
signals cannot clip but is generally more than sufficient in practice.

gainDB = -max(filtRespFR)-.1;

Instantiate a multibandParametricEQ object with the EQ settings. You can use this object to
visualize the filter, create an audio plugin, or load either the object or plugin into the Audio Test
Bench.

% Create EQ object
mbpeq = multibandParametricEQ(HasLowShelfFilter=true, HasHighShelfFilter=true, ...
                              NumEQBands=numFilters-2, EQOrder=2, SampleRate=Fs, ...
                              Frequencies=EQ(1:end-2,3)', QualityFactors=EQ(1:end-2,2)', PeakGains=EQ(1:end-2,1)', ...
                              LowShelfCutoff=EQ(end-1,3), LowShelfSlope=EQ(end-1,2), LowShelfGain=EQ(end-1,1), ...
                              HighShelfCutoff=EQ(end,3), HighShelfSlope=EQ(end,2), HighShelfGain=EQ(end,1));

Produce output files to subjectively evaluate the results, either with headphones or in the actual
listening room. The IR is included for headphone evaluation but should be omitted when testing in
the actual room (which produces that response itself).

[rock,fileFs] = audioread('RockDrums-44p1-stereo-11secs.mp3');

% Resample the test file to match the sample rate of the IR measurement
rock = resample(rock,Fs,fileFs,100);

% Convolve the IR with the test audio. This will simulate the
% effect of the room when evaluating the EQ using headphones.
rockIR = conv(rock(:,1),ir);
rockIR(:,2) = conv(rock(:,2),ir);
rockIR = rockIR*.97/max(abs(rockIR),[],'all');
audiowrite('RockDrums-with-IR.wav',rockIR,Fs,Comment=...
       'Convolution of rock drums with impulse response (for simulated evaluation on headphones)');

Try the plugin in the Audio Test Bench application.

audioTestBench(mbpeq)

In the Audio Test Bench, click the "Audio File Reader" button with the gear icon and select
'RockDrums-with-IR.wav' if using headphones, or simply use 'RockDrums-44p1-
stereo-11secs.mp3' if playing back over the same system that was used to measure the impulse
response. With the Audio Test Bench, you can toggle the EQ on and off, and you can even further tune
the EQ settings to your liking.

You can also process files with the EQ to listen outside of the Audio Test Bench.

% Apply the EQ to the original file (for use in the measured room).
% Use the gain that was computed to avoid clipping.
rockEQ = db2mag(gainDB)*mbpeq(rock);
reset(mbpeq); % reset the EQ before processing another file
audiowrite('RockDrums-with-Correction-only.wav',rockEQ,Fs,Comment=...
          ['Convolution of rock drums with correction (for listening '...
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           'in the same environment the IR was measured in)']);

% Apply the EQ to the IR-processed file (for use with headphones).
% Use an output level that avoids clipping.
rockIREQ = mbpeq(rockIR);
reset(mbpeq); % reset the EQ so it is free to process another file
rockIREQ = rockIREQ/max(abs(rockIREQ),[],'all')*.97;
audiowrite('RockDrums-with-IR-and-Correction.wav',rockIREQ,Fs,Comment=...
          ['Convolution of rock drums with impulse response and '...
           'correction (IR simulation for evaluation over headphones)']);

Alternatively, to apply the EQ to any playback on a selected device, Windows users can export the EQ
settings in a Room EQ Wizard (REW) compatible format and load it in Equalizer APO.

eqExport2APO("myroomeq.txt",EQ,gainDB);
type("myroomeq.txt")

Filter Settings file

MATLAB Filter Export
Dated: 31-Aug-2022 04:59:41

Notes: Generated using MATLAB example

Equalizer: Generic
Preamp: -9.2 dB
Filter: ON  PK  Fc    72.31 Hz  Gain   3.82 dB  Q 2.17462
Filter: ON  PK  Fc   122.75 Hz  Gain  -6.04 dB  Q 3.02346
Filter: ON  PK  Fc   207.73 Hz  Gain  -9.05 dB  Q 0.99342
Filter: ON  PK  Fc   489.87 Hz  Gain  -5.52 dB  Q 4.35832
Filter: ON  PK  Fc  1067.20 Hz  Gain   6.07 dB  Q 7.62704
Filter: ON  PK  Fc  1234.60 Hz  Gain   2.85 dB  Q 7.81394
Filter: ON  PK  Fc  1982.98 Hz  Gain  -5.10 dB  Q 2.64553
Filter: ON  PK  Fc  3787.62 Hz  Gain  -4.81 dB  Q 10.18995
Filter: ON  PK  Fc  6725.81 Hz  Gain   2.30 dB  Q 4.76932
Filter: ON  PK  Fc 10654.20 Hz  Gain  -7.82 dB  Q 1.48285
Filter: ON  LS  Fc  1707.61 Hz  Gain   6.68 dB  Q 0.21644
Filter: ON  HS  Fc 16711.80 Hz  Gain  -2.44 dB  Q 1.52830
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Audio-Based Anomaly Detection for Machine Health Monitoring

This example shows how to design an autoencoder neural network to perform anomaly detection for
machine sounds using unsupervised learning. In this example you will download and process the data
using a log-mel spectrogram, design and train an autoencoder network, and make out-of-sample
predictions by applying a statistical model to the trained network output.

Audio-based anomaly detection is the process of identifying whether the sound generated by an
object is abnormal. This is applicable to the automatic detection of industrial component failures, as a
machine that emits an abnormal sound is likely malfunctioning.

The problem of classifying sounds as either normal or abnormal can be viewed as a standard
supervised learning task, where a model is trained on samples of both sound types and learns to
discriminate between them. However, in practice, a data set of abnormal sounds is generally not
available because machine malfunctions do not occur frequently enough or for long enough duration
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to be properly recorded. Also, it would be impossible to create a data set representative of every type
of anomaly, as a machine could malfunction for a diverse set of reasons.

Autoencoders are useful for anomaly detection tasks because they train solely on the normal samples.
Autoencoder networks perform the unsupervised learning task of finding both a low-dimensional
encoding of the input as well as a rule to accurately reconstruct the input from its low-dimensional
representation. This forces the autoencoder to learn a process specifically for compressing and
decompressing normal samples. The motivating principle is that when an abnormal sample is fed into
the autoencoder, the reconstruction error will be much larger than expected from the training set
because the signal compression and decompression scheme learned by the network is only expected
to work well for normal samples. To make predictions on unseen samples, an error threshold is
picked based off the expected distribution of reconstruction errors for normal samples, and any input
with an error larger than the threshold is classified as an anomaly.

In this example, the autoencoder first passes the input through an encoding section of fully-connected
layers using a number of nodes on the same order of magnitude as the input dimension. The data
then feeds into a bottleneck layer with a number of nodes much smaller than the input size which
forces the network to compress the input signal into the lower-dimensional representation. This
compressed representation feeds into a decoding section that generally mirrors the same
architecture as the encoder section in order to recreate the input signal. Lastly, the decoder output is
passed into a final output layer with the same number of dimensions as the input. The network loss is
taken as the regression error between the original input and the reconstructed signal.

Download Data

This example applies to the second task of the Detection and Classification of Acoustic Scenes and
Events (DCASE) 2022 challenge [1] on page 1-1004. The example uses a subset of the public data set
from Sound Dataset for Malfunctioning Industrial Machine Investigation and Inspection [2] on page
1-1004 to train and evaluate the autoencoder. It implements ideas from the preprocessing steps and
network designs of both the autoencoder baseline system in [1] on page 1-1004 and the proposed
network in [2] on page 1-1004 and uses the performance metrics devised in [1] on page 1-1004 to
analyze the testing results.

Download a subset of the data set in [2] on page 1-1004 that contains recorded audio files of 4
different fan types, labelled by ID number. There are both normal and abnormal recordings for each
fan type. These files contain 1 channel sampled at 16 kHz and are 10 seconds long. The samples are
recordings of operating fans with background noise with a signal to noise ratio of 6 dB. A full
explanation of the data collection process is available in [2] on page 1-1004.

dataFolder = tempdir;
dataset = fullfile(dataFolder,"fan6db");
supportFileLoc = fullfile("mimii","mono","fan6db.zip");
downloadFolder = matlab.internal.examples.downloadSupportFile("audio",supportFileLoc);
unzip(downloadFolder,dataFolder)

Investigate Data

To briefly examine the data set and the differences between the normal and abnormal recordings,
select one recording of each type from the ID 00 fan data set and play the first two seconds over your
speaker.

[normalSample,fs] = audioread(fullfile(dataset,"id_00","normal_00","00000000.wav"));
abnormalSample = audioread(fullfile(dataset,"id_00","abnormal_00","00000000.wav"));

numSamples = 10*fs;
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sound(normalSample(1:numSamples/5),fs)
pause(3)
sound(abnormalSample(1:numSamples/5),fs)

Both recordings are dominated by a single tone, and this tone is clearly higher pitched in the
abnormal sample.

Preprocess Data

You can optionally set the speedUp flag to true to reduce the size of the data set used in the
example. If you set this to true you can quickly verify that the script runs as expected, but the
results will be skewed.

speedUp = ;

Seperate the data set into two audioDatastore objects, one with the normal samples and one with
the abnormal samples. Since the autoencoder only trains on the normal samples, hold out the
abnormal samples to be included in the test set.

ads = audioDatastore(dataset, ...
    IncludeSubfolders=true, ...
    LabelSource="foldernames", ...
    FileExtensions=".wav");

normalLabels = categorical(["normal_00","normal_02","normal_04","normal_06"]);
abnormalLabels = categorical(["abnormal_00","abnormal_02","abnormal_04","abnormal_06"]);

isNormal = ismember(ads.Labels,normalLabels);
isAbnormal = ~isNormal;
adsNormal = subset(ads,isNormal);
adsTestAbnormal = subset(ads,isAbnormal);
rng(3);
if speedUp
    c = cvpartition(adsTestAbnormal.Labels,kFold=8,Stratify=true);
    adsTestAbnormal = subset(adsTestAbnormal,c.test(1));
end

Divide the normal samples into training, validation, and test sets, stratified by ID number. Then
concatenate the normal test set with the abnormal samples to form the full test set.

c = cvpartition(adsNormal.Labels,kFold=8,Stratify=true);
if speedUp
    trainInd = c.test(3);
else
    trainInd = ~boolean(c.test(1)+c.test(2));
end
valInd = c.test(1);
testInd = c.test(2);

adsTrain = subset(adsNormal,trainInd);
adsVal = subset(adsNormal,valInd);
adsTestNormal = subset(adsNormal,testInd);

Transform each of the datastores by applying an STFT with frame length of 64 ms and hop length of
32 ms, find the log-mel energies for 128 frequency bands, and then concatenate these frames into
overlapping, consecutive groups of 5 to form a context window. It is common to use log-mel energies
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as inputs to audio deep learning tasks as they represent the spectrum of tones on a scale similar to
how humans perceive sound. Visualize the log-mel spectrograms of the two clips played previously
using the plotLogMelSpect supporting function.

plotLogMelSpect(normalSample,abnormalSample);

Use the processData supporting function to perform the data transformation.

tdsTrain = transform(adsTrain,@processData);
tdsVal = transform(adsVal,@processData);
tdsTestNormal = transform(adsTestNormal,@processData);
tdsTestAbnormal = transform(adsTestAbnormal,@processData);

Read the data into arrays where each column represents an input sample. Do this in parallel if you
have enabled Parallel Computing Toolbox™. Then combine the normal test set and abnormal data set
into the full test set, and label the samples accordingly.

trainingData = readall(tdsTrain,UseParallel=canUseParallelPool);
valData = readall(tdsVal,UseParallel=canUseParallelPool);

normalTestData = readall(tdsTestNormal,UseParallel=canUseParallelPool);
abnormalTestData = readall(tdsTestAbnormal,UseParallel=canUseParallelPool);
testLabels = categorical([zeros(length(adsTestNormal.Labels),1);ones(length(adsTestAbnormal.Labels),1)],[0,1],["normal","abnormal"]);
testData = [normalTestData;abnormalTestData];

Network Architecture

The encoder section consists of 2 fully connected layers with output sizes of 128. The bottleneck layer
constrains the network to an 8-dimensional representation of the original 640-dimensional input. The
decoder section mirrors the encoder architecture as the input is reconstructed and fed into the
output layer. Use half-mean-squared-error as the loss function to train the network and quantify the
reconstruction error.

layers = [
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featureInputLayer(640)

fullyConnectedLayer(128,Name="Encoder1")
batchNormalizationLayer
reluLayer

fullyConnectedLayer(128,Name="Encoder2")
batchNormalizationLayer
reluLayer

fullyConnectedLayer(8,Name="Bottleneck")
batchNormalizationLayer
reluLayer

fullyConnectedLayer(128,Name="Decoder1")
batchNormalizationLayer
reluLayer

fullyConnectedLayer(128,Name="Decoder2")
batchNormalizationLayer
reluLayer

fullyConnectedLayer(640,Name="Output")
regressionLayer];

Train Network

Train the network using an ADAM optimizer for 40 epochs. Shuffle the mini-batches each epoch, and
set the ExecutionEnvironment field to "auto" so that a GPU is used instead of the CPU if
available. If using a GPU with limited memory, you may need to decrease the value of the
miniBatchSize field. The training parameter settings were found empirically to optimize
convergence speed. This may take 10-15 minutes depending on your hardware.

batchSize = length(trainingData)/2;
if speedUp
    batchSize = 2*batchSize;
end

options = trainingOptions("adam", ...
    MaxEpochs=30, ...
    InitialLearnRate=1e-2, ...
    LearnRateSchedule="piecewise", ...
    LearnRateDropPeriod=5, ...
    LearnRateDropFactor=.7, ...
    GradientDecayFactor=.8, ...
    miniBatchSize=batchSize, ...
    Shuffle="every-epoch", ...
    ExecutionEnvironment="auto", ...
    ValidationData={valData,valData}, ...
    ValidationFrequency=2, ...
    Verbose=0, ...
    Plots="training-progress");

trainingData is both the input and the target output as the network attempts to regress the
training data on itself with the low-dimensional encoding constraint. Your results should look similar
to the training plots below.

[net,info] = trainNetwork(trainingData,trainingData,layers,options);
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Evaluate Performance

For each input to the network, the autoencoder outputs an attempted reconstruction. However, each
network input is only one context window from a larger audio sample. For each of these network
inputs, the error is defined as the squared L-2 norm of the difference between the original input and
the network output. To calculate a decision metric for each entire audio sample, the errors for each
context window associated with that audio sample are added together, and this sum is divided by the
product of the network input dimension and the number of context groups per audio sample. For an

audio sample X, the decision function metric is denoted A X  and definedA X = ∑i = 1
n f xi − xi

2

n * dim xi

where n is the number of context groups per sample, xi  is the ith context group constructed from X,
and f xi  is the network output for xi. A X  represents the mean squared reconstruction error across
each vector component of all context windows associated with an audio sample X.

For each input X, A X  can also be interpreted as a relative measure of the network's confidence that
X is abnormal, with higher values indicating larger confidence. To deploy this model and make
predictions on new data, you must select a decision boundary on the values of A to separate positive
and negative predictions. Model A X  for normal samples as a gamma distribution. Gamma
distributions are commonly used to model autoencoder reconstruction errors since the errors are
usually skewed right with a heavy tail, which is the natural shape of a gamma distribution. In this
example, the decision boundary is selected as the point that corresponds to an expected false positive
rate (FPR) p = 0.1. This decision boundary attempts to capture all truly abnormal samples while
tolerating the expectation that 10% of normal samples will be falsely predicted as abnormal. You can
choose a specific value of p to fit your individual system constraints.

p = .1;
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Compute the values of A over the training set and store them in the variable A_train using the
helper function getScore. Then solve for the maximum likelihood estimate for the gamma
distribution parameters, select the cutoff point from the inverse gamma cumulative distribution
function, and plot the fitted distribution with the histogram of A using the getCutoff helper
function.

trainRecons = predict(net,trainingData,MiniBatchSize=length(trainingData));
A_train = getScore(trainingData,trainRecons);
cutoff = getCutoff(A_train,p);

Verify that this cutoff point roughly corresponds to an FPR of 0.1 on the training set:

sum(A_train > cutoff) / length(A_train)

ans = 0.1086

Test the classification accuracy of this system with the chosen cutoff point on the holdout test set.

testRecons = predict(net,testData,MiniBatchSize=length(testData));
A_test = getScore(testData,testRecons);
testPreds = categorical(A_test > cutoff,[false,true],["normal","abnormal"]).';
figure
cm = confusionchart(testLabels,testPreds);
cm.RowSummary="row-normalized";
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Using this cutoff point, the model achieves a true positive rate (TPR) of 0.647 at the cost of an FPR of
0.125.

To evaluate the accuracy of the network over a range of decision boundaries, measure the overall
performance on the test set by the area under the receiver operating characteristic curve (AUC). Use
both the full AUC and the partial AUC (pAUC) to analyze the network performance. pAUC is the AUC
on the subdomain where the FPR is on the interval 0, p  divided by the maximum possible area in the
interval, which is p. It is important to consider pAUC since anomaly detection systems need to be able
to achieve high TPR while keeping the FPR to a minimum, as a system with frequent false alarms is
untrustworthy and unusable. Compute the AUC using the perfcurve function from Statistics and
Machine Learning Toolbox™.

[X,Y,T,AUC] = perfcurve(testLabels,A_test,categorical("abnormal"));
[~,cutoffIdx] = min(abs(T-cutoff));
figure
plot(X,Y);
xlabel("FPR");
ylabel("TPR");
title("Test Set ROC Curve");
hold on
plot(X(cutoffIdx),Y(cutoffIdx),'r*');
hold off
legend("ROC Curve","Cutoff Decision Point");
grid on
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AUC

AUC = single
    0.8957

To calculate the pAUC, approximate the area under the curve in the first tenth of the FPR domain
using trapz. For reference, the expected value of the pAUC of a random classifier is 0.05.

pX = X(X <= p);
pY = Y(X <= p);
pAUC = trapz(pX,pY)/p

pAUC = single
    0.5161

The network separates the normal and abnormal test samples fairly well and is able to learn a single
encoding across multiple fan IDs. Visualize the difference in reconstruction errors between the
normal and abnormal groups by their histograms.

figure
hold on
edges = linspace(min(A_test),1,100);
histogram(A_test(testLabels == categorical("normal")),edges,Normalization="probability");
histogram(A_test(testLabels == categorical("abnormal")),edges,Normalization="probability");
ylabel("Sample Probability");
xlabel("Reconstruction Error (A)");
legend("Normal","Abnormal");
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Although there is some overlap, the distribution of reconstruction errors for the abnormal samples is
offset further to the right and contains a much heavier tail than the distribution of reconstruction
errors over the normal samples.

Lastly, evaluate the model's performance on each fan ID individually to reveal any imbalance between
the fan types and check if the model is able to predict universally well over all IDs.

IDs = [0;2;4;6];
AUCs = zeros(4,1);
pAUCs = AUCs;
A_testNormal = A_test(1:sum(testInd));
A_testAbnormal = A_test(sum(testInd)+1:end);
for i = 1:4
    normalMask = adsTestNormal.Labels == normalLabels(i);
    abnormalMask = adsTestAbnormal.Labels == abnormalLabels(i);
    A_testByID = [A_testNormal(normalMask) A_testAbnormal(abnormalMask)];
    testLabelsByID = [adsTestNormal.Labels(normalMask);adsTestAbnormal.Labels(abnormalMask)];
    [X_ID,Y_ID,T_ID,AUC_ID] = perfcurve(testLabelsByID,A_testByID,abnormalLabels(i));
    AUCs(i) = AUC_ID;
    pX_ID = X_ID(X_ID <= p);
    pY_ID = Y_ID(X_ID <= p);
    pAUCs(i) = trapz(pX_ID,pY_ID)/p;
end
disp(table(IDs,AUCs,pAUCs));

    IDs     AUCs       pAUCs 
    ___    _______    _______
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     0     0.72147    0.19134
     2     0.97739    0.73454
     4      0.8761    0.42547
     6     0.96017     0.6742

The results show the model performance significantly varies by fan type. This result is important to
note as this network is relatively small and simple compared to the top performing DCASE challenge
submissions in [3] on page 1-1004. To generalize better across fan types and to different domains, a
more complex model is needed. However, if you know the exact fan type that you are deploying an
anomaly detector for, a very light-weight model like the one in this example may suffice.

Supporting Functions
function plotLogMelSpect(normalSample,abnormalSample)
%PLOTLOGMELSPECT plots the log-mel spectrogram of the normal and abornomal
%   plotLogMelSpect(normalSample,abnormalSample) plots the log-mel
%   spectrogram of the two inputs side by side, with parameters consistent
%   with the data preprocessing transformation used to prepare the signals
%   to be fed into the autoencoder.
f = figure;
f.Position(3) = 900;
samples = {normalSample,abnormalSample};
fs = 16e3;
winDur = 64e-3;
winLen = winDur * fs;
numMelBands = 128;
tiledlayout(1,2)
for i = 1:2
    nexttile
    x = samples{i};
    melSpectrogram(x,fs,Window=hamming(winLen,"periodic"),FFTLength=winLen,OverlapLength=winLen/2,NumBands=numMelBands);
    xticks(1:10);
    xticklabels(string(1:10));
    colormap("jet");
    if i == 2
        cbar = colorbar;
        cbar.Label.String = "Power (dB)";
        title("Abnormal Log-Mel Spectrogram");
        ylabel([]);
    else
        colorbar off
        title("Normal Log-Mel Spectrogram");
    end
end
end
function features = processData(x)
%PROCESSDATA transforms an audio file input x into the autoencoder network
%input format
%   features = processData(x) takes the STFT of audio data x, transforms
%   the STFT into the log-mel spectrogram, and then constructs context
%   groups of consecutive mel-spectrogram frames. The function returns the
%   features as a numContextGroupsPerSample-by-contextGroupSize matrix. For
%   this data set, numContextGroupsPerSample = 309 and contextGroupSize =
%   640 = 128*5 (since there are 128 mel bands per frame and 5 frames are
%   concatenated for each context group)

fs = 16e3;
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winDur = 64e-3;
winLen = winDur*fs;
numMelBands = 128;
afe = audioFeatureExtractor(...
    Window=hamming(winLen,"periodic"), ...
    FFTLength=winLen, ...
    OverlapLength=winLen/2, ...
    SampleRate=fs, ...
    melSpectrum=true);

setExtractorParameters(afe,"melSpectrum",numBands=numMelBands);

% Zero pad
numSamples = length(x);
numPad = winLen - mod(numSamples,winLen);
numToPadFront = floor(numPad/2);
numToPadBack = ceil(numPad/2);

xPadded = [zeros(numToPadFront,1,like=x);x;zeros(numToPadBack,1,like=x)];
% Extract
features = extract(afe,xPadded);
features = {log10(features)};
features = cellfun(@groupSTFT,features,UniformOutput=false);
features = vertcat(features{:});
end

function groups = groupSTFT(x)
%GROUPSTFT transforms an STFT x into context groups of size 5
%   groups = groupSTFT(x) transforms the STFT x by grouping each STFT frame
%   with the following 4 frames to form context groups of size 5. This
%   creates multiple network inputs out of each audio sample, each of size
%   contextLen*numMelBands = 5*128 = 640. Each of these context groups are
%   treated as individual 640-dimensional vectors for the purpose of the
%   autoencoder.
contextLen = 5;
numMelBands = 128;
x_flat = reshape(x',1,[]);
groups = buffer(x_flat,contextLen*numMelBands,numMelBands*(contextLen-1),"nodelay")';
end

function A = getScore(data,preds)
%GETSCORE returns the reconstruction error for each sample in data
%   A = getScore(data,preds) returns A(X) for each X in the set of samples
%   transformed into network input data.
err = sum((preds-data).^2,2);
numSTFTFrames = 313;
contextWin = 5;
numMelFilters = 128;
numContextGroupsPerSample = numSTFTFrames-contextWin+1;
numSamples = length(err)/numContextGroupsPerSample;
A_total = reshape(err,[numContextGroupsPerSample,numSamples]); %Each column contains reconstruction errors of all context groups for one sample
A = sum(A_total)/(numMelFilters*contextWin*numSTFTFrames); %Each entry is a reconstruction error for each sample
end

function cutoff = getCutoff(A,p)
%GETCUTOFF fits a gamma distribution to A and returns the cutoff as the inverse cdf of 1-p
%   cutoff = getCutoff(A,p) fits a gamma distribution to the reconstruction
%   error array A, solves for the cutoff point as the inverse gamma cdf
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%   evaluated at 1-p, and plots the fitted distribution along with the
%   histogram of A and the calculated cutoff point. A is expected as
%   one-by-numSamples array where numSamples is the number of audio samples
%   used to compute the reconstruction error values of A.
gammaParams = gamfit(A);
a = gammaParams(1);
b = gammaParams(2);
cutoff = gaminv(1-p,a,b);
figure
ax1 = subplot(4,1,1:3);
histogram(A);
xticks([]);
title("Histogram of A with Fitted Gamma Dist. PDF");
ylTop = ylabel("Count");
xline(cutoff,"--",LineWidth=2,Label="cutoff",LabelOrientation="horizontal",LabelVerticalAlignment="middle");
ax2 = subplot(4,1,4);
t = linspace(0, max(A), 1000);
y = gampdf(t,a,b);
plot(t,y);
xline(cutoff,"--",LineWidth=2);
ylBottom = ylabel("\Gamma Density");
yticks([]);
linkaxes([ax1 ax2],"x");
ylBottom.Position(1) = ylTop.Position(1);
xlabel("Reconstruction Error (A)");
xlim([0 .4]);
ylBottom.Position(1) = ylTop.Position(1);
end
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Design User Interface for Audio Plugin

Audio plugins enable you to tune parameters of a processing algorithm while streaming audio in real
time. To enhance usability, you can define a custom user interface (UI) that maps parameters to
intuitively designed and positioned controls. You can use audioPluginInterface,
audioPluginParameter, and audioPluginGridLayout to define the custom UI. You can interact
with the custom UI in MATLAB® using parameterTuner, or deploy the plugin with a custom UI to a
digital audio workstation (DAW). This tutorial walks through key design capabilities of audio plugins
by sequentially enhancing a basic audio plugin UI.

To learn more about audio plugins in general, see “Audio Plugins in MATLAB”.

Default User Interface

The equalizerV1 audio plugin enables you to tune the gains and center frequencies of a three-band
equalizer, tune the overall volume, and toggle between enabled and disabled states.

classdef equalizerV1 < audioPlugin
    properties
        GainLow = 0
        FreqLow = sqrt(20*500)
        GainMid = 0
        FreqMid = sqrt(500*3e3)
        GainHigh = 0
        FreqHigh = sqrt(3e3*20e3)
        Volume = 1
        Enable = true
    end
    properties (Constant)
        PluginInterface = audioPluginInterface( ...
            audioPluginParameter('GainLow', ...
                'Label','dB', ...
                'Mapping',{'lin',-20,20}), ...
            audioPluginParameter('FreqLow', ...
                'Label','Hz', ...
                'Mapping',{'log',20,500}), ...
            audioPluginParameter('GainMid', ...
                'Label','dB', ...
                'Mapping',{'lin',-20,20}), ...
            audioPluginParameter('FreqMid', ...
                'Label','Hz', ...
                'Mapping',{'log',500,3e3}), ...
            audioPluginParameter('GainHigh', ...
                'Label','dB', ...
                'Mapping',{'lin',-20,20}), ...
            audioPluginParameter('FreqHigh', ...
                'Label','Hz', ...
                'Mapping',{'log',3e3,20e3}), ...
            audioPluginParameter('Volume', ...
                'Mapping',{'lin',0,2}), ...
            audioPluginParameter('Enable'))
    end
    properties (Access = private)
        mPEQ
    end
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    methods
        function obj = equalizerV1
            obj.mPEQ = multibandParametricEQ('HasHighpassFilter',false, ...
                'HasLowShelfFilter',false,'HasHighShelfFilter',false, ...
                'HasLowpassFilter',false,'Oversample',false,'NumEQBands',3, ...
                'EQOrder',2);
        end
        function y = process(obj, x)
            if obj.Enable
                y = step(obj.mPEQ,x);
                y = y*obj.Volume;
            else
                y = x;
            end
        end
        function reset(obj)
            obj.mPEQ.SampleRate = getSampleRate(obj);
            reset(obj.mPEQ);
        end
        function set.FreqLow(obj,val)
            obj.FreqLow = val;
            obj.mPEQ.Frequencies(1) = val; %#ok<*MCSUP>
        end
        function set.GainLow(obj,val)
            obj.GainLow = val;
            obj.mPEQ.PeakGains(1) = val;
        end
        function set.FreqMid(obj,val)
            obj.FreqMid = val;
            obj.mPEQ.Frequencies(2) = val;
        end
        function set.GainMid(obj,val)
            obj.GainMid = val;
            obj.mPEQ.PeakGains(2) = val;
        end
        function set.FreqHigh(obj,val)
            obj.FreqHigh = val;
            obj.mPEQ.Frequencies(3) = val;
        end
        function set.GainHigh(obj,val)
            obj.GainHigh = val;
            obj.mPEQ.PeakGains(3) = val;
        end
    end
end

Call parameterTuner to visualize the default UI of the audio plugin.

parameterTuner(equalizerV1)
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Control Style and Layout

To define the UI grid, add audioPluginGridLayout to the audioPluginInterface. You can
specify the number, size, spacing, and border of cells in the UI grid. In this example, specify
“RowHeight” as [20,20,160,20,100] and “ColumnWidth” as [100,100,100,50,150]. This
creates the following UI grid:

To define the UI control style, update the audioPluginParameter definition of each parameter to
include the “Style” and “Layout” name-value pairs. Style defines the type of control (rotary knob,
slider, or switch, for example). Layout defines which cells the controls occupy on the UI grid. You can
specify Layout as the [row, column] of the grid to occupy, or as the [upper, left; lower, right] of the
group of cells to occupy. By default, control display names are also displayed and occupy their own
cells on the UI grid. The cells they occupy depend on the “DisplayNameLocation” name-value pair.

The commented arrows indicate the difference between equalizerV1 and equalzierV2.

classdef equalizerV2 < audioPlugin
    ... % omited for example purposes
    properties (Constant)
        PluginInterface = audioPluginInterface( ...
            audioPluginParameter('GainLow', ...
                'Label','dB', ...
                'Mapping',{'lin',-20,20}, ...
                'Style','vslider', ...                                     %<--
                'Layout',[2,1;4,1], ...                                    %<--
                'DisplayName','Low','DisplayNameLocation','Above'), ...    %<--
            audioPluginParameter('FreqLow', ...
                'Label','Hz', ...
                'Mapping',{'log',20,500}, ...
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                'Style','rotaryknob', ...                                  %<--
                'Layout',[5,1], ...                                        %<--
                'DisplayNameLocation','None'), ...                         %<--
            audioPluginParameter('GainMid', ...
                'Label','dB', ...
                'Mapping',{'lin',-20,20}, ...
                'Style','vslider', ...                                     %<--
                'Layout',[2,2;4,2], ...                                    %<--
                'DisplayNameLocation','None'), ...                         %<--
            audioPluginParameter('FreqMid', ...
                'Label','Hz', ...
                'Mapping',{'log',500,3e3}, ...
                'Style','rotaryknob', ...                                  %<--
                'Layout',[5,2], ...                                        %<--
                'DisplayNameLocation','None'), ...                         %<--
            audioPluginParameter('GainHigh', ...
                'Label','dB', ...
                'Mapping',{'lin',-20,20}, ...
                'Style','vslider', ...                                     %<--
                'Layout',[2,3;4,3], ...                                    %<--
                'DisplayName','High','DisplayNameLocation','Above'), ...   %<--
            audioPluginParameter('FreqHigh', ...
                'Label','Hz', ...
                'Mapping',{'log',3e3,20e3}, ...
                'Style','rotaryknob', ...                                  %<--
                'Layout',[5,3], ...                                        %<--
                'DisplayNameLocation','None'), ...                         %<--
            audioPluginParameter('Volume', ...
                'Mapping',{'lin',0,2}, ...
                'Style','rotaryknob', ...                                  %<--
                'Layout',[3,5], ...                                        %<--
                'DisplayNameLocation','Above'), ...                        %<--
            audioPluginParameter('Enable', ...
                'Style','vtoggle', ...                                     %<--
                'Layout',[5,5], ...                                        %<--
                'DisplayNameLocation','None'), ...                         %<--
                ...
            audioPluginGridLayout( ...                                     %<--
                'RowHeight',[20,20,160,20,100], ...                        %<--
                'ColumnWidth',[100,100,100,50,150])                        %<--
    end
    ... % omitted for example purposes
end

The Layout and DisplayNameLocation defined in the audioPluginParameters maps the
respective parameters to the control grid as follows:
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Call parameterTuner to visualize the UI of equalizerV2.

parameterTuner(equalizerV2)
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Background Image and Color

To customize the background of your UI, specify “BackgroundImage” and “BackgroundColor” in
audioPluginInterface.

The BackgroundColor can be specified as a short or long color name string or as an RBG triplet.
When you specify BackgroundColor, the color is applied to all space on the UI except space
occupied by controls or a BackgroundImage. If the control or background image includes a
transparency, then the background color shows through the transparency.

The BackgroundImage can be specified as a PNG, GIF, or JPG file. The image is applied to the UI
grid by aligning the top left corners of the UI grid and image. If the image is larger than the UI grid
size defined in audioPluginGridLayout, then the image is clipped to the UI grid size. The
background image is not resized. If the image is smaller than the UI grid, then unoccupied regions of
the UI grid are treated as transparent.

In this example, you increase the padding around the perimeter of the grid to create space for the
MathWorks® logo. You can calculate the total width of the UI grid as the sum of all column widths
plus the left and right padding plus the column spacing (the default column spacing of 10 pixels is
used in this example): 100 + 100 + 100 + 50 + 150 + 20 + 20 + 4 × 10 = 580. The total height of
the UI grid is the sum of all row heights plus the top and bottom padding plus the row spacing (the
default row spacing of 10 pixels is used in this example):
20 + 20 + 160 + 20 + 100 + 20 + 120 + 4 × 10 = 500 . To locate the logo at the bottom of the UI

grid, use a 580-by-500 image:
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classdef equalizerV3 < audioPlugin
    ... % omitted for example purposes
    properties (Constant)
        PluginInterface = audioPluginInterface( ...
            audioPluginParameter('GainLow', ...
                'Label','dB', ...
                'Mapping',{'lin',-20,20}, ...
                'Style','vslider', ...
                'Layout',[2,1;4,1], ...
                'DisplayName','Low','DisplayNameLocation','Above'), ...
            audioPluginParameter('FreqLow', ...
                'Label','Hz', ...
                'Mapping',{'log',20,500}, ...
                'Style','rotaryknob', ...
                'Layout',[5,1], ...
                'DisplayNameLocation','None'), ...
            audioPluginParameter('GainMid', ...
                'Label','dB', ...
                'Mapping',{'lin',-20,20}, ...
                'Style','vslider', ...
                'Layout',[2,2;4,2], ...
                'DisplayNameLocation','None'), ...
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            audioPluginParameter('FreqMid', ...
                'Label','Hz', ...
                'Mapping',{'log',500,3e3}, ...
                'Style','rotaryknob', ...
                'Layout',[5,2], ...
                'DisplayNameLocation','None'), ...
            audioPluginParameter('GainHigh', ...
                'Label','dB', ...
                'Mapping',{'lin',-20,20}, ...
                'Style','vslider', ...
                'Layout',[2,3;4,3], ...
                'DisplayName','High','DisplayNameLocation','Above'), ...
            audioPluginParameter('FreqHigh', ...
                'Label','Hz', ...
                'Mapping',{'log',3e3,20e3}, ...
                'Style','rotaryknob', ...
                'Layout',[5,3], ...
                'DisplayNameLocation','None'), ...
            audioPluginParameter('Volume', ...
                'DisplayName','Volume', ...
                'Mapping',{'lin',0,2}, ...
                'Style','rotaryknob', ...
                'Layout',[3,5], ...
                'DisplayNameLocation','Above'), ...
            audioPluginParameter('Enable', ...
                'Style','vtoggle', ...
                'Layout',[5,5], ...
                'DisplayNameLocation','None'), ...
                ...
            audioPluginGridLayout( ...
                'RowHeight',[20,20,160,20,100], ...
                'ColumnWidth',[100,100,100,50,150], ...
                'Padding',[20,120,20,20]), ...                             %<--
                ...
            'BackgroundImage','background.png', ...                        %<--
            'BackgroundColor',[210/255,210/255,210/255])                   %<--
    end
    ... % omited for example purposes
end

Call parameterTuner to visualize the UI of equalizerV3.

parameterTuner(equalizerV3)
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Custom Control Filmstrips

To use custom filmstrips, specify the “Filmstrip” and “FilmstripFrameSize” name-value pairs in
audioPluginParameter. The filmstrip can be a PNG, GIF, or JPG file, and should consist of frames
placed end-to-end either vertically or horizontally. The filmstrip is mapped to the control's range so
that the corresponding filmstrip frame is displayed on the plugin UI as you tune parameters. In this
example, specify a two-frame filmstrip for the Enable parameter. As a best practice, the size of each
frame of the film strip should equal the size of the region occupied by the parameter. The Enable
parameter occupies one cell that is 150-by-100 pixels. To create a vertical filmstrip where each frame
is 150-by-100, make the total filmstrip size 150-by-200 and set FilmstripFrameSize to
[150,100]. The filmstrip used in this example contains the frame corresponding to the off position
first, then the on position:
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classdef equalizerV4 < audioPlugin
    ... % omitted for example purposes
    properties (Constant)
        PluginInterface = audioPluginInterface( ...
            audioPluginParameter('GainLow', ...
                'Label','dB', ...
                'Mapping',{'lin',-20,20}, ...
                'Style','vslider', ...
                'Layout',[2,1;4,1], ...
                'DisplayName','Low','DisplayNameLocation','Above'), ...
            audioPluginParameter('FreqLow', ...
                'Label','Hz', ...
                'Mapping',{'log',20,500}, ...
                'Style','rotaryknob', ...
                'Layout',[5,1], ...
                'DisplayNameLocation','None'), ...
            audioPluginParameter('GainMid', ...
                'Label','dB', ...
                'Mapping',{'lin',-20,20}, ...
                'Style','vslider', ...
                'Layout',[2,2;4,2], ...
                'DisplayNameLocation','None'), ...
            audioPluginParameter('FreqMid', ...
                'Label','Hz', ...
                'Mapping',{'log',500,3e3}, ...
                'Style','rotaryknob', ...
                'Layout',[5,2], ...
                'DisplayNameLocation','None'), ...
            audioPluginParameter('GainHigh', ...
                'Label','dB', ...
                'Mapping',{'lin',-20,20}, ...
                'Style','vslider', ...
                'Layout',[2,3;4,3], ...
                'DisplayName','High','DisplayNameLocation','Above'), ...
            audioPluginParameter('FreqHigh', ...
                'Label','Hz', ...
                'Mapping',{'log',3e3,20e3}, ...
                'Style','rotaryknob', ...
                'Layout',[5,3], ...
                'DisplayNameLocation','None'), ...
            audioPluginParameter('Volume', ...
                'Mapping',{'lin',0,2}, ...
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                'Style','rotaryknob', ...
                'Layout',[3,5], ...
                'DisplayNameLocation','Above'), ...
            audioPluginParameter('Enable', ...
                'Style','vtoggle', ...
                'Layout',[5,5], ...
                'DisplayNameLocation','None', ...
                'Filmstrip','vtoggle.png', ...                             %<--
                'FilmstripFrameSize',[150,100]), ...                       %<--
                ...
            audioPluginGridLayout( ...
                'RowHeight',[20,20,160,20,100], ...
                'ColumnWidth',[100,100,100,50,150], ...
                'Padding',[20,120,20,20]), ...
                ...
            'BackgroundImage','background.png', ...
            'BackgroundColor',[210/255,210/255,210/255])
    end
    ... % omitted for example purposes
end

Filmstrips are not supported by parameterTuner. To see the custom plugin UI, you must deploy the
plugin to a DAW. Use generateAudioPlugin to create a VST plugin.

generateAudioPlugin equalizerV4

.......

In this example, the plugin was opened in REAPER. A screenshot of the UI in REAPER is displayed
below.
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See Also

More About
• “Audio Plugins in MATLAB”
• “Export a MATLAB Plugin to a DAW”

See Also
audioPlugin | audioPluginGridLayout | audioPluginInterface | audioPluginParameter |
generateAudioPlugin | parameterTuner
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Use the Audio Labeler

• “Label Audio Using Audio Labeler” on page 3-2
• “Choose an App to Label Ground Truth Data” on page 3-13
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Label Audio Using Audio Labeler

Note Audio Labeler will be removed in a future release. Use Signal Labeler instead.

The Audio Labeler app enables you to interactively define and visualize ground-truth labels for audio
data sets. This example shows how you can create label definitions and then interactively label a set
of audio files. The example also shows how to export the labeled ground-truth data, which you can
then use with audioDatastore to train a machine learning system.

Load Unlabeled Data
1 To open the Audio Labeler, at the MATLAB command prompt, enter:

audioLabeler
2 This example uses the audio files included with Audio Toolbox. To locate the file path on your

system, at the MATLAB command prompt, enter:

fullfile(matlabroot,'toolbox','audio','samples')

To load audio from a file, click Load > Audio Folders and select the folder containing audio files
you want to label.
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Define and Assign Labels
File-Level Labels

The audio samples include music, speech, and ambience. To create a file-level label that defines the
contents of the audio file as music, speech, ambience, or unknown, click . Specify the Label
Name as Content, the Data Type as categorical, and the Categories as music, speech,
ambience, or unknown. Set the Default Value of the label definition to unknown.

All audio files in the Data Browser are now associated with the Content label name. To listen to the
audio file selected in the Data Browser and confirm that it is a music file, click . To set the value of
the Contents label, click unknown in the File Labels panel and select music from the drop-down
menu.

The selected audio file now has the label name Content with value music assigned to it. You can
continue setting the Content value for each file by selecting a file in the Data Browser and then
selecting a value from the File Labels panel.

Region-Level Labels

You can define region-level labels manually or by using the provided automated algorithms. Audio
Toolbox includes automatic labeling algorithms for speech detection and speech-to-text transcription.
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Note To enable automatic speech-to-text transcription, you must download and set up the “Speech-
to-Text Transcription” on page 4-2 functionality. Once you download and set up the speech-to-text
transcription functionality, the Speech to Text automation algorithm appears as an option on the
toolstrip.

Select Counting-16-44p1-mono-15secs.wav from the Data Browser.

To create a region-level label that indicates if speech is detected, first select Speech Detector from
the AUTOMATION section. You can control the speech detection algorithm using the Window
Length (s) and Merge Regions Within (s) parameters. Use the default parameters for the speech
detection algorithm. To create an ROI label and to label regions of the selected audio file, select Run.

Close the Speech Detector tab. You can correct or fine-tune the automatically generated
SpeechDetected regions by selecting the ROI from the ROI bar, and then dragging the edges of the
region. The ROI bar is directly to the right of the ROI label. When a region is selected, clicking 
plays only the selected region, enabling you to verify whether the selected region captures all
relevant auditory information.
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If you have set up a speech-to-text transcription service, select Speech to Text from the Automation
section. You can control the speech-to-text transcription using name-value pair options specific to
your selected service. This example uses the IBM® service and specifies no additional options.
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The ROI labels returned from the transcription service are strings with beginning and end points. The
beginning and end points do not exactly correspond to the beginning and end points of the manually
corrected speech detection regions. You can correct the endpoints of the SpeechContent ROI label
by selecting the region and then dragging the edges of the region. The transcription service
misclassified the words "two" as "to," "four" as "for," and "ten" as "then." You can correct the string by
selecting the region and then entering a new string.

Create another region-level label by clicking  in the ROI Labels panel. Set Label Name to VUV,
set Data Type to categorical, and Categories to voiced and unvoiced.
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By default, the waveform viewer shows the entire file. To display tools for zooming and panning,
hover over the top right corner of the plot. Zoom in on the first five seconds of the audio file.

When you select a region in the plot and then hover over any of the two ROI bars, the shadow of the
region appears. To assign the selected region to the category voiced, click one on the
SpeechContent label bar. Hover over the VUV label bar and then click the shadow and choose
voiced.
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The next two words, "two" and "three," contain both voiced and unvoiced speech. Select each region
of speech on the plot, hover over the VUV label bar, and select the correct category for that region.
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Export Label Definitions
You can export label definitions as a MAT file or as a MATLAB script. Maintaining label definitions
enables consistent labeling between users and sessions. Select Export > Label Definitions > To
File.
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The labels are saved as an array of signalLabelDefinition objects. In your next session, you can
import the label definitions by selecting Import > Label Definitions > From File.

Export Labeled Audio Data
You can export the labeled signal set to a file or to your workspace. Select Export > Labels > To
Workspace.

The Audio Labeler creates a labeledSignalSet object named labeledSet_HHMMSS, where
HHMMSS is the time the object is created in hours, minutes, and seconds.

labeledSet_104620

labeledSet_104620 = 

  labeledSignalSet with properties:

             Source: {29×1 cell}
         NumMembers: 29
    TimeInformation: "inherent"
             Labels: [29×4 table]
        Description: ""

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

The labels you created are saved as a table to the Labels property.

labeledSet_142356.Labels

ans =

  29×4 table

                                                                                                                Content     SpeechDetected    SpeechContent        VUV    
                                                                                                                ________    ______________    _____________    ___________

    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav                ambience     { 0×2 table}     { 0×2 table}     {0×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav           ambience     { 0×2 table}     { 0×2 table}     {0×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav    unknown      { 0×2 table}     { 0×2 table}     {0×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\Click-16-44p1-mono-0.2secs.wav                  ambience     { 0×2 table}     { 0×2 table}     {0×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\Counting-16-44p1-mono-15secs.wav                speech       {10×2 table}     {10×2 table}     {5×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\Engine-16-44p1-stereo-20sec.wav                 ambience     { 0×2 table}     { 0×2 table}     {0×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\FemaleSpeech-16-8-mono-3secs.wav                speech       { 0×2 table}     { 0×2 table}     {0×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\FunkyDrums-44p1-stereo-25secs.mp3               music        { 0×2 table}     { 0×2 table}     {0×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\FunkyDrums-48-stereo-25secs.mp3                 music        { 0×2 table}     { 0×2 table}     {0×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\Heli_16ch_ACN_SN3D.wav                          ambience     { 0×2 table}     { 0×2 table}     {0×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\JetAirplane-16-11p025-mono-16secs.wav           ambience     { 0×2 table}     { 0×2 table}     {0×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\Laughter-16-8-mono-4secs.wav                    ambience     { 0×2 table}     { 0×2 table}     {0×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\MainStreetOne-24-96-stereo-63secs.wav           ambience     { 0×2 table}     { 0×2 table}     {0×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\NoisySpeech-16-22p5-mono-5secs.wav              speech       { 0×2 table}     { 0×2 table}     {0×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\Rainbow-16-8-mono-114secs.wav                   speech       { 0×2 table}     { 0×2 table}     {0×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\RainbowNoisy-16-8-mono-114secs.wav              speech       { 0×2 table}     { 0×2 table}     {0×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\RandomOscThree-24-96-stereo-13secs.aif          music        { 0×2 table}     { 0×2 table}     {0×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\RockDrums-44p1-stereo-11secs.mp3                music        { 0×2 table}     { 0×2 table}     {0×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\RockDrums-48-stereo-11secs.mp3                  music        { 0×2 table}     { 0×2 table}     {0×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\RockGuitar-16-44p1-stereo-72secs.wav            music        { 0×2 table}     { 0×2 table}     {0×2 table}
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    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\RockGuitar-16-96-stereo-72secs.flac             music        { 0×2 table}     { 0×2 table}     {0×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\SoftGuitar-44p1_mono-10mins.ogg                 music        { 0×2 table}     { 0×2 table}     {0×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\SpeechDFT-16-8-mono-5secs.wav                   speech       { 0×2 table}     { 0×2 table}     {0×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\TrainWhistle-16-44p1-mono-9secs.wav             ambience     { 0×2 table}     { 0×2 table}     {0×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\Turbine-16-44p1-mono-22secs.wav                 ambience     { 0×2 table}     { 0×2 table}     {0×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\WashingMachine-16-44p1-stereo-10secs.wav        ambience     { 0×2 table}     { 0×2 table}     {0×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\WashingMachine-16-8-mono-1000secs.wav           ambience     { 0×2 table}     { 0×2 table}     {0×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\WashingMachine-16-8-mono-200secs.wav            ambience     { 0×2 table}     { 0×2 table}     {0×2 table}
    C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\WaveGuideLoopOne-24-96-stereo-10secs.aif        music        { 0×2 table}     { 0×2 table}     {0×2 table}

The file names associated with the labels are saved as a cell array to the Source property.

labeledSet_104620.Source

ans =

  29×1 cell array

    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav'            }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav'       }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'}
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\Click-16-44p1-mono-0.2secs.wav'              }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\Counting-16-44p1-mono-15secs.wav'            }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\Engine-16-44p1-stereo-20sec.wav'             }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\FemaleSpeech-16-8-mono-3secs.wav'            }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\FunkyDrums-44p1-stereo-25secs.mp3'           }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\FunkyDrums-48-stereo-25secs.mp3'             }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\Heli_16ch_ACN_SN3D.wav'                      }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\JetAirplane-16-11p025-mono-16secs.wav'       }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\Laughter-16-8-mono-4secs.wav'                }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\MainStreetOne-24-96-stereo-63secs.wav'       }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\NoisySpeech-16-22p5-mono-5secs.wav'          }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\Rainbow-16-8-mono-114secs.wav'               }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\RainbowNoisy-16-8-mono-114secs.wav'          }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\RandomOscThree-24-96-stereo-13secs.aif'      }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\RockDrums-44p1-stereo-11secs.mp3'            }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\RockDrums-48-stereo-11secs.mp3'              }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\RockGuitar-16-44p1-stereo-72secs.wav'        }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\RockGuitar-16-96-stereo-72secs.flac'         }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\SoftGuitar-44p1_mono-10mins.ogg'             }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\SpeechDFT-16-8-mono-5secs.wav'               }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\TrainWhistle-16-44p1-mono-9secs.wav'         }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\Turbine-16-44p1-mono-22secs.wav'             }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\WashingMachine-16-44p1-stereo-10secs.wav'    }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\WashingMachine-16-8-mono-1000secs.wav'       }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\WashingMachine-16-8-mono-200secs.wav'        }
    {'C:\Program Files\MATLAB\R2019b\toolbox\audio\samples\WaveGuideLoopOne-24-96-stereo-10secs.aif'    }

Prepare Audio Datastore for Deep Learning Workflow
To continue on to a deep learning or machine learning workflow, use audioDatastore. Using an
audio datastore enables you to apply capabilities that are common to machine learning applications,
such as splitEachLabel. splitEachLabel enables you split your data into train and test sets.

Create an audio datastore for your labeled signal set. Specify the location of the audio files as the first
argument of audioDatastore and set the Labels property of audioDatastore to the Labels
property of the labeled signal set.
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ADS = audioDatastore(labeledSet_104620.Source,'Labels',labeledSet_104620.Labels)

ADS = 

  audioDatastore with properties:

                       Files: {
                              ' ...\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
                              ' ...\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
                              ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
                               ... and 26 more
                              }
                      Labels: 29-by-4 table
    AlternateFileSystemRoots: {}
              OutputDataType: 'double'

Call countEachLabel and specify the Content table variable to count the number of files that are
labeled as ambience, music, speech, or unknown.

countEachLabel(ADS,'TableVariable','Content')

ans =

  4×2 table

    Content     Count
    ________    _____

    ambience     13  
    music         9  
    speech        6  
    unknown       1  

For examples of using labeled audio data in a machine learning or deep learning workflow, see:

• “Train Speech Command Recognition Model Using Deep Learning” on page 1-332
• “Speaker Identification Using Pitch and MFCC” on page 1-238
• “Denoise Speech Using Deep Learning Networks” on page 1-312

See Also
Apps
Signal Labeler

Objects
signalLabelDefinition | labeledSignalSet | audioDatastore | audioDeviceReader |
audioDeviceWriter
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Choose an App to Label Ground Truth Data
You can use Computer Vision Toolbox™, Automated Driving Toolbox™, Lidar Toolbox™, Audio
Toolbox, Signal Processing Toolbox™, and Medical Imaging Toolbox™ apps to label ground truth data.
Use this labeled data to validate or train algorithms such as image classifiers, object detectors,
semantic segmentation networks, instance segmentation networks, and deep learning applications.
The choice of labeling app depends on several factors, including the supported data sources, labels,
and types of automation.

One key consideration is the type of data that you want to label.

• If your data is an image collection, use the Image Labeler app. An image collection is an
unordered set of images that can vary in size. For example, you can use the app to label images of
books for training a classifier. The Image Labeler can also handle very large images (at least one
dimension >8K).

• If your data is a single video or image sequence, use the Video Labeler app. An image sequence
is an ordered set of images that resembles a video. For example, you can use this app to label a
video or image sequence of cars driving on a highway for training an object detector.

• If your data includes multiple time-overlapped signals, such as videos, image sequences, or lidar
signals, use the Ground Truth Labeler app. For example, you can label data for a single scene
captured by multiple sensors mounted on a vehicle.

• If your data is only a lidar signal, use the Lidar Labeler. For example, you can use this app to
label data captured from a point cloud sensor.

• If your data consists of single-channel or multichannel one-dimensional signals, use the Signal
Labeler. For example, you can label biomedical, speech, communications, or vibration data. You
can also use Signal Labeler to perform audio-specific tasks, such as speech detection and
speech-to-text transcription.

• If your data is a 2-D medical image or image series, or a 3-D medical image volume, use the
Medical Image Labeler. For example, you can label computed tomography (CT) image volumes
of the chest to train a semantic segmentation network.

This table summarizes the key features of the labeling apps.

Labeling App Data Sources Label Support Automation Additional
Features

Image Labeler • Image
collections

• Very large
images (at least
one dimension
>8K)

• Rectangle
regions of
interest (ROIs)

• Projected
cuboid (ROIs)

• Line ROIs
• Pixel ROIs
• Polygon ROIs
• Sublabels
• Attributes
• Scenes

• Built-in
automation
algorithms

• Custom
automation
algorithms

• Blocked image
automation
algorithms

• View visual
summary of
labeled data
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Labeling App Data Sources Label Support Automation Additional
Features

Video Labeler • Videos
• Image

sequences
• Custom image

data sources

• Rectangle ROIs
• Projected

cuboid (ROIs)
• Line ROIs
• Pixel ROIs
• Polygon ROIs
• Sublabels
• Attributes
• Scenes

• Built-in
automation
algorithms

• Custom
automation
algorithms

• Temporal
automation
algorithms

• View visual
summary of
labeled data

Ground Truth
Labeler

• Videos
• Image

sequences
• Custom image

data sources
• Point cloud

sequences (PCD
or PLY files)

• Velodyne® lidar
files

• Rosbags
(requires ROS
Toolbox)

• Rectangle ROIs
• Projected

cuboid (ROIs)
• Cuboid ROIs
• Line ROIs
• Pixel ROIs
• Polygon ROIs
• Sublabels
• Attributes
• Scenes

• Built-in
automation
algorithms,
including
vehicle and
lane detection
algorithms and
a point cloud
temporal
interpolation
algorithm

• Custom
automation
algorithms

• Temporal
automation
algorithms

• Multisignal
automation

• View visual
summary of
labeled data

• Connect
external tool to
app for
displaying time-
synchronized
signals, such as
lidar or CAN
bus data

• Customize
loading
interface to
support
additional data
sources
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Labeling App Data Sources Label Support Automation Additional
Features

Lidar Labeler • Point cloud
sequences (PCD
or PLY files)

• Velodyne lidar
files

• LAS/LAZ file
sequences

• Rosbags
(requires ROS
Toolbox)

• Cuboid ROIs
• Attributes
• Scenes

• Built-in
automation
algorithms,
including a
lidar object
tracker and
point cloud
temporal
interpolator

• Custom
automation
algorithms

• Temporal
automation
algorithms

• View the cuboid
labels in top,
side, and front
views

• Save and reuse
custom camera
views

• Connect to
external tool to
display time-
synchronized
signals for ease
of labeling,
such as videos,
to use as a
reference while
labeling

Signal Labeler • Numeric
arrays,
MATLAB
timetables, and
labeledSigna
lSet objects in
the MATLAB
workspace

• MAT-files and
CSV files

• Audio files
(WAVE, OGG,
FLAC, AU, AIFF,
AIFC, MP3,
MPEG-4 AAC)

• Time-based
ROIs

• Time-based ROI
features

• Time-based
points

• Attributes
• Attribute

features
• File-level labels
• Sublabels

• Built-in peak
labeling

• Built-in feature
extraction

• Custom
automation
algorithms

• Speech
detection

• Speech-to-text
transcription
(requires Audio
Toolbox
extended
functionality for
speech2text)

• Expand,
collapse, and
browse details
of labeled data

• View signal
spectra and
spectrograms

• Label ROIs and
points using the
spectrogram

• Label signals in
bulk

• Use Label
Viewer to view
and compare
labels

• Audio playback
• Inspect audio
file information

• Export
extracted
features to
Classification
Learner
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Labeling App Data Sources Label Support Automation Additional
Features

Medical Image
Labeler

• 2-D medical
images and
image series
(DICOM or
NIfTI files)

• 3-D medical
image volume
(DICOM, NIfTI,
or NRRD files)

• Pixel ROIs • Built-in
automation
algorithms

• Custom
automation
algorithms

• View 3-D
medical images
in the coronal,
sagittal, and
transverse
anatomical
planes

• View 3-D
medical images
using
customizable
volume
rendering

• Label multiple
related images
or image
volumes in one
app session

See Also

More About
• “Get Started with the Image Labeler” (Computer Vision Toolbox)
• “Get Started with the Video Labeler” (Computer Vision Toolbox)
• “Get Started with Ground Truth Labelling” (Automated Driving Toolbox)
• “Get Started with the Lidar Labeler” (Lidar Toolbox)
• “Using Signal Labeler App”
• “Label Spoken Words in Audio Signals”
• “Get Started with Medical Image Labeler” (Medical Imaging Toolbox)
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Speech2Text and Text2Speech Chapter

• “Speech-to-Text Transcription” on page 4-2
• “Text-to-Speech Conversion” on page 4-3
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Speech-to-Text Transcription
Audio Toolbox enables you to interface with third-party speech-to-text APIs from MATLAB.

To interface with third-party speech-to-text APIs, you must have the following:

• Audio Toolbox release R2017a or above
• Audio Toolbox extended functionality available from File Exchange
• One of the following APIs:

• Google® Speech API
• IBM Watson Speech API
• Microsoft® Azure Speech API

The third-party APIs require you to generate keys for identification purposes. To begin, download the
extended Audio Toolbox functionality from File Exchange. The File Exchange submission includes a
tutorial to get you started. Once you have installed the speech-to-text functionality and set up your
API keys, you can perform speech-to-text transcription programmatically or using the Signal Labeler
app.

See Also
Signal Labeler

Related Examples
• “Text-to-Speech Conversion” on page 4-3

External Websites
• speech2text on File Exchange
• text2speech on File Exchange

4 Speech2Text and Text2Speech Chapter

4-2

https://www.mathworks.com/matlabcentral/fileexchange/65266-speech2text
https://www.mathworks.com/matlabcentral/fileexchange/65266-speech2text
https://www.mathworks.com/matlabcentral/fileexchange/65266-speech2text
https://www.mathworks.com/matlabcentral/fileexchange/73326-text2speech


Text-to-Speech Conversion
Audio Toolbox enables you to interface with third-party text-to-speech (TTS) APIs from MATLAB.

To interface with third-party text-to-speech APIs and synthesize speech, you must have the following:

• Audio Toolbox release R2019a or above
• Audio Toolbox extended functionality available from File Exchange
• One of the following APIs:

• Google Speech API
• IBM Watson Speech API
• Microsoft Azure Speech API

The third-party APIs require you to generate keys for identification purposes. To begin, download the
extended Audio Toolbox functionality from File Exchange. The File Exchange submission includes a
tutorial to get you started. Once you have installed the text-to-speech functionality and set up your
API keys, you can perform text-to-speech conversion programmatically.

See Also
Signal Labeler

Related Examples
• “Speech-to-Text Transcription” on page 4-2

External Websites
• speech2text on File Exchange
• text2speech on File Exchange
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Measure and Manage Impulse Responses
In this tutorial, explore key functionality of the Impulse Response Measurer. The Impulse
Response Measurer app enables you to

• Configure your audio I/O system.
• Acquire impulse response (IR) measurements using either the exponential swept sine (ESS) or

maximum length sequences (MLS) methods.
• View and manage captured IR data.
• Export the data to a file, workspace, or other app for further study.

To begin, open the Impulse Response Measurer app by selecting the  icon from the app gallery.

Configure Audio I/O System
The Impulse Response Measurer app enables you to specify an audio device, sample rate, samples
per frame, player channel, and recorder channel. The audio device must be a real or virtual device
enabled for simultaneous playback and recording (full-duplex mode) and must use a supported driver.
Supported drivers are platform-specific:

•
Windows® –– ASIO™: Click the  button to open the settings panel for the ASIO driver.

• Mac –– CoreAudio
• Linux® –– ALSA

Valid values for sample rate and number of samples per frame depend on your specified audio device.

You can use the level monitor to verify the configuration of your audio I/O system.

Loopback Cable for Latency Measurement

To measure the audio device latency and remove it from captured measurements, you must use a
loopback cable to connect one of the device player channels directly to one of the recorder channels.
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To enable latency measurement and removal, click the Latency Compensation drop-down list, select
Loopback Measurement, and then set the Loopback Channels to the player and recorder
channels that are connected by the loopback cable.

This example sets Latency Compensation to None, so it does not measure the audio device latency.

Configure IR Acquisition Method
To configure your IR acquisition method, use the Method and Method Settings sections of the
toolstrip.

You can select the method to acquire IR measurements as either:

• Maximum Length Sequences (MLS)
• Exponential Swept Sine (Swept Sine)

Both methods for IR acquisition have the same basic settings, including:

• Number of Runs –– Number of times the excitation signal is sent within a single capture.
Multiple runs are used to average individual impulse response captures to reduce measurement
noise.

• Duration per Run (s) –– Total time of each run in seconds.
• Excitation Level (dBFS) –– The level of the excitation signal in dBFS.

Both methods for IR acquisition also have the same advanced run settings, including:

• Wait before first run –– Delay before starting first run. The delay allows time for any last-minute
tasks, such as exiting a room before testing its acoustics.

• Pause between runs –– Duration of the pause between runs. During a pause, the excitation
signal is not sent, and audio is not recorded. When using the Swept Sine method, include a pause
between runs to avoid buildup of reverberations. Pause between runs is always zero for the MLS
method.

• Number of warmup runs –– Number of times to output the excitation signal before acquisition.
The MLS method assumes the signal it acquires is a combination of the excitation signal and its
impulse response.

The total capture time is a sum of run durations, pauses, and the initial wait.
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The Swept Sine method has additional Advanced Settings to control the excitation signal,
including:

• Sweep start frequency
• Sweep stop frequency
• Sweep duration
• End silence duration

When using the Swept Sine method, the Run Duration is divided into Sweep duration and End
silence duration. During the end silence, the app continues to record audio, enabling acquisition of
the response over the entire range of the frequency sweep.

Starting in R2022a, you can automatically save device, method, and advanced settings and use them
in future measurement sessions.

Acquire IR Measurements
For this example, use the Swept Sine method with default settings. Once you have your audio device
set up, click Capture. A dialog box opens that displays the progress of your capture. Capture IR
measurements twice.
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Analyze and Manage IR Measurements
After the capture, the Impulse Response Measurer app stores the captured data locally. The
Captured Data panel displays the title of the captured data, the colors used for plotting, and
information about the settings used to acquire the data. You can double-click the color to choose
which color you want associated with each impulse response. You can also double-click the title to
rename your captured data. Rename your captures as FirstCapture and SecondCapture, and
change the colors to pink and green. To make one impulse response plot appear on top of the other,
select the title under Captured Data. Select the capture you relabeled FirstCapture.

By default, the impulse response and magnitude response are plotted. You can view any combination
of the impulse, magnitude, and phase response using the Display button. Here you can also remove
the measured audio device latency from the plotted impulse response and phase response.
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Minimize Captured Data and Captured Data Information, then select the Phase Response.
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You can toggle the relative size of the plot by moving the dividers. You can zoom in and out or toggle
between linear and logarithmic frequency axes by selecting the icons that appear when your pointer
is over the plot. Updating either the magnitude response or the phase response updates the other.
Zoom in on the impulse response plot and in the range 0–20 Hz of your frequency response plots.
Zooming in, you can see the small delay between FirstCapture and SecondCapture. When the
zoom level is high enough, line markers automatically appear.

Export IR Measurements
To view export options for further analysis or use, click Export.
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Export the data to your workspace. The data is saved as a table. To inspect how the data is saved,
display the table you exported.

irdata_160957

irdata_160957 =

  2×17 table

                             TimeOfCapture             ImpulseResponse           Device           SampleRate    SamplesPerFrame    PlayerChannels    RecorderChannel       Method       NumRuns    DurationPerRun    ExcitationLevel    RawAudioData    SamplesDropped    DeviceLatencyInSamples    OtherMetaData    MagnitudeResponse    PhaseResponse
                     ______________________________    _______________    ____________________    __________    _______________    ______________    _______________    ____________    _______    ______________    _______________    ____________    ______________    ______________________    _____________    _________________    _____________

    FirstCapture     30-Jun-2022 15:59:42 UTC-04:00      1×1 struct       "Focusrite USB ASIO"      44100            1024              {[1]}                1           "Swept Sine"       1             4                 -6            1×1 struct           0                    NaN               1×1 struct         1×1 struct         1×1 struct  
    SecondCapture    30-Jun-2022 15:59:54 UTC-04:00      1×1 struct       "Focusrite USB ASIO"      44100            1024              {[1]}                1           "Swept Sine"       1             4                 -6            1×1 struct           0                    NaN               1×1 struct         1×1 struct         1×1 struct  

When you export the data as a MAT-file, the same table is saved as when you export to the workspace.
When you select to export the data as a WAV file, each impulse response is saved as a separate WAV
file. The title of the capture is the name of the WAV file. In this example, selecting to export data to
audio WAV file places two WAV files in the specified folder, FirstCapture.wav and
SecondCapture.wav.

To analyze your captured data further, view the data in the Filter Visualization Tool or
Signal Analyzer app.

See Also
Impulse Response Measurer | audioPlayerRecorder | splMeter | reverberator

Related Examples
• “Measure Impulse Response of an Audio System” on page 1-263
• “Measure Frequency Response of an Audio Device” on page 1-267
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Design and Play a MIDI Synthesizer
The MIDI protocol enables you to send and receive information describing sound. A MIDI synthesizer
is a device or software that synthesizes sound in response to incoming MIDI data. In its simplest
form, a MIDI synthesizer converts MIDI note messages to an audio signal. More complicated
synthesizers provide fine-tune control of the resulting sound, enabling you to mimic instruments. In
this tutorial, you create a monophonic synthesizer that converts a stream of MIDI note messages to
an audio signal in real time.

To learn about interfacing with MIDI devices in general, see “MIDI Device Interface” on page 7-2.

Convert MIDI Note Messages to Sound Waves
MIDI note information is packaged as a NoteOn or NoteOff midimsg object in Audio Toolbox. Both
NoteOn and NoteOff midimsg objects have Note and Velocity properties:

• Velocity indicates how hard a note is played. By convention, Note On messages with velocity set
to zero represent note off messages. Representing note off messages with note on messages is
more efficient when using Running Status.

• Note indicates the frequency of the audio signal. The Note property takes a value between zero
and 127, inclusive. The MIDI protocol specifies that 60 is Middle C, with all other notes relative to
that note. Create a MIDI note on message that indicates to play Middle C.

channel = 1;
note = 60;
velocity = 64;
msg = midimsg('NoteOn',channel,note,velocity)

msg = 

  MIDI message:
    NoteOn          Channel: 1  Note: 60  Velocity: 64  Timestamp: 0  [ 90 3C 40 ]

To interpret the note property as frequency, use the equal tempered scale and the A440 convention:

frequency = 440 * 2^((msg.Note-69)/12)

frequency =

  261.6256

Some MIDI synthesizers use an Attack Decay Sustain Release (ADSR) envelope to control the volume,
or amplitude, of a note over time. For simplicity, use the note velocity to determine the amplitude.
Conceptually, if a key is hit harder, the resulting sound is louder. The Velocity property takes a
value between zero and 127, inclusive. Normalize the velocity and interpret as the note amplitude.

amplitude = msg(1).Velocity/127

amplitude =

    0.5039

To synthesize a sine wave, create an audioOscillator System object™. To play the sound to your
computer's default audio output device, create an audioDeviceWriter System object. Step the
objects for two seconds and listen to the note.

osc = audioOscillator('Frequency',frequency,'Amplitude',amplitude);
deviceWriter = audioDeviceWriter('SampleRate',osc.SampleRate);
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tic
while toc < 2
    synthesizedAudio = osc();
    deviceWriter(synthesizedAudio);
end

Synthesize MIDI Messages
To play an array of midimsg objects with appropriate timing, create a loop.

First, create an array of midimsg objects and cache the note on and note off times to the variable,
eventTimes.

msgs = [midimsg('Note',channel,60,64,0.5,0), ...
        midimsg('Note',channel,62,64,0.5,.75), ...
        midimsg('Note',channel,57,40,0.5,1.5), ...
        midimsg('Note',channel,60,50,1,3)];
eventTimes = [msgs.Timestamp];

To mimic receiving notes in real time, create a for-loop that uses the eventTimes variable and tic
and toc to play notes according to the MIDI message timestamps. Release your audio device after
the loop is complete.

i = 1;
tic
while toc < max(eventTimes)
    if toc > eventTimes(i)
        msg = msgs(i);
        i = i+1;
        
        if msg.Velocity~= 0
            osc.Frequency = 440 * 2^((msg.Note-69)/12);
            osc.Amplitude = msg.Velocity/127;
        else
            osc.Amplitude = 0; 
        end
    end
    deviceWriter(osc());
end
release(deviceWriter)

Synthesize Real-Time Note Messages from MIDI Device
To receive and synthesize note messages in real time, create an interface to a MIDI device. The
simplesynth example function:

• receives MIDI note messages from a specified MIDI device
• synthesizes an audio signal
• plays them to your audio output device in real time

Save the simplesynth function to your current folder.

simplesynth

function simplesynth(midiDeviceName)
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    midiInput = mididevice(midiDeviceName);
    osc = audioOscillator('square', 'Amplitude', 0);
    deviceWriter = audioDeviceWriter;
    deviceWriter.SupportVariableSizeInput = true;
    deviceWriter.BufferSize = 64; % small buffer keeps MIDI latency low

    while true
        msgs = midireceive(midiInput);
        for i = 1:numel(msgs)
            msg = msgs(i);
            if isNoteOn(msg)
                osc.Frequency = note2freq(msg.Note);
                osc.Amplitude = msg.Velocity/127;
            elseif isNoteOff(msg)
                if msg.Note == msg.Note
                    osc.Amplitude = 0;
                end
            end
        end
        deviceWriter(osc());
    end
end

function yes = isNoteOn(msg)
    yes = msg.Type == midimsgtype.NoteOn ...
        && msg.Velocity > 0;
end

function yes = isNoteOff(msg)
    yes = msg.Type == midimsgtype.NoteOff ...
        || (msg.Type == midimsgtype.NoteOn && msg.Velocity == 0);
end

function freq = note2freq(note)
    freqA = 440;
    noteA = 69;
    freq = freqA * 2.^((note-noteA)/12);
end

To query your system for your device name, use mididevinfo. To listen to your chosen device, call
the simplesynth function with the device name. This example uses an M-Audio KeyRig 25 device,
which registers with device name USB 02 on the machine used in this example.

mididevinfo

  MIDI devices available:
  ID  Direction  Interface   Name
   0   output    MMSystem   'Microsoft MIDI Mapper'
   1    input    MMSystem   'USB MIDI Interface '
   2    input    MMSystem   'USB O2'
   3   output    MMSystem   'Microsoft GS Wavetable Synth'
   4   output    MMSystem   'USB MIDI Interface '
   5   output    MMSystem   'USB O2'

Call the simplesynth function with your device name. The simplesynth function listens for note
messages and plays them to your default audio output device. Play notes on your MIDI device and
listen to the synthesized audio.
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simplesynth('USB 02')

Use Ctrl-C to end the connection.

See Also
Classes
midimsg | mididevice

Functions
midisend | midireceive | mididevinfo

External Websites
• https://www.midi.org
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MIDI Device Interface

MIDI
This tutorial introduces the Musical Instrument Digital Interface (MIDI) protocol and how you can use
Audio Toolbox to interact with MIDI devices. The tools described here enable you to send and receive
all MIDI messages as described by the MIDI protocol. If you are interested only in sending and
receiving Control Change messages with a MIDI control surface, see “MIDI Control Surface
Interface” on page 10-2. If you are interested in using MIDI to control your audio plugins, see
“MIDI Control for Audio Plugins” on page 9-2. To learn more about MIDI in general, consult The
MIDI Manufacturers Association.

MIDI is a technical standard for communication between electronic instruments, computers, and
related devices. MIDI carries event messages specific to audio signals, such as pitch and velocity, as
well as control signals for parameters and clock signals to synchronize tempo.

MIDI Devices
A MIDI device is any device capable of sending or receiving MIDI messages. MIDI devices have input
ports, output ports, or both. The MIDI protocol defines messages as unidirectional. A MIDI device can
be real-world or virtual.

Audio Toolbox enables you to create an interface to a MIDI device using mididevice. To create a
MIDI interface to a specific device, use mididevinfo to query your system for available devices.
Then create a mididevice object by specifying a MIDI device by name or ID.

mididevinfo

MIDI devices available:
  ID  Direction  Interface   Name
   0   output    MMSystem   'Microsoft MIDI Mapper'
   1    input    MMSystem   'USB MIDI Interface '
   2   output    MMSystem   'Microsoft GS Wavetable Synth'
   3   output    MMSystem   'USB MIDI Interface '

device = mididevice('USB MIDI Interface ')

device = 

  mididevice connected to
     Input: 'USB MIDI Interface ' (1)
    Output: 'USB MIDI Interface ' (3)

You can specify a mididevice object to listen for input messages, send output messages, or both. In
this example, the mididevice object receives MIDI messages at the input port named 'USB MIDI
Interface ', and sends MIDI messages from the output port named 'USB MIDI Interface '.
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MIDI Messages
A MIDI message contains information that describes an audio-related action. For example, when you
press a key on a keyboard, the corresponding MIDI message contains 3 bytes:

1 The first byte describes the kind of action and the channel. The first byte is referred to as the
Status Byte.

2 The second byte describes which key is pressed. The second byte is referred to as a Data Byte.
3 The third byte describes how hard the key is played. The third byte is also a Data Byte.

This message is a Note On message. Note On is referred to as the message name, command, or type.

In MATLAB, a MIDI message is packaged as a midimsg object and can be manipulated as scalars or
arrays. To create a MIDI message, call midimsg with a message type and then specify the required
parameters for the specific message type. For example, to create a note on message, specify the
midimsg Type as 'NoteOn' and then specify the required inputs: channel, note, and velocity.

channel = 1;
note = 60;
velocity = 64;
msg = midimsg('NoteOn',channel,note,velocity)

msg = 

  MIDI message:
    NoteOn          Channel: 1  Note: 60  Velocity: 64  Timestamp: 0  [ 90 3C 40 ]

For convenience, midimsg displays the message type, channel, additional parameters, timestamp,
and the constructed message in hexadecimal form. Hexadecimal is the preferred form because it has
a straightforward interpretation:
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Sending and Receiving MIDI Messages

To send and receive MIDI messages, use the mididevice object functions midisend and
midireceive. When you create a mididevice object, it begins receiving data at its input and
placing it in a buffer.

To retrieve MIDI messages from the buffer, call midireceive.

receivedMessages = midireceive(device)

receivedMessages = 

  MIDI message:
    NoteOn          Channel: 1  Note: 36  Velocity: 64  Timestamp: 15861.9  [ 90 24 40 ]
    NoteOn          Channel: 1  Note: 36  Velocity: 0   Timestamp: 15862.1  [ 90 24 00 ]

The MIDI messages are returned as an array of midimsg objects. In this example, a MIDI keyboard
key is pressed.

To send MIDI messages to a MIDI device, call midisend.

midisend(device,msg)

MIDI Message Types

The type of MIDI message you create is defined as a character vector or string. To create a MIDI
message, specify it by its type and the required property values. For example, create a Channel
Pressure MIDI message by entering the following at the command prompt:

channelPressureMessage = midimsg('ChannelPressure',1,20)

channelPressureMessage = 

  MIDI message:
    ChannelPressure Channel: 1  ChannelPressure: 20  Timestamp: 0  [ D0 14 ]

After you create a MIDI message, you can modify the properties, but you cannot modify the type.

channelPressureMessage.ChannelPressure = 37

channelPressureMessage = 

  MIDI message:
    ChannelPressure Channel: 1  ChannelPressure: 37  Timestamp: 0  [ D0 25 ]

The table summarizes valid MIDI message types.
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The Audio Toolbox provides convenience syntaxes to create multiple MIDI messages used in sequence
and to create arrays of MIDI messages. See midimsg for a complete list of syntaxes.
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MIDI Message Timing

The MIDI protocol does not define message timing and assumes that messages are acted on
immediately. Many applications require timing information for queuing and batch processing. For
convenience, the Audio Toolbox packages timing information with MIDI messages into a single
midimsg object. All midimsg objects have a Timestamp property, which is set during creation as an
optional last argument or after creation. The default Timestamp is zero.

The interpretation of the Timestamp property depends on how a MIDI message is created and used:

• When receiving MIDI messages using midireceive, the underlying infrastructure assigns a
timestamp when receiving MIDI messages. Conceptually, the timing clock starts when a
mididevice object is created and attached as a listener to a given MIDI input port. If another
mididevice is attached to the same input port, it receives timestamps from the same timing
clock as the first object.

• When sending MIDI messages using midisend, timestamps are interpreted as when to send the
message.

If there have been no recent calls to midisend, then midisend interprets timestamps as relative
to the current real-world time. A message with a timestamp of zero is sent immediately. If there
has been a recent call to midisend, then midisend interprets timestamps as relative to the
largest timestamp of the last call to midisend. The timestamp clock for midisend is specific to
the MIDI output port that mididevice is connected to.

Consider a pair of MIDI messages that turn a note on and off. The messages specify that the note
starts after one second and is sustained for one second.

Create Note On and Note Off messages. To create the Note Off message, use the 'NoteOn' MIDI
message type and specify zero velocity. (If you want to specify a velocity, use the 'NoteOff'
message type.) For more information, see midimsg.

OnMsg = midimsg('NoteOn',1,59,64);
OffMsg = midimsg('NoteOn',1,59,0);

To send on and off messages using a single call to midisend, specify the timestamps of the
messages relative to the same start time.

OnMsg.Timestamp = 1;
OffMsg.Timestamp = 2;
midisend(device,[OnMsg;OffMsg]))
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To send the Note Off message separately, specify the timestamp of the Note Off message relative
to the largest timestamp of the previous call to midisend.

OnMsg.Timestamp = 1;
OffMsg.Timestamp = 1;
midisend(device,OnMsg)
midisend(device,OffMsg)

The "start" time, or reference time, for midisend is the max between the absolute time and the
largest timestamp in the last call to midisend. For example, consider that x, the arbitrary start
time, is equal to the current absolute time. If there is a 1.5-second pause between sending the
note on and note off messages, the resulting note duration is 1.5 seconds.

OnMsg.Timestamp = 1;
OffMsg.Timestamp = 1;
midisend(device,OnMsg)
pause(1.5)
midisend(device,OffMsg)
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Usually, MIDI messages are sent faster than or at real-time speeds so there is no need to track the
absolute time.

For live performances or to enable interrupts in a MIDI stream, you can set timestamps to zero
and then call midisend at appropriate real-world time intervals. Depending on your use case, you
can divide your MIDI stream into small repeatable time chunks.

See Also
Classes
midimsg | mididevice

Functions
midisend | midireceive | mididevinfo

Related Examples
• “Design and Play a MIDI Synthesizer” on page 6-2

External Websites
• MIDI Manufacturers Association
• Summary of MIDI Messages
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Dynamic Range Control
Dynamic range control is the adaptive adjustment of the dynamic range of a signal. The dynamic
range of a signal is the logarithmic ratio of maximum to minimum signal amplitude specified in dB.

You can use dynamic range control to:

• Match an audio signal level to its environment
• Protect AD converters from overload
• Optimize information
• Suppress low-level noise

Types of dynamic range control include:

• Dynamic range compressor –– Attenuates the volume of loud sounds that cross a given threshold.
They are often used in recording systems to protect hardware and to increase overall loudness.

• Dynamic range limiter –– A type of compressor that brickwalls sound above a given threshold.
• Dynamic range expander –– Attenuates the volume of quiet sounds below a given threshold. They

are often used to make quiet sounds even quieter.
• Noise gate –– A type of expander that brickwalls sound below a given threshold.

This tutorial shows how to implement dynamic range control systems using the compressor,
expander, limiter, and noiseGate System objects from Audio Toolbox. The tutorial also provides
an illustrated example of dynamic range limiting at various stages of a dynamic range limiting
system.

The diagram depicts a general dynamic range control system.

In a dynamic range control system, a gain signal is calculated in a sidechain and then applied to the
input audio signal. The sidechain consists of:

• Linear to dB conversion:x xdB

• Gain computation, by passing the dB signal through a static characteristic equation, and then
taking the difference: gc = xsc− xdB

• Gain smoothing over time: gc gs

• Addition of make-up gain (for compressors and limiters only): gs gm

• dB to linear conversion: gm glin

• Application of the calculated gain signal to the original audio signal: y = glin × x
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Linear to dB Conversion
The gain signal used in dynamic range control is processed on a dB scale for all dynamic range
controllers. There is no reference for the dB output; it is a straight conversion: xdB = 20log10(x). You
might need to adjust the output of a dynamic range control system to the range of your system.

Gain Computer
The gain computer provides the first rough estimate of a gain signal for dynamic range control. The
principal component of the gain computer is the static characteristic. Each type of dynamic range
control has a different static characteristic with different tunable properties:

• Threshold –– All static characteristics have a threshold. On one side of the threshold, the input is
given to the output with no modification. On the other side of the threshold, compression,
expansion, brickwall limiting, or brickwall gating is applied.

• Ratio –– Expanders and compressors enable you to adjust the input-to-output ratio of the static
characteristic above or below a given threshold.

• KneeWidth –– Expanders, compressors, and limiters enable you to adjust the knee width of the
static characteristic. The knee of a static characteristic is centered at the threshold. An increase in
knee width creates a smoother transition around the threshold. A knee width of zero provides no
smoothing and is known as a hard knee. A knee width greater than zero is known as a soft knee.

In these static characteristic plots, the expander, limiter, and compressor each have a 10 dB knee
width.
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Gain Smoothing
All dynamic range controllers provide gain smoothing over time. Gain smoothing diminishes sharp
jumps in the applied gain, which can result in artifacts and an unnatural sound. You can
conceptualize gain smoothing as the addition of impedance to your gain signal.

The expander and noiseGate objects have the same smoothing equation, because a noise gate is a
type of expander. The limiter and compressor objects have the same smoothing equation, because
a limiter is a type of compressor.

The type of gain smoothing is specified by a combination of attack time, release time, and hold time
coefficients. Attack time and release time correspond to the time it takes the gain signal to go from
10% to 90% of its final value. Hold time is a delay period before gain is applied. See the algorithms of
individual dynamic range controller pages for more detailed explanations.

8 Dynamic Range Control

8-4



Smoothing Equations
expander and noiseGate

gs[n] =

αAgs[n− 1] + (1− αA)gc[n]
gs[n− 1]

αRgs[n− 1] + (1− αR)gc[n]
gs[n− 1]

if CA > k & gc[n] ≤ gs[n− 1]
if CA ≤ k

if CR > k & gc[n] > gs[n− 1]
if CR ≤ k

• αA and αR are determined by the sample rate and specified attack and release time:

αA = exp −log(9)
Fs × TA

, αR = exp −log(9)
Fs × TR

• k is the specified hold time in samples.
• CA and CR are hold counters for attack and release, respectively.

compressor and limiter

gs[n] =
αAgs[n− 1] + (1− αA)gc[n] if gc[n] ≤ gs[n− 1]
αRgs[n− 1] + (1− αR)gc[n] if gc[n] > gs[n− 1]

• αA and αR are determined by the sample rate and specified attack and release time:

αA = exp −log(9)
Fs × TA

, αR = exp −log(9)
Fs × TR

Gain Smoothing Example

Examine a trivial case of dynamic range compression for a two-step input signal. In this example, the
compressor has a threshold of –10 dB, a compression ratio of 5, and a hard knee.

Several variations of gain smoothing are shown. On the top, a smoothed gain curve is shown for
different attack time values, with release time set to zero seconds. In the middle, release time is
varied and attack time is held constant at zero seconds. On the bottom, both attack and release time
are specified by nonzero values.
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Make-Up Gain
Make-up gain applies for compressors and limiters, where higher dB portions of a signal are
attenuated or brickwalled. The dB reduction can significantly reduce total signal power. In these
cases, make-up gain is applied after gain smoothing to increase the signal power. In Audio Toolbox,
you can specify a set amount of make-up gain or specify the make-up gain mode as 'auto'.

The 'auto' make-up gain ensures that a 0 dB input results in a 0 dB output. For example, assume a
static characteristic of a compressor with a soft knee:

xsc(xdB) =

xdB xdB < T − W
2

xdB +
1
R − 1 xdB− T + W

2
2

2W T − W
2 ≤ xdB ≤ T + W

2

T +
xdB− T

R xdB > T + W
2

T is the threshold, W is the knee width, and R is the compression ratio. The calculated auto make-up
gain is the negative of the static characteristic equation evaluated at 0 dB:
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MAKE‐UP GAIN = − xsc(0) =

0 W
2 < T

−
1
R − 1 T − W

2
2

2W −W
2 ≤ T ≤ W

2

−T + T
R −W

2 > T

dB to Linear Conversion

Once the gain signal is determined in dB, it is transferred to the linear domain: glin = 10
gm 20.

Apply Calculated Gain
The final step in a dynamic control system is to apply the calculated gain by multiplication in the
linear domain.

Example: Dynamic Range Limiter
The audio signal described in this example is a 0.5 second interval of a drum track. The limiter
properties are:

• Threshold = –15 dB
• Knee width = 0 (hard knee)
• Attack time = 0.004 seconds
• Release time = 0.1 seconds
• Make-up gain = 1 dB

To create a limiter System object with these properties, at the MATLAB command prompt, enter:

dRL = limiter('Threshold',-15,...
              'KneeWidth',0,...
              'AttackTime',0.004,...
              'ReleaseTime',0.1,...
              'MakeUpGainMode','property',...
              'MakeUpGain',1);

This example provides a visual walkthrough of the various stages of the dynamic range limiter
system.
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Linear to dB Conversion

The input signal is converted to a dB scale element by element.

Gain Computer

The static characteristic brickwall limits the dB signal at –15 dB. To determine the dB gain that
results in this limiting, the gain computer subtracts the original dB signal from the dB signal
processed by the static characteristic.
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Gain Smoothing

The relatively short attack time specification results in a steep curve when the applied gain is
suddenly increased. The relatively long release time results in a gradual diminishing of the applied
gain.

Make-Up Gain

Assume a limiter with a 1 dB make-up gain value. The make-up gain is added to the smoothed gain
signal.

dB to Linear Conversion

The gain in dB is converted to a linear scale element by element.
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Apply Calculated Gain

The original signal is multiplied by the linear gain.

References
[1] Zolzer, Udo. "Dynamic Range Control." Digital Audio Signal Processing. 2nd ed. Chichester, UK:

Wiley, 2008.
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See Also
Compressor | Expander | Limiter | Noise Gate | compressor | expander | limiter | noiseGate

More About
• “Dynamic Range Compression Using Overlap-Add Reconstruction” on page 1-169
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MIDI Control for Audio Plugins

MIDI and Plugins
MIDI control surfaces are commonly used in conjunction with audio plugins in digital audio
workstation (DAW) environments. Synchronizing MIDI controls with plugin parameters provides a
tangible interface for audio processing and is an efficient approach to parameter tuning.

In the MATLAB environment, audio plugins are defined as any valid class that derives from the
audioPlugin base class or the audioPluginSource base class. For more information about how
audio plugins are defined in the MATLAB environment, see “Audio Plugins in MATLAB”.

Use MIDI with MATLAB Plugins
The Audio Toolbox product provides three functions for enabling the interface between MIDI control
surfaces and audio plugins:

• configureMIDI –– Configure MIDI connections between audio plugin and MIDI controller.
• getMIDIConnections –– Get MIDI connections of audio plugin.
• disconnectMIDI –– Disconnect MIDI controls from audio plugin.

These functions combine the abilities of general MIDI functions into a streamlined and user-friendly
interface suited to audio plugins in MATLAB. For a tutorial on the general functions and the MIDI
protocol, see “MIDI Control Surface Interface” on page 10-2.

This tutorial walks you through the MIDI functions for audio plugins in MATLAB.

1. Connect MIDI Device and Then Start MATLAB

Before starting MATLAB, connect your MIDI control surface to your computer and turn it on. For
connection instructions, see the instructions for your MIDI device. If you start MATLAB before
connecting your device, MATLAB might not recognize your device when you connect it. To correct the
problem, restart MATLAB with the device already connected.

2. Establish MIDI Connections

Use configureMIDI to establish MIDI connections between your default MIDI device and an audio
plugin. You can use configureMIDI programmatically, or you can open a user interface (UI) to guide
you through the process. The configureMIDI UI reads from your audio plugin and populates a drop-
down list of tunable plugin properties. You are then prompted to move individual controls on your
MIDI control surface to associate the position of each control with the normalized value of each
property you select. For example, create an object of audiopluginexample.PitchShifter and
then call configureMIDI with the object as the argument:
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ctrlPitch = audiopluginexample.PitchShifter;
configureMIDI(ctrlPitch)

The Synchronize to MIDI controls dialog box opens with the tunable properties of your plugin
automatically populated. When you operate a MIDI control, its identification is entered into the
Operate MIDI control to synchronize box. After you synchronize tunable properties with MIDI
controls, click OK to complete the configuration. If your MIDI control surface is bidirectional, it
automatically shifts the position of the synchronized controls to the initial property values specified
by your plugin.

To open a MATLAB function with the programmatic equivalent of your actions in the UI, select the
Generate MATLAB Code check box. Saving this function enables you to reuse your settings and
quickly establish the configuration in future sessions.

3. Tune Plugin Parameters Using MIDI

After you establish connections between plugin properties and MIDI controls, you can tune the
properties in real time using your MIDI control surface.

Audio Toolbox provides an all-in-one app for running and testing your audio plugin. The test bench
mimics how a DAW interacts with plugins.

Open the Audio Test Bench for your ctrlPitch object.

audioTestBench(ctrlPitch)
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When you adjust the controls on your MIDI surface, the corresponding plugin parameter sliders

move. Click  to run the plugin. Move the controls on your MIDI surface to hear the effect of tuning
the plugin parameters.

To establish MIDI connections and modify existing ones, click the Synchronize to MIDI Controls 
button to open a configureMIDI UI.

Alternatively, you can use the MIDI connections you established in a script or function. For example,
run the following code and move your synchronized MIDI controls to hear the pitch-shifting effect:

fileReader = dsp.AudioFileReader(...
    'Filename','Counting-16-44p1-mono-15secs.wav');
deviceWriter = audioDeviceWriter;

% Audio stream loop
while ~isDone(fileReader)
    input = fileReader();
    output = ctrlPitch(input);
    deviceWriter(output);
    drawnow limitrate; % Process callback immediately
end

release(fileReader);
release(deviceWriter);

4. Get Current MIDI Connections

To query the MIDI connections established with your audio plugin, use the getMIDIConnections
function. getMIDIConnections returns a structure with fields corresponding to the tunable
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properties of your plugin. The corresponding values are nested structures containing information
about the mapping between your plugin property and the specified MIDI control.

connectionInfo = getMIDIConnections(ctrlPitch)

connectionInfo = 

  struct with fields:

    PitchShift: [1×1 struct]
       Overlap: [1×1 struct]

connectionInfo.PitchShift

ans = 

  struct with fields:

            Law: 'int'
            Min: -12
            Max: 12
    MIDIControl: 'control 1081 on 'BCF2000''

5. Disconnect MIDI Surface

As a best practice, release external devices such as MIDI control surfaces when you are done.

disconnectMIDI(ctrlPitch)

See Also
Apps
Audio Test Bench

Classes
audioPlugin | audioPluginSource

Functions
configureMIDI | disconnectMIDI | getMIDIConnections

More About
• “What Are DAWs, Audio Plugins, and MIDI Controllers?”
• “MIDI Control Surface Interface” on page 10-2
• “Audio Plugins in MATLAB”
• “Host External Audio Plugins”

External Websites
• https://www.midi.org
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MIDI Control Surface Interface

In this section...
“About MIDI” on page 10-2
“MIDI Control Surfaces” on page 10-2
“Use MIDI Control Surfaces with MATLAB and Simulink” on page 10-3

About MIDI
Musical Instrument Digital Interface (MIDI) was originally developed to interconnect electronic
musical instruments. This interface is flexible and has uses in applications far beyond musical
instruments. Its simple unidirectional messaging protocol supports many different kinds of
messaging. One kind of MIDI message is the Control Change message, which is used to communicate
changes in controls, such as knobs, sliders, and buttons.

MIDI Control Surfaces
A MIDI control surface is a device with controls that sends MIDI Control Change messages when you
turn a knob, move a slider, or push a button on its surface. Each Control Change message indicates
which control changed and what its new position is.

Because the MIDI messaging protocol is unidirectional, determining a particular controller position
requires that the receiver listen for Control Change messages that the controller sends. The protocol
does not support querying the MIDI controller for its position.

The simplest MIDI control surfaces are unidirectional: They send MIDI Control Change messages but
do not receive them. More sophisticated control surfaces are bidirectional: They can both send and
receive Control Change messages. These control surfaces have knobs or sliders that can operate
automatically. For example, a control surface can have motorized sliders or knobs. When it receives a
Control Change message, the appropriate control moves to the position in the message.
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Use MIDI Control Surfaces with MATLAB and Simulink
Audio Toolbox enables you to use MIDI control surfaces to control MATLAB programs and Simulink
models by providing the capability to listen to Control Change messages. The toolbox also provides a
limited capability to send Control Change messages to support synchronizing MIDI controls. This
tutorial covers general MIDI functions. For functions specific to audio plugins in MATLAB, see “MIDI
Control for Audio Plugins” on page 9-2. The Audio Toolbox general interface to MIDI control surfaces
includes five functions and one block:

• midiid –– Interactively identify MIDI control.
• midicontrols –– Open group of MIDI controls for reading.
• midiread –– Return most recent value of MIDI controls.
• midisync –– Send values to MIDI controls for synchronization.
• midicallback –– Call function handle when MIDI controls change value.
• MIDI Controls (block) –– Output values from controls on MIDI control surface. The MIDI Controls

block combines functionality of the general MIDI functions into one block for the Simulink
environment.

This diagram shows a typical workflow involving general MIDI functions in MATLAB. For the Simulink
environment, follow steps 1 and 2, and then use the MIDI Controls block for a user-interface guided
workflow.

1. Connect MIDI Device and Then Start MATLAB

Before starting MATLAB, connect your MIDI control surface to your computer and turn it on. For
connection instructions, see the instructions for your MIDI device. If you start MATLAB before
connecting your device, MATLAB might not recognize your device when you connect it. To correct the
problem, restart MATLAB with the device already connected.

2. Determine Device Name and Control Numbers

Use the midiid function to determine the device name and control numbers of your MIDI control
surface. After you call midiid, it continues to listen until it receives a Control Change message.
When it receives a Control Change message, it returns the control number associated with the MIDI
controller number that you manipulated, and optionally returns the device name of your MIDI control
surface. The manufacturer and host operating system determine the device name. See “Control
Numbers” on page 10-7 for an explanation of how MATLAB calculates the control number.

To set a default device name, see “Set Default MIDI Device” on page 10-7.
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View Example

Call midiid with two outputs and then move a controller on your MIDI device. midiid returns the
control number specific to the controller you moved and the device name of the MIDI control surface.

[controlNumber,deviceName] = midiid;

3. Create Listener for Control Change Messages

Use the midicontrols function to create an object that listens for Control Change messages and
caches the most recent values corresponding to specified controllers. When you create a
midicontrols object, you specify a MIDI control surface by its device name and specific controllers
on the surface by their associated control numbers. Because the midicontrols object cannot query
the MIDI control surface for initial values, consider setting initial values when creating the object.

View Example

Identify two control numbers on your MIDI control surface. Choose initial control values for the
controls you identified. Create a midicontrols object that listens to Control Change messages that
arrive from the controllers you identified on the device you identified. When you create your
midicontrols object, also specify initial control values. These initial control values work as default
values until a Control Change message is received.
controlNum1 = midiid;
[controlNum2,deviceName] = midiid;
initialControlValues = [0.1,0.9];

midicontrolsObject = midicontrols([controlNum1,controlNum2], ...
    initialControlValues, ...
    'MIDIDevice',deviceName);

4. Get Current Control Values

Use the midiread function to query your midicontrols object for current control values.
midiread returns a matrix with values corresponding to all controllers the midicontrols object is
listening to. Generally, you want to place midiread in an audio stream loop for continuous updating.
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View Example

Place midiread in an audio stream loop to return the current control value of a specified controller.
Use the control value to apply gain to an audio signal.
[controlNumber, deviceName] = midiid;
initialControlValue = 1;
midicontrolsObject = midicontrols(controlNumber,initialControlValue,'MIDIDevice',deviceName);

% Create a dsp.AudioFileReader System object™ with default settings. Create
% an audioDeviceWriter System object and specify the sample rate.
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3');
deviceWriter = audioDeviceWriter(...
    'SampleRate',fileReader.SampleRate);

% In an audio stream loop, read an audio signal frame from the file, apply
% gain specified by the control on your MIDI device, and then write the
% frame to your audio output device. By default, the control value returned
% by midiread is normalized.
while ~isDone(fileReader)
    audioData = step(fileReader);
    
    controlValue = midiread(midicontrolsObject);
    
    gain = controlValue*2;
    audioDataWithGain = audioData*gain;
    
    play(deviceWriter,audioDataWithGain);
end

% Close the input file and release your output device.
release(fileReader);
release(deviceWriter);

5. Synchronize Bidirectional MIDI Control Surfaces

You can use midisync to send Control Change messages to your MIDI control surface. If the MIDI
control surface is bidirectional, it adjusts the specified controllers. One important use of midisync is
to set the controller positions on your MIDI control surface to initial values.

View Example

In this example, you initialize a controller on your MIDI control surface to a specified position. Calling
midisync(midicontrolsObject) sends a Control Change message to your MIDI control surface,
using the initial control values specified when you created the midicontrols object.
[controlNumber,deviceName] = midiid;
initialControlValue = 0.5;
midicontrolsObject = midicontrols(controlNumber,initialControlValue,'MIDIDevice',deviceName);

midisync(midicontrolsObject);
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Another important use of midisync is to update your MIDI control surface if control values are
adjusted in an audio stream loop. In this case, you call midisync with both your midicontrols
object and the updated control values.

View Example

In this example, you check the normalized output volume in an audio stream loop. If the volume is
above a given threshold, midisync is called and the MIDI controller that controls the applied gain is
reduced.

[controlNumber, deviceName] = midiid;
initialControlValue = 0.5;
midicontrolsObject = midicontrols(controlNumber,initialControlValue);
fileReader = dsp.AudioFileReader('Ambiance-16-44p1-mono-12secs.wav');
deviceWriter = audioDeviceWriter(...
    'SampleRate',fileReader.SampleRate);

% Synchronize specified initial value with the MIDI control surface.
midisync(midicontrolsObject);          

while ~isDone(fileReader)
    audioData = step(fileReader);
    controlValue = midiread(midicontrolsObject);
    gain = controlValue*2;
    audioDataWithGain = audioData*gain;
    
    % Check if max output is above a given threshold.
    if max(audioDataWithGain) > 0.7
        
        % Force new control value to be nonnegative.
        newControlValue = max(0,controlValue-0.5);
        
        % Send a Control Change message to the MIDI control surface.
        midisync(midicontrolsObject,newControlValue)
    end
    
    play(deviceWriter,audioDataWithGain);
end

release(fileReader);
release(deviceWriter);
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midisync is also a powerful tool in systems that also involve user interfaces (UIs), so that when one
control is changed, the other control tracks it. Typically, you implement such tracking by setting
callback functions on both the midicontrols object (using midicallback) and the UI control. The
callback for the midicontrols object sends new values to the UI control. The UI uses midisync to
send new values to the midicontrols object and MIDI control surface. See midisync for examples.

Alternative to Stream Processing

You can use midicallback as an alternative to placing midiread in an audio stream loop. If a
midicontrols object receives a Control Change message, midicallback automatically calls a
specified function handle. The callback function typically calls midiread to determine the new value
of the MIDI controls. You can use this callback when you want a MIDI controller to trigger an action,
such as updating a UI. Using this approach prevents having a MATLAB program continuously running
in the command window.

Set Default MIDI Device

You can set the default MIDI device in the MATLAB environment by using the setpref function. Use
midiid to determine the name of the device, and then use setpref to set the preference.

[~,deviceName] = midiid

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

deviceName =

BCF2000

setpref('midi','DefaultDevice',deviceName)

This preference persists across MATLAB sessions, so you only have to set it once, unless you want to
change devices.

If you do not set this preference, MATLAB and the host operating system choose a device for you.
However, such autoselection can cause unpredictable results because many computers have "virtual"
(software) MIDI devices installed that you might not be aware of. For predictable behavior, set the
preference.

Control Numbers

MATLAB defines control numbers as (MIDI channel number) × 1000 + (MIDI controller number).
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• MIDI channel number is the transmission channel that your device uses to send messages. This
value is in the range 1–16.

• MIDI controller number is a number assigned to an individual control on your MIDI device. This
value is in the range 1–127.

Your MIDI device determines the values of MIDI channel number and MIDI controller number.

See Also
Blocks
MIDI Controls

Functions
midicallback | midisync | midiread | midicontrols | midiid

More About
• “What Are DAWs, Audio Plugins, and MIDI Controllers?”
• “Real-Time Audio in MATLAB”
• “MIDI Device Interface” on page 7-2
• “MIDI Control for Audio Plugins” on page 9-2

External Websites
• https://www.midi.org
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Develop, Analyze, and Debug Plugins In Audio Test Bench
In this tutorial, explore key functionality of the Audio Test Bench. The Audio Test Bench app
enables you to debug, visualize, and configure audio plugins.

Choose Object Under Test
1 To open the Audio Test Bench, at the MATLAB command prompt, enter this command.

audioTestBench
2 In the Object Under Test box, enter audiopluginexample.Strobe and press Enter. The

Audio Test Bench automatically displays the tunable parameters of the
audiopluginexample.Strobe audio plugin.

The mapping between the tunable parameters of your object and the UI widgets on the Audio
Test Bench is determined by audioPluginInterface and audioPluginParameter in the
class definition of your object.

3 In the Object Under Test box, enter audiopluginexample.DampedVolumeController and
press Enter. The Audio Test Bench automatically displays the tunable parameters of the
audiopluginexample.DampedVolumeController audio plugin.
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Run Audio Test Bench

To run the Audio Test Bench for your plugin with default settings, click . Move the sliders to
modify the Gain and Transition Delay parameters while streaming.

To stop the audio stream loop, click . The MATLAB command line and objects used by the test
bench are now released.

To reset internal states of your audio plugin and return the sliders to their initial positions, click .

Click  to run the Audio Test Bench again.

Debug Source Code of Audio Plugin

To pause the Audio Test Bench, click .

To open the source file of your audio plugin, click .
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You can inspect the source code of your audio plugin, set breakpoints on it, and modify the code. Set

a breakpoint in the set.TransitionDelay function and then click  on the Audio Test Bench.

The Audio Test Bench runs your plugin until it reaches the breakpoint. To reach the breakpoint,
move the Transition Delay slider. To quit debugging, remove the breakpoint. In the MATLAB editor,
click Quit Debugging.
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Open Scopes

To open a time scope to visualize the time-domain input and output for your audio plugin, click .

To open a spectrum analyzer to visualize the frequency-domain input and output, click .

To release objects and stop the audio stream loop, click .

Configure Input to Audio Test Bench
The Input list contains these options:

• Audio File Reader –– dsp.AudioFileReader
• Audio Device Reader –– audioDeviceReader
• Audio Oscillator –– audioOscillator
• Wavetable Synthesizer –– wavetableSynthesizer
• Chirp Signal –– dsp.Chirp
• Colored Noise –– dsp.ColoredNoise

The Audio Device Reader option is not supported in MATLAB Online.

1 Select Audio File Reader.
2 Click  to open a dialog box for Audio File Reader configuration.
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You can enter any file name included on the MATLAB path. To specify a file that is not on the
MATLAB path, specify the full file path.

3 In the Audio file box, enter: RockDrums-44p1-stereo-11secs.mp3

Press Enter, and then exit the Audio File Reader configuration dialog. To run the audio test

bench with your new input, click .

To release your output object and stop the audio stream loop, click .

Configure Output from Audio Test Bench
The Output list contains these options:

• Audio Device Writer –– audioDeviceWriter
• Audio File Writer –– dsp.AudioFileWriter
• Both –– audioDeviceWriter and dsp.AudioFileWriter
• None –– The audio signal is not routed to a file or device. Use this option if you are only interested

in using the visualization and tuning capabilities of the test bench.

The Audio Device Writer and Both options are not supported in MATLAB Online.

1 Choose to output to device and file by selecting Both from the Output menu.
2 To open a dialog for Audio Device Writer and Audio File Writer configuration, click .
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Call Custom Visualization of Audio Plugin

If your audio plugin has a custom visualization method, the  button appears on the Audio Test
Bench. In the Object Under Test box, enter audiopluginexample.VarSlopeBandpassFilter
and press Enter. To open the custom visualization of

audiopluginexample.VarSlopeBandpassFilter, click . The custom visualization plots the
frequency response of the filter. Tune the plugin parameters and observe the plot update in real time.
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Custom visualizations are available only in MATLAB and not in generated plugins.

Synchronize Plugin Property with MIDI Control
If you have a MIDI device connected to your computer, you can synchronize plugin properties with

MIDI controls. To open a MIDI configuration UI, click . Synchronize the LowCutoff and
HighCutoff properties with MIDI controls you choose. Click OK.

See configureMIDI for more information.

Play the Audio and Save the Output File

To run your audio plugin, click . Adjust your plugin properties in real time using your synchronized
MIDI controls and sliders. Your processed audio file is saved to the current folder.

Audio playback is not supported in MATLAB Online.

Validate and Generate Audio Plugin

To open the validation and generation dialog box, click .
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You can validate your MATLAB audio plugin code and generate audio plugin binaries. In the Coder
configuration section, you can specify libraries for deep learning and code replacement when
generating plugins. See generateAudioPlugin, validateAudioPlugin, and
audioPluginConfig for more information.

Plugin generation is not supported in MATLAB Online.

Generate MATLAB Script

To generate a MATLAB script that implements a test bench for your audio plugin, click .
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You can modify the code for complete control over the test bench environment, including the ability
to create processing chains by placing plugins in cascade.

See Also
Audio Test Bench | validateAudioPlugin | generateAudioPlugin | audioPlugin

More About
• “Audio Plugins in MATLAB”
• “Audio Plugin Example Gallery” on page 12-2
• “Export a MATLAB Plugin to a DAW”

 Develop, Analyze, and Debug Plugins In Audio Test Bench
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Audio Plugin Example Gallery
Use these Audio Toolbox plugin examples as building blocks in larger systems, as models for design
patterns, or as benchmarks for comparison. Search the plugin descriptions to find an example that
meets your needs.

Audio Effects

Filters

Gain Control

Spatial Audio

Communicate Between MATLAB and DAW

Music Information Retrieval

Speech Processing

Deep Learning

Audio Plugin Examples
For a list of available audio plugins, see the online documentation.

See Also
Audio Test Bench | audioPlugin | audioPluginSource | audioPluginInterface |
audioPluginParameter

More About
• “Develop, Analyze, and Debug Plugins In Audio Test Bench” on page 11-2
• “Audio Plugins in MATLAB”

12 Audio Plugin Example Gallery
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Equalization
Equalization (EQ) is the process of weighting the frequency spectrum of an audio signal.

You can use equalization to:

• Enhance audio recordings
• Analyze spectral content

Types of equalization include:

• Lowpass and highpass filters –– Attenuate high frequency and low frequency content, respectively.
• Low-shelf and high-shelf equalizers –– Boost or cut frequencies equally above or below a desired
cutoff point.

• Parametric equalizers –– Selectively boost or cut frequency bands. Also known as peaking filters.
• Graphic equalizers –– Selectively boost or cut octave or fractional octave frequency bands. The

bands have standards-based center frequencies. Graphic equalizers are a special case of
parametric equalizers.

This tutorial describes how Audio Toolbox implements the design functions: designParamEQ,
designShelvingEQ, and designVarSlopeFilter. The multibandParametricEQ System object
combines the filter design functions into a multiband parametric equalizer. The graphicEQ System
object combines the filter design functions and the octaveFilter System object for standards-
based graphic equalization. For a tutorial focused on using the design functions in MATLAB, see
“Parametric Equalizer Design” on page 1-391.

Equalization Design Using Audio Toolbox

EQ Filter Design
Audio Toolbox design functions use the bilinear transform method of digital filter design to determine
your equalizer coefficients. In the bilinear transform method, you:

1 Choose an analog prototype.
2 Specify filter design parameters.
3 Perform the bilinear transformation.
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Analog Low-Shelf Prototype

Audio Toolbox uses the high-order parametric equalizer design presented in [1]. In this design
method, the analog prototype is taken to be a low-shelf Butterworth filter:

Ha(s) = gβ + s
β + s

r
∏

i = 1

L g2β2 + 2gsiβs + s2

β2 + 2siβs + s2

• L = Number of analog SOS sections

• N = Analog filter order

• r =
0 N even
1 N odd

• g = G1/N

• β = ΩB ×
G2− GB

2

GB
2 − 1

−1 N
= tan π Δω

2 ×
G2− GB

2

GB
2 − 1

−1 N
, where Δω is the desired

digital bandwidth

• si = sin 2i− 1 π
2N , i = 1, 2, ..., L

For parametric equalizers, the analog prototype is reduced by setting the bandwidth gain to the
square root of the peak gain (GB = sqrt(G)).

After the design parameters are specified, the analog prototype is transformed directly to the desired
digital equalizer by a bandpass bilinear transformation:

s =
1− 2cos ω0 z−1 + z−2

1− z−2

ω0 is the desired digital center frequency.
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This transformation doubles the filter order. Every first-order analog section becomes a second-order
digital section. Every second-order analog section becomes a fourth-order digital section. Audio
Toolbox always calculates fourth-order digital sections, which means that returning second-order
sections requires the computation of roots, and is less efficient.

Digital Coefficients

The digital transfer function is implemented as a cascade of second-order and fourth-order sections.

H(z) =
b00 + b01z−1 + b02z−2

1 + a01z−1 + a02z−2

r
∏

i = 1

L bi0 + bi1z−1 + bi2z−2 + bi3z−3 + bi4z−4

1 + ai1z−1 + ai2z−2 + ai3z−3 + ai4z−4

The coefficients are given by performing the bandpass bilinear transformation on the analog
prototype design.

Second-Order Section Coefficients Fourth-Order Section Coefficients
D0 = β + 1
b00 = 1 + gβ /D0
b01 = − 2cos(ω0)/D0
b02 = 1− gβ /D0
a01 = − 2cos(ω0)/D0
a02 = 1− β /D0

Di = β2 + 2siβ + 1

bi0 = g2β2 + 2gsiβ + 1 /Di

bi1 = − 4c0 1 + gsiβ /Di

bi2 = 2 1 + 2cos2(ω0)− g2β2 /Di

bi3 = − 4c0 1− gsiβ /Di

bi4 = g2β2− 2gsiβ + 1 /Di

ai1 = − 4c0 1 + siβ /Di

ai2 = 2 1 + 2cos2(ω0)− β2 /Di

ai3 = − 4cos(ω0) 1− siβ /Di

ai4 = β2− 2siβ + 1 /Di

Biquadratic Case

In the biquadratic case, when N = 1, the coefficients reduce to:

D0 =
ΩB
G + 1

b00 = 1 + ΩB G /D0, b01 = − 2cos(ω0)/D0, b02 = 1− ΩB G /D0

a01 = − 2cos(ω0)/D0, a02 = 1−
ΩB
G /D0

Denormalizing the a00 coefficient, and making substitutions of A =sqrt(G), ΩB ≅ α yields the familiar
peaking EQ coefficients described in [2].

Orfanidis notes the approximate equivalence of ΩB and α in [1].

By using trigonometric identities,

ΩB = tan Δω
2 = sin ω0 sinh ln2

2 B ,
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where B plays the role of an equivalent octave bandwidth.

Bristow-Johnson obtained an approximate solution for B in [4]:

B =
ω0

sinω0
× BW

Substituting the approximation for B into the ΩB equation yields the definition of α in [2]:

α = sin ω0 sinh ln2
2 ×

ω0
sinω0

× BW

Lowpass and Highpass Filter Design
Analog Low-Shelf Prototype

To design lowpass and highpass filters, Audio Toolbox uses a special case of the filter design for
parametric equalizers. In this design, the peak gain, G, is set to 0, and GB

2 is set to 0.5 (–3 dB cutoff).
The cutoff frequency of the lowpass filter corresponds to 1 – ΩB. The cutoff frequency of the highpass
filter corresponds to ΩB.

Digital Coefficients

The table summarizes the results of the bandpass bilinear transformation. The digital center
frequency, ω0, is set to π for lowpass filters and 0 for highpass filters.
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Second Order Section Coefficients Fourth Order Section Coefficients

D0 = 1 + tan π Δω
2

b00 = 1/D0
b01 = − 2cos ω0 /D0
b02 = 1/D0
a01 = − 2cos ω0 /D0

a02 = 1− tan π Δω
2 /D0

Di = tan2 π Δω
2 + 2sitan π Δω

2 + 1

bi0 = 1/Di
bi1 = − 4cos ω0 /Di

bi2 = 2 1 + 2cos2 ω0 /Di

bi3 = − 4cos ω0 0/Di

bi4 = 1/Di

ai1 = − 4cos ω0 1 + sitan π Δω
2 /Di

ai2 = 2 1 + 2cos2 ω0 − tan2 π Δω
2 /Di

ai3 = − 4cos ω0 1− sitan π Δω
2 /Di

ai4 = tan2 π Δω
2 − 2sitan π Δω

2 + 1 /Di

Shelving Filter Design
Analog Prototype

Audio Toolbox implements the shelving filter design presented in [2]. In this design, the high-shelf
and low-shelf analog prototypes are presented separately:

HL(s) = A
As2 + A Q s + 1
s2 + A Q s + A

HH(s) = A
s2 + A Q s + A
As2 + A Q s + 1

For compactness, the analog filters are presented with variables A and Q. You can convert A and Q to
available Audio Toolbox design parameters:

A = 10G/40

1
Q = A + 1 A 1 slope− 1 + 2

After you specify the design parameters, the analog prototype is transformed to the desired digital
shelving filter by a bilinear transformation with prewarping:

s = z − 1
z + 1 × 1

tan
ω0
2

Digital Coefficients

The table summarizes the results of the bilinear transformation with prewarping.
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Low-Shelf b0 = A A + 1 − A− 1 cos(ω0) + 2α A
b1 = 2A A− 1 − A + 1 cos(ω0)
b2 = A A + 1 − A− 1 cos(ω0)− 2α A
a0 = A + 1 + A− 1 cos(ω0) + 2α A
a1 = − 2 A− 1 + A + 1 cos(ω0)
a2 = A + 1 + A− 1 cos(ω0)− 2α A

High-Shelf b0 = A A + 1 + A− 1 cos(ω0) + 2α A
b1 = − 2A A− 1 + A + 1 cos(ω0)
b2 = A A + 1 + A− 1 cos(ω0)− 2α A
a0 = A + 1 − A− 1 cos(ω0) + 2α A
a1 = 2 A− 1 + A + 1 cos(ω0)
a2 = A + 1 − A− 1 cos(ω0)− 2α A

Intermediate
Variables α =

sin ω0
2 A + 1

A
1

slope − 1 + 2A

ω0 = 2πCutof f Frequency
Fs

References
[1] Orfanidis, Sophocles J. "High-Order Digital Parametric Equalizer Design." Journal of the Audio

Engineering Society. Vol. 53, November 2005, pp. 1026–1046.

[2] Bristow-Johnson, Robert. "Cookbook Formulae for Audio EQ Biquad Filter Coefficients." Accessed
March 02, 2016. http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt.

[3] Orfanidis, Sophocles J. Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice Hall,
2010.

[4] Bristow-Johnson, Robert. "The Equivalence of Various Methods of Computing Biquad Coefficients
for Audio Parametric Equalizers." Presented at the 97th Convention of the AES, San
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See Also
designVarSlopeFilter | designParamEQ | designShelvingEQ | multibandParametricEQ |
graphicEQ

More About
• “Parametric Equalizer Design” on page 1-391
• “Graphic Equalization” on page 1-190
• “Octave-Band and Fractional Octave-Band Filters” on page 1-399
• “Audio Weighting Filters” on page 1-200
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Deployment

• “Desktop Real-Time Audio Acceleration with MATLAB Coder” on page 14-2
• “What is C Code Generation from MATLAB?” on page 14-5
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Desktop Real-Time Audio Acceleration with MATLAB Coder

This example shows how to accelerate a real-time audio application using C code generation with
MATLAB® Coder™. You must have the MATLAB Coder™ software installed to run this example.

Introduction

Replacing parts of your MATLAB code with an automatically generated MATLAB executable (MEX-
function) can speed up simulation. Using MATLAB Coder, you can generate readable and portable C
code and compile it into a MEX-function that replaces the equivalent section of your MATLAB
algorithm.

This example showcases code generation using an audio notch filtering application.

Notch Filtering

A notch filter is used to eliminate a specific frequency from a signal. Typical filter design parameters
for notch filters are the notch center frequency and the 3 dB bandwidth. The center frequency is the
frequency at which the filter has a linear gain of zero. The 3 dB bandwidth measures the frequency
width of the notch of the filter computed at the half-power or 3 dB attenuation point.

The helper function used in this example is helperAudioToneRemoval. The function reads an audio
signal corrupted by a 250 Hz sinusoidal tone from a file. helperAudioToneRemoval uses a notch
filter to remove the interfering tone and writes the filtered signal to a file.

You can visualize the corrupted audio signal using a spectrum analyzer.

reader = dsp.AudioFileReader("guitar_plus_tone.ogg");

scope = spectrumAnalyzer(SampleRate=reader.SampleRate, ...
    RBWSource="property",RBW=5, ...
    PlotAsTwoSidedSpectrum=false, ...
    FrequencySpan="start-and-stop-frequencies", ...
    StartFrequency=20, ...
    StopFrequency=1000, ...
    Title="Audio signal corrupted by 250 Hz tone");

while ~isDone(reader)
    audio = reader();
    scope(audio(:,1));
end
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14-2



C Code Generation Speedup

Measure the time it takes to read the audio file, filter out the interfering tone, and write the filtered
output using MATLAB code.

tic
helperAudioToneRemoval
t1 = toc;

fprintf("MATLAB Simulation Time: %d\n",t1)

MATLAB Simulation Time: 2.732519e+00

Next, generate a MEX-function from helperAudioToneRemoval using the MATLAB Coder function,
codegen (MATLAB Coder).

codegen helperAudioToneRemoval

Code generation successful.

Measure the time it takes to execute the MEX-function and calculate the speedup gain with a
compiled function.

tic
helperAudioToneRemoval_mex
t2 = toc;

fprintf("Code Generation Simulation Time: %d\n",t2)

 Desktop Real-Time Audio Acceleration with MATLAB Coder
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Code Generation Simulation Time: 9.064711e-01

fprintf("Speedup factor: %6.2f\n",t1/t2)

Speedup factor:   3.01

See Also

Related Examples
• “Generate Standalone Executable for Parametric Audio Equalizer” on page 1-272
• “Deploy Audio Applications with MATLAB Compiler” on page 1-275
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What is C Code Generation from MATLAB?
You can use Audio Toolbox together with MATLAB Coder to:

• Create a MEX file to speed up your MATLAB application.
• Generate ANSI®/ISO® compliant C/C++ source code that implements your MATLAB functions and

models.
• Generate a standalone executable that runs independently of MATLAB on your computer or

another platform.

In general, the code you generate using the toolbox is portable ANSI C code. In order to use code
generation, you need a MATLAB Coder license. For more information, see “Get Started with MATLAB
Coder” (MATLAB Coder).

Using MATLAB Coder
Creating a MATLAB Coder MEX file can substantially accelerate your MATLAB code. It is also a
convenient first step in a workflow that ultimately leads to completely standalone code. When you
create a MEX file, it runs in the MATLAB environment. Its inputs and outputs are available for
inspection just like any other MATLAB variable. You can then use MATLAB tools for visualization,
verification, and analysis.

The simplest way to generate MEX files from your MATLAB code is by using the codegen function at
the command line. For example, if you have an existing function, myfunction.m, you can type the
commands at the command line to compile and run the MEX function. codegen adds a platform-
specific extension to this name. In this case, the "mex" suffix is added.

codegen myfunction.m
myfunction_mex;

Within your code, you can run specific commands either as generated C code or by using the
MATLAB engine. In cases where an isolated command does not yet have code generation support,
you can use the coder.extrinsic command to embed the command in your code. This means that
the generated code reenters the MATLAB environment when it needs to run that particular
command. This is also useful if you want to embed commands that cannot generate code (such as
plotting functions).

To generate standalone executables that run independently of the MATLAB environment, create a
MATLAB Coder project inside the MATLAB Coder Integrated Development Environment (IDE).
Alternatively, you can call the codegen command in the command line environment with appropriate
configuration parameters. A standalone executable requires you to write your own main.c or
main.cpp function. See “Generating Standalone C/C++ Executables from MATLAB Code” (MATLAB
Coder) for more information.

C/C++ Compiler Setup
Before using codegen to compile your code, you must set up your C/C++ compiler. For 32-bit
Windows platforms, MathWorks® supplies a default compiler with MATLAB. If your installation does
not include a default compiler, you can supply your own compiler. For the current list of supported
compilers, see Supported and Compatible Compilers on the MathWorks website. Install a compiler
that is suitable for your platform, then read “Setting Up the C or C++ Compiler” (MATLAB Coder).

 What is C Code Generation from MATLAB?
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After installation, at the MATLAB command prompt, run mex -setup. You can then use the codegen
function to compile your code.

Functions and System Objects That Support Code Generation
All Audio Toolbox functions and System objects support code generation.

See Also
Functions
codegen | mex

More About
• “Code Generation Workflow” (MATLAB Coder)
• Generate C Code from MATLAB Code Video
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Run Audio I/O Features Outside MATLAB and Simulink
You can deploy these audio input and output features outside the MATLAB and Simulink
environments:

System Objects

• audioPlayerRecorder
• audioDeviceReader
• audioDeviceWriter
• dsp.AudioFileReader
• dsp.AudioFileWriter

Blocks

• Audio Device Reader
• Audio Device Writer
• From Multimedia File
• To Multimedia File

The generated code for the audio I/O features relies on prebuilt dynamic library files included with
MATLAB. You must account for these extra files when you run audio I/O features outside the MATLAB
and Simulink environments. To run a standalone executable generated from a model or code
containing the audio I/O features, set your system environment using commands specific to your
platform.

Platform Command
Mac setenv DYLD_LIBRARY_PATH "$

{DYLD_LIBRARY_PATH}:$MATLABROOT/bin/
maci64" (csh/tcsh)

export DYLD_LIBRARY_PATH=
$LD_LIBRARY_PATH:$MATLABROOT/bin/
maci64 (Bash)

Linux setenv LD_LIBRARY_PATH $
{LD_LIBRARY_PATH}:$MATLABROOT/bin/
glnxa64 (csh/tcsh)

export LD_LIBRARY_PATH=
$LD_LIBRARY_PATH:$MATLABROOT/bin/
glnxa64 (Bash)

Windows set PATH=%PATH%;%MATLABROOT%\bin\win64

The path in these commands is valid only on systems that have MATLAB installed. If you run the
standalone app on a machine with only MCR, and no MATLAB installed, replace $MATLABROOT/
bin/... with the path to the MCR.

To run the code generated from the above System objects and blocks on a machine does not have
MCR or MATLAB installed, use the packNGo function. The packNGo function packages all relevant
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files in a compressed zip file so that you can relocate, unpack, and rebuild your project in another
development environment with no MATLAB installed.

You can use the packNGo function at the command line or the Package option in the MATLAB Coder
app. The files are packaged in a compressed file that you can relocate and unpack using a standard
zip utility. For more details on how to pack the code generated from MATLAB code, see “Package
Code for Other Development Environments” (MATLAB Coder). For more details on how to pack the
code generated from Simulink blocks, see the packNGo function.

See Also

More About
• “MATLAB Programming for Code Generation” (MATLAB Coder)
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Decrease Underrun

Examine the Audio Device Writer block in a Simulink® model, determine underrun, and decrease
underrun.

1. Run the model. The Audio Device Writer sends an audio stream to your computer's default audio
output device. The Audio Device Writer block sends the number of samples underrun to your Time
Scope.
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2. Uncomment the Artificial Load block. This block performs computations that slow the simulation.

3. Run the model. If your device writer is dropping samples:

a. Stop the simulation.

b. Open the From Multimedia File block.

c. Set the Samples per frame parameter to 1024.

d. Close the block and run the simulation.

If your model continues to drop samples, increase the frame size again. The increased frame size
increases the buffer size used by the sound card. A larger buffer size decreases the possibility of
underruns at the cost of higher audio latency.

See Also
From Multimedia File | Time Scope

 Decrease Underrun

16-3





Block Example Repository

• “Extract Cepstral Coefficients” on page 17-3
• “Tune Center Frequency Using Input Port” on page 17-4
• “Gate Audio Signal Using VAD” on page 17-6
• “Frequency-Domain Voice Activity Detection” on page 17-8
• “Visualize Noise Power” on page 17-9
• “Detect Presence of Speech” on page 17-12
• “Perform Graphic Equalization” on page 17-14
• “Split-Band De-Essing” on page 17-16
• “Diminish Plosives from Speech” on page 17-17
• “Suppress Loud Sounds” on page 17-18
• “Attenuate Low-Level Noise” on page 17-20
• “Suppress Volume of Loud Sounds” on page 17-22
• “Gate Background Noise” on page 17-24
• “Output Values from MIDI Control Surface” on page 17-26
• “Apply Frequency Weighting” on page 17-28
• “Compare Loudness Before and After Audio Processing” on page 17-30
• “Two-Band Crossover Filtering for a Stereo Speaker System” on page 17-32
• “Mimic Acoustic Environments” on page 17-34
• “Perform Parametric Equalization” on page 17-35
• “Perform Octave Filtering” on page 17-37
• “Read from Microphone and Write to Speaker” on page 17-39
• “Channel Mapping” on page 17-41
• “Trigger Gain Control Based on Loudness Measurement” on page 17-42
• “Generate Variable-Frequency Tones in Simulink” on page 17-44
• “Trigger Reverberation Parameters” on page 17-47
• “Model Engine Noise” on page 17-48
• “Use Octave Filter Bank to Create Flanging Chorus Effect for Guitar Layers (Overdubs)”

on page 17-50
• “Decompose Signal using Gammatone Filter Bank Block” on page 17-52
• “Visualize Filter Response of Multiband Parametric Equalizer Block” on page 17-54
• “Detect Music in Simulink Using YAMNet” on page 17-57
• “Compare Sound Classifier block with Equivalent YAMNet blocks” on page 17-60
• “Detect Air Compressor Sounds in Simulink Using YAMNet” on page 17-62
• “Design Auditory Filter Bank” on page 17-66
• “Design Mel Filter Bank” on page 17-68
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• “Extract Auditory Spectrogram” on page 17-70
• “Extract Mel Spectrogram” on page 17-72
• “Filter Audio Using Shelving Filter Block” on page 17-74
• “Compare VGGish Embeddings Block with Equivalent VGGish Blocks” on page 17-75
• “Extract GTCC from Audio in Simulink” on page 17-77
• “Include an Audio Plugin in Simulink” on page 17-78
• “Use VGGish Embeddings for Deep Learning in Simulink” on page 17-80
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Extract Cepstral Coefficients

Use the Cepstral Feature Extractor block to extract and visualize cepstral coefficients from an audio
file.

See Also
Cepstral Feature Extractor | mfcc | gtcc | Audio Device Writer | From Multimedia File | Array Plot
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Tune Center Frequency Using Input Port

Tune the center frequency of an Octave Filter block in Simulink® using the optional input port.

1. Run the simulation. The From Multimedia File block sends a stereo audio stream to the Octave
Filter block. The center frequency of the Octave Filter block can be tuned using the manual switches
routed into the optional input port. The filtered audio is sent to your computer's default audio device.
The filtered audio and unfiltered audio are sent to a Spectrum Analyzer block for visualization.

2. Tune the center frequency by toggling manual switches routing constant values. The constant
value routed from the left is multiplied with the constant value routed from the right. The center
frequency of the Octave Filter block can be set at 400, 800, 4000, and 8000 Hz.

3. Observe the Spectrum Analyzer as you tune the center frequency. Note how the center frequency
changes as you toggle the manual switches.
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See Also
Audio Device Writer | From Multimedia File | Time Scope | Manual Switch | Octave Filter

 Tune Center Frequency Using Input Port

17-5



Gate Audio Signal Using VAD

This model uses if-else block signal routing to replace regions of no speech with zeros.

To explore this model, tune the Probability of transition from a silence frame to a speech frame
and Probability of transition from a speech frame to a silence frame parameters of the Voice
Activity Detector (VAD) and observe the effect on the speech presence probability. Toggle between
the gated and original audio signal to assess the quality of your system.
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See Also
Voice Activity Detector | Audio Device Writer | From Multimedia File | Time Scope | Random Source |
Manual Switch | If | If Action Subsystem
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Frequency-Domain Voice Activity Detection

This model detects voice activity using a frequency-domain audio signal.

Voice Activity Detection is often used as an indication whether further processing or analysis of a
signal is required. Many processing and analysis techniques require a frequency-domain
representation of the signal. For example, the voice activity detection algorithm operates in the
frequency domain. To save computation, you can convert the audio signal to the frequency domain
once, and then feed the frequency-domain signal to downstream analysis and processing.

This model additionally buffers the signal so that the VAD operates on half-overlapped frames.
Overlapping the input frames to the VAD increases the accuracy and resolution in time of the
probability of speech.

See Also
Voice Activity Detector | Audio Device Writer | From Multimedia File | Time Scope | Window Function
| Buffer | Delay | FFT
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Visualize Noise Power

This model plots the noise power estimated by the Voice Activity Detector.

To explore this model, tune the Frequency (Hz) parameter of the Sine Wave block and observe the
noise power estimate updated on the Array Plot block.

 Visualize Noise Power
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Zoom in on the Array Plot to verify that the Voice Activity Detector outputs a good estimate of the
noise tone.

See Also
Voice Activity Detector | Audio Device Writer | From Multimedia File | Time Scope | Array Plot | Sine
Wave
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Detect Presence of Speech

This model uses the Voice Activity Detector block to visualize the probability of speech presence in an
audio signal.

To explore this model, tune the Probability of transition from a silence frame to a speech frame
and Probability of transition from a speech frame to a silence frame parameters of the Voice
Activity Detector (VAD) and observe the effect on the speech presence probability.

The Time Scope blocks plots the audio signal and associated voice activity probability.
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See Also
Voice Activity Detector | Audio Device Writer | From Multimedia File | Time Scope
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Perform Graphic Equalization

Examine the Graphic EQ block in a Simulink® model and tune parameters.

1. Open the Spectrum Analyzer and Graphic EQ blocks.

2. In the Graphic EQ block, click Visualize equalizer response. Modify gains of the graphic
equalizer and see the magnitude response plot update automatically.

3. Run the model. Tune gains on the Graphic EQ to listen to the effect on your audio device and see
the effect on the Spectrum Analyzer display. Double-click the Manual Switch (Simulink) block to
toggle between the original and equalized signal as output.
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See Also
Graphic EQ | Audio Device Writer | From Multimedia File | Spectrum Analyzer
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Split-Band De-Essing

This model implements split-band de-essing by separating a speech signal into high and low
frequencies, applying dynamic range expansion to diminish the sibilant frequencies, and then
remixing the channels.

De-essing is the process of diminishing sibilant sounds in an audio signal. Sibilance refers to the s, z,
and sh sounds in speech, which can be disproportionately emphasized during recording. es sounds
fall under the category of unvoiced speech with all consonants, and have a higher frequency than
voiced speech.

To explore the model, tune the parameters of the Expander and Crossover Filter blocks. To switch
between listening to the processed and unprocessed speech signal, double-click the Manual Switch
block. To view the effect of the processing, double-click the Time Scope block.

See Also
Audio Device Writer | Time Scope | Expander | From Multimedia File | Crossover Filter
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Diminish Plosives from Speech

This model minimizes the plosives of a speech signal by applying highpass filtering and low-band
compression.

Plosives are consonant sounds resulting from a sudden release of airflow. They are most pronounced
in p, d, and g words. Plosives can be emphasized by the recording process and are often
displeasurable to hear.

To explore this model, tune the highpass filter cutoff and the parameters on the Compressor and
Crossover Filter blocks. Switch between listening to the original and processed signals by double-
clicking the Manual Switch block.

See Also
Audio Device Writer | Compressor | From Multimedia File | Crossover Filter
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Suppress Loud Sounds

Use the Compressor block to suppress loud sounds and visualize the applied compression gain.

1. Open the Time Scope and Compressor blocks.

2. Run the model. To switch between listening to the compressed signal and the original signal,
double-click the Manual Switch (Simulink) block.

3. Observe how the applied gain depends on compression parameters and input signal dynamics by
tuning the Compressor block parameters and viewing the results on the Time Scope.
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See Also
Audio Device Writer | Time Scope | From Multimedia File | Vector Concatenate, Matrix Concatenate |
Compressor

More About
• “Dynamic Range Control” on page 8-2
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Attenuate Low-Level Noise

Use the Expander block to attenuate low-level noise and visualize the applied dynamic range control
gain.

1. Open the Time Scope and Expander blocks.

2. Run the model. To switch between listening to the expanded signal and the original signal, double-
click the Manual Switch (Simulink) block.

3. Observe how the applied gain depends on expansion parameters and input signal dynamics by
tuning the Expander block parameters and viewing the results on the Time Scope.
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See Also
Audio Device Writer | Time Scope | From Multimedia File | Vector Concatenate, Matrix Concatenate |
Colored Noise | Expander

More About
• “Dynamic Range Control” on page 8-2
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Suppress Volume of Loud Sounds

Suppress the volume of loud sounds and visualize the applied dynamic range control gain.

1. Open the Time Scope and Limiter blocks.

2. Run the model. To switch between listening to the gated signal and the original signal, double-click
the Manual Switch (Simulink) block.

3. Observe how the applied gain depends on dynamic range limiting parameters and input signal
dynamics by tuning Limiter block parameters and viewing the results on the Time Scope.
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See Also
Audio Device Writer | Time Scope | From Multimedia File | Vector Concatenate, Matrix Concatenate |
Limiter

More About
• “Dynamic Range Control” on page 8-2
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Gate Background Noise

Apply dynamic range gating to remove low-level noise from an audio file.

1. Open the Time Scope and Noise Gate blocks.

2. Run the model. To switch between listening to the gated signal and the original signal, double-click
the Manual Switch (Simulink) block.

3. Observe how the applied gain depends on noise gate parameters and input signal dynamics by
tuning Noise Gate block parameters and viewing the results on the Time Scope.
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See Also
Audio Device Writer | Time Scope | From Multimedia File | Vector Concatenate, Matrix Concatenate |
Random Source | Noise Gate

More About
• “Dynamic Range Control” on page 8-2
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Output Values from MIDI Control Surface

The example shows how to set the MIDI Controls block parameters to output control values from your
MIDI device.

1. Connect a MIDI device to your computer and then open the model.

2. Run the model with default settings. Move any controller on your default MIDI device to update the
Display block.

3. Stop the simulation.

4. At the MATLAB™ command line, use midiid to determine the name of your MIDI device and two
control numbers associated with your device.

5. In the MIDI Control block dialog box, set MIDI device to Specify other and enter the name of
your MIDI device.

6. Set MIDI controls to Respond to specified controls and enter the control numbers
determined using midiid.

7. Specify initial values as a vector the same size as MIDI control numbers. The initial values you
specify are quantized according to the MIDI protocol and your particular MIDI surface.

The dialog box shows sample values for a 'BCF2000' MIDI device with control numbers 1081 and
1083.
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8. Click OK, and then run the model. Verify that the Display block shows initial values and updates
when you move the specified controls.

See Also
Audio Device Writer | Time Scope | From Multimedia File | Vector Concatenate, Matrix Concatenate |
MIDI Controls

More About
• “MIDI Control Surface Interface” on page 10-2
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Apply Frequency Weighting

Examine the Weighting Filter block in a Simulink® model and tune parameters.

1. Open the Spectrum Analyzer block.

2. Run the model. Switch between listening to the frequency-weighted signal and the original signal
by double-clicking the Manual Switch (Simulink) block.

3. Stop the model. Open the Weighting Filter block and choose a different weighting method. Observe
the difference in simulation.
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See Also
Audio Device Writer | Spectrum Analyzer | From Multimedia File | Weighting Filter
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Compare Loudness Before and After Audio Processing

Measure momentary and short-term loudness before and after compression of a streaming audio
signal in Simulink®.

1. Open the Time Scope and Compressor blocks.

2. Run the model. To switch between listening to the compressed signal and the original signal,
double-click the switch.

3. Observe the effect of compression on loudness by tuning the Compressor block parameters and
viewing the momentary loudness on the Time Scope block.
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4. Stop the model. For both Loudness blocks, replace momentary loudness with short-term loudness
as input to the Matrix Concatenate block. Run the model again and observe the effect of compression
on short-term loudness.

See Also
Audio Device Writer | Time Scope | From Multimedia File | Vector Concatenate, Matrix Concatenate |
Compressor | Loudness Meter
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Two-Band Crossover Filtering for a Stereo Speaker System

Divide a mono signal into a stereo signal with distinct frequency bands. To hear the full effect of this
simulation, use a stereo speaker system, such as headphones.

1. Open the Spectrum Analyzer and Crossover Filter blocks.

2. Run the model. To switch between listening to the filtered and original signal, double-click the
Manual Switch (Simulink) block.

3. Tune the crossover frequency on the Crossover Filter block to listen to the effect on your speakers
and view the effect on the Spectrum Analyzer block.
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See Also
Audio Device Writer | Spectrum Analyzer | From Multimedia File | Vector Concatenate, Matrix
Concatenate | Crossover Filter
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Mimic Acoustic Environments

Examine the Reverberator block in a Simulink® model and tune parameters. The reverberation
parameters in this model mimic a large room with hard walls, such as a gymnasium.

1. Run the simulation. Listen to the audio signal with and without reverberation by double-clicking
the Manual Switch block.

2. Stop the simulation.

3. Disconnect the To Multimedia File block so that you can run the model without recording.

4. Open the Reverberator block.

5. Run the simulation and tune the parameters of the Reverberator block.

6. After you are satisfied with the reverberation environment, stop the simulation.

7. Reconnect the To Multimedia File block. Rename the output file with a description to match your
reverberation environment, and rerun the model.

See Also
Audio Device Writer | To Multimedia File | From Multimedia File | Vector Concatenate, Matrix
Concatenate | Reverberator
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Perform Parametric Equalization

Examine the Single-Band Parametric EQ block in a Simulink® model and tune parameters.

1. Open the Spectrum Analyzer and Parametric EQ blocks.

2. In the Single-Band Parametric EQ block, click View Filter Response. Modify parameters of the
parametric equalizer and see the magnitude response plot update automatically.

3. Run the model. Tune parameters on the Single-Band Parametric EQ to listen to the effect on your
audio device and see the effect on the Spectrum Analyzer display. Double-click the Manual Switch
(Simulink) block to toggle between the original and equalized signal as output.
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See Also
Audio Device Writer | Spectrum Analyzer | From Multimedia File | Vector Concatenate, Matrix
Concatenate | Single-Band Parametric EQ
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Perform Octave Filtering

Examine the Octave Filter block in a Simulink® model and tune parameters.

1. Open the Octave Filter block and click Visualize filter response. Tune parameters on the Octave
Filter dialog. The filter response visualization updates automatically. If you break compliance with the
ANSI S1.11-2004 standard, the filter mask is drawn in red.

2. Run the model. Open the Spectrum Analyzer block. Tune parameters on the Octave Filter block to
listen to the effect on your audio device and see the effect on the Spectrum Analyzer display. Switch
between listening to the filtered and unfiltered audio by double-clicking the Manual Switch (Simulink)
block.

 Perform Octave Filtering
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See Also
Audio Device Writer | Spectrum Analyzer | From Multimedia File | Octave Filter
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Read from Microphone and Write to Speaker

Examine the Audio Device Reader block in a Simulink® model, modify parameters, and explore
overrun.

1. Run the model. The Audio Device Reader records an audio stream from your computer's default
audio input device. The Reverberator block processes your input audio. The Audio Device Writer
block sends the processed audio to your default audio output device.

 Read from Microphone and Write to Speaker
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2. Stop the model. Open the Audio Device Reader block and lower the Samples per frame
parameter. Open the Time Scope block to view overrun.

3. Run the model again. Lowering the Samples per frame decreases the buffer size of your Audio
Device Reader block. A smaller buffer size decreases audio latency while increasing the likelihood of
overruns.

See Also
Audio Device Writer | Audio Device Reader | Time Scope | Reverberator

More About
• “Audio I/O: Buffering, Latency, and Throughput”
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Channel Mapping

Examine the Audio Device Writer block in a Simulink® model and specify a nondefault channel
mapping.

1. Run the simulation. The Audio Device Writer sends a stereo audio stream to your computer's
default audio output device. If you are using a stereo audio output device, such as headphones, you
can hear a tone from one speaker and noise from the other speaker.

2. Specify a nondefault channel mapping:

a. Stop the simulation.

b. Open the Audio Device Writer block to modify parameters.

c. On the Advanced tab, clear the Use default channel mapping parameter.

d. Specify the Device output channels in reverse order: [2,1]. If you are using a stereo output
device, such as headphones, you hear that the noise and tone have switched speakers.

See Also
Audio Device Writer | Random Source | Sine Wave | Vector Concatenate, Matrix Concatenate

More About
• “Audio I/O: Buffering, Latency, and Throughput”
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Trigger Gain Control Based on Loudness Measurement

This model enables you to apply dynamic range compression to an audio signal while staying inside a
preset loudness range. In this model, a Compressor block increases the loudness and decreases the
dynamic range of an audio signal. A Loudness Meter block calculates the momentary loudness of the
compressed audio signal. If momentary loudness crosses a -23 LUFS threshold, an enabled subsystem
applies gain to lower the corresponding level of the audio signal.

1. Open the Time Scope and Compressor blocks.

2. Run the model. To switch between listening to the compressed signal with and without gain
adjustment, double-click the switch.

3. To observe the effect of compression on loudness, tune the Compressor block parameters and view
the compressed audio signal on the Time Scope block.
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See Also
Blocks
Audio Device Writer | Time Scope | From Multimedia File | Compressor | Loudness Meter

Objects
loudnessMeter

Functions
integratedLoudness

More About
• “Loudness Normalization in Accordance with EBU R 128 Standard” on page 1-179
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Generate Variable-Frequency Tones in Simulink

Examine the Audio Oscillator block in a Simulink® model and tune the parameters.

1. Run the simulation. Listen to the tone from the Audio Oscillator block generating a sine wave.
Visualize the spectrums of all three waveforms on the Spectrum Analyzer. Visualize the waveforms on
the Time Scope.

2. Toggle the manual switches to listen to the square and sawtooth waves.

3. Open any of the Audio Oscillator blocks and modify the Frequency (Hz) or Amplitude parameters to
hear the effect and visualize the effect on the Spectrum Analyzer and Time Scope.
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Trigger Reverberation Parameters

Examine the Reverberator block in a Simulink® model where the reverberation parameters are
triggered by time.

Run the simulation. Listen to the audio signal with the reverberation parameters set to Location A.
After 5 seconds, the switches change to the reverberation parameters of Location B.

 Trigger Reverberation Parameters
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Model Engine Noise

In this model, the Wavetable Synthesizer block is used to synthesize realistic engine noise. Such a
system may be found in a vehicle where artificial engine noise enhancement is desired. The
wavetable sample is a real-world engine recorded at an unspecified RPM.

1. Run the simulation. Listen to the engine sound output from the Wavetable Synthesizer.

2. Tune the RPM source to adjust the perceived RPM of the generated engine sound. The RPM source
is lowpass smoothed using a Biquad filter, so that the engine sound ramps in a realistic fashion.
Visualize the RPM source before and after smoothing on a Scope.
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3. The tuning factor can be used to increase or decrease the overall range of output frequencies. This
is used because the wavetable sample RPM is unknown and the sound range might require
calibration.

 Model Engine Noise
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Use Octave Filter Bank to Create Flanging Chorus Effect for
Guitar Layers (Overdubs)

Examine the Octave Filter Bank block in a Simulink® model. Apply octave band compression and
reverb to create a flanging chorus effect on the guitar signal. Use the processed signal as an overdub
layer to enhance your guitar recordings.

Using the Octave Filter Bank block allows you to separate the audio signal into multiple frequency
bands and process each band individually. In this model example, you split a guitar recording into 5
octave bands and apply compression and reverb to each band separately to create a flanging chorus
overdub layer for your recording project.

1. Double-click the Octave Filter Bank block to view its parameters. Notice the Bands as separate
output ports box is checked. This creates a direct output on the block for each filter in the bank. The
Octave ratio is also set to Base two (musical scale). To see the magnitude response of the filters in
the bank, click the View Filter Response button.

2. Run the model.

3. Tune parameters on the Reverberator and Compressor blocks to hear the effects on your audio
device and see the effect on the Spectrum Analyzer display. Switch between listening to the Original
Signal and the Filtered (Processed) Signal by double-clicking the Manual Switch (Simulink) block.

4. This Simulink® model can be used to provide overdub guitar layers in your digital audio
workstation (DAW) recording projects. Uncomment the To Multimedia File block to save your
Filtered (Processed) Signal audio to a file. In your DAW session, pan the Original Signal to the
left side of the stereo-field and pan the Filtered (Processed) Signal to the right side of the stereo-
field. This creates a wide, lush stereo image and adds depth and warmth to your guitar track.
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Decompose Signal using Gammatone Filter Bank Block

Use the Gammatone Filter Bank block to decompose a signal by passing it through a bank of
gammatone filters.

Connect the blocks as shown in the model.

Use the Random Source block to generate the signal and observe the output of the Gammatone Filter
Bank block using the Spectrum Analyzer Block. Configure the Gammatone Filter Bank by setting the
block parameter as:

• Frequency range (Hz) — [50 8000]
• Number of filters — 32
• Inherit sample rate from input — off
• Input sample rate (Hz) — 16000
• Bands as separate output ports — off

Run the model and select the Spectrum Analyzer Block to view the output of the Gammatone Filter
Bank block.
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See Also

Related Examples
• “Visualize Filter Response of Multiband Parametric Equalizer Block” on page 17-54

 Decompose Signal using Gammatone Filter Bank Block
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Visualize Filter Response of Multiband Parametric Equalizer
Block

Perform multiband parametric equalization independently across each channel of an input using
specified center frequencies, gains, and quality factors.

Connect the Multiband Parametric EQ block to an audio input as shown in this model.

Configure the Multiband Parametric Equalizer block by setting its parameters as:

• EQ order — 6
• Number of bands — 3
• Frequencies (Hz) — [100 390 800]
• Peak gains (dB) — [3 -5 3]
• Quality factors — [2 2 2]
• Input sample rate (Hz) — 44100

Run the model and click the Visualize filter response button to plot the filter response in magnitude
(dB) vs. frequency (Hz).
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Use the knobs to change frequency and gain and observe the changing response. For instance,
change Knob 5 to set the peak gain of the third frequency to 9 dB and observe the filter response.

You can also toggle the switch to listen to either the original or the filtered signal.

See Also
Multiband Parametric EQ
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Related Examples
• “Decompose Signal using Gammatone Filter Bank Block” on page 17-52
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Detect Music in Simulink Using YAMNet

The YAMNet network requires you to preprocess and extract features from audio signals by
converting them to the sample rate the network was trained on (16e3 Hz), and then extracting
overlapping mel spectrograms. The Sound Classifier block does the required preprocessing and
feature extraction that is necessary to match the preprocessing and feature extraction used to train
YAMNet.

To use YAMNet, a pretrained YAMNet network must be installed in a location on the MATLAB® path.
If a pretrained network is not installed, run the yamnetGraph function and the software provides a
download link. Click the link and unzip the file to a location on the MATLAB path.

Alternatively, execute the following commands to download and unzip the YAMNet model to your
temporary directory.

downloadFolder = fullfile(tempdir,'YAMNetDownload');
loc = websave(downloadFolder,'https://ssd.mathworks.com/supportfiles/audio/yamnet.zip');
YAMNetLocation = tempdir;
unzip(loc,YAMNetLocation)
addpath(fullfile(YAMNetLocation,'yamnet'))

Get all music sounds in the AudioSet ontology. The ontology covers a wide range of everyday sounds,
from human and animal sounds to natural and environmental sounds and to musical and
miscellaneous sounds. Use the yamnetGraph function to obtain a graph of the AudioSet ontology and
a list of all sounds supported by YAMNet. The dfsearch function returns a vector of 'Music'
sounds in the order of their discovery using depth-first search.

[ygraph, allSounds] = yamnetGraph;
musicSounds = dfsearch(ygraph,"Music");

Find the location of these musical sounds in the list of supported sounds.

[~,musicIndices] = intersect(allSounds,musicSounds);

The detectMusic model detects the musical sounds in input audio. Open and run the model. The
model starts by reading in an audio signal to classify using two From Multimedia File blocks. The first
block reads in a musical sound signal and the second block reads in an ambiance signal that is not
music. Both signals have a sample rate of 44100 Hz and contain 441 samples per channel. Using the
Manual Switch (Simulink) block, you can choose one of the two signals.

The Sound Classifier block in the model detects the scores and labels of the input audio. The Selector
(Simulink) block in the model picks the scores related to music using the vector of indices given by
musicIndices. If the maximum value of these scores is greater than 0.2, then the score is related to
music. The Scope (Simulink) block plots the maximum value of the score. The Activation dial in the
model shows this value as well. Using the Audio Device Writer block, confirm that you hear music
when the plot shows a score greater than 0.2

open_system("detectMusic.slx")
sim("detectMusic.slx")
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close_system("detectMusic.slx",0)

See Also
Functions
yamnetGraph | dfsearch

Blocks
Sound Classifier | From Multimedia File | Manual Switch | Selector | Scope | Audio Device Writer

Related Examples
• “Detect Air Compressor Sounds in Simulink Using YAMNet” on page 17-62
• “Compare Sound Classifier block with Equivalent YAMNet blocks” on page 17-60
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Compare Sound Classifier block with Equivalent YAMNet blocks

The Sound Classifier block is equivalent to the cascade of the YAMNet Preprocess block and YAMNet
block. The model in this example compares the two implementations and shows their equivalence.

The input to the model is a single-channel audio signal. The signal has a sample rate of 44100 Hz and
contains 441 samples per channel. The first branch of the model contains the Sound Classifier block.
The second branch of the model contains the YAMNet Preprocess block followed by the YAMNet
block.

To use these blocks, a YAMNet pretrained network must be installed in a location on the MATLAB®
path. If a pretrained network is not installed, then open and run the model. The software provides a
download link. To download the network, click the link and unzip the file to a location on the MATLAB
path.

Alternatively, execute the following commands to download and unzip the YAMNet model to your
temporary directory.

downloadFolder = fullfile(tempdir,'YAMNetDownload');
loc = websave(downloadFolder,'https://ssd.mathworks.com/supportfiles/audio/yamnet.zip');
YAMNetLocation = tempdir;
unzip(loc,YAMNetLocation)
addpath(fullfile(YAMNetLocation,'yamnet'))

Open and run the model. The Maximum block on each branch computes the maximum value of the
vector of music scores predicted on each branch. Plot these maximum values on the Scope block and
confirm if they match. Similarly, confirm the equivalence in sound labels shown by the Display blocks.

open_system("compareblocks.slx")
sim("compareblocks.slx")
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close_system("compareblocks.slx",0)

See Also
Blocks
Sound Classifier | YAMNet Preprocess | YAMNet | From Multimedia File | Maximum | Scope | Audio
Device Writer

Related Examples
• “Detect Music in Simulink Using YAMNet” on page 17-57
• “Detect Air Compressor Sounds in Simulink Using YAMNet” on page 17-62
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Detect Air Compressor Sounds in Simulink Using YAMNet

This example shows how to use a pretrained network obtained from transfer learning within a
Simulink® model to classify audio signals obtained from an air compressor.

The network is pretrained using a data set that contains recordings from air compressors. The data
set is classified into one healthy state and seven faulty states, for a total of eight classes. For more
information on training, see “Transfer Learning Using YAMNet”.

To download this pretrained network and a set of air compressor sounds to detect, run the following
commands. These commands download and unzip the files to a location on the MATLAB® path. The
airCompressorNet.mat file stores the pretrained network.

url = 'https://ssd.mathworks.com/supportfiles/audio/YAMNetTransferLearning.zip';
AirCompressorLocation = tempdir;
dataFolder = fullfile(AirCompressorLocation,'YAMNetTransferLearning');

if ~exist(dataFolder,'dir')
    disp('Downloading pretrained network ...')
    unzip(url,AirCompressorLocation)
end
addpath(fullfile(AirCompressorLocation,'YAMNetTransferLearning'))

Open the detectsound.slx model. Click the Select Compressor State block. The default type
of sound is set to 'Bearing'. The model contains a YAMNet Preprocess block followed by an Image
Classifier (Deep Learning Toolbox) block.

Run the model. The YAMNet Preprocess block generates 96-by-64 sized mel spectrograms from the
input audio. The Image Classifier block uses the airCompressorNet.mat file and classifies the
signal into one of the eight classes the model is trained on. The label of the predicted class is
displayed using the Display block. The scope shows the score of the predicted class and the other
classes.

open_system("detectsound.slx")
sim("detectsound.slx")
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While the simulation is running, you can change the input sound by double clicking the Select
Compressor State block and choosing a type of sound from the drop-down menu.

Select 'Healthy' while the simulation is running. The Display block updates the predicted label and
the Scope block shows the new scores.
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See Also
Image Classifier | YAMNet Preprocess

Related Examples
• “Detect Music in Simulink Using YAMNet” on page 17-57
• “Compare Sound Classifier block with Equivalent YAMNet blocks” on page 17-60
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Design Auditory Filter Bank

Create an auditory filter bank and apply it to a signal in the frequency domain using the Design
Auditory Filter Bank block in Simulink.
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Design Mel Filter Bank

Create a mel filter bank and apply it to a signal in the frequency domain using the Design Mel Filter
Bank block in Simulink.
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Extract Auditory Spectrogram

Extract an auditory spectrogram from a signal using the Auditory Spectrogram block in Simulink.

17 Block Example Repository

17-70



 Extract Auditory Spectrogram

17-71



Extract Mel Spectrogram

Extract the mel spectrogram from an audio signal using the Mel Spectrogram block in Simulink.
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Filter Audio Using Shelving Filter Block

Use the Shelving Filter block to filter an audio signal in Simulink.
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Compare VGGish Embeddings Block with Equivalent VGGish
Blocks

The VGGish Embeddings block is equivalent to the cascade of the VGGish Preprocess block and
VGGish block. The model in this example compares the two implementations and shows their
equivalence.

To use these blocks, a VGGish pretrained network must be installed in a location on the MATLAB®
path. If a pretrained network is not installed, then open and run the model. The software provides a
download link. To download the network, click the link and unzip the file to a location on the MATLAB
path.
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Extract GTCC from Audio in Simulink

Extract gammatone cepstral coefficients and their delta features using the Auditory Spectrogram,
Cepstral Coefficients, and Audio Delta blocks in Simulink.

 Extract GTCC from Audio in Simulink
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Include an Audio Plugin in Simulink
This example shows how to use the Audio Plugin block to include an audio plugin in a Simulink
model.

Generate Block from Plugin
Place the Audio Plugin block in a Simulink model. You can find the block in the Audio Toolbox / User-
Defined Functions library.

Double-click the block to open the dialog box. In the Audio plugin field, enter the plugin
audiopluginexample.Echo. To inspect the source code for this plugin, enter edit
audiopluginexample.Echo in the command line. Optionally, specify the name and location of the
generated System object class file using the Generated file name field.

Click OK to generate a block with the same functionality as the plugin. This also generates the
System object class file and places it in the current directory by default. The file must be on the
MATLAB path for the generated block to work.

Double-clicking the new block opens the parameter dialog box, where you can view and edit the
plugin parameters. You can also choose to specify the tunable parameters through additional input
ports on the block.
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Use Generated Audio Plugin Block in Model

Use the plugin in a model to process an audio signal and listen to the results.

See Also

 Include an Audio Plugin in Simulink
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Use VGGish Embeddings for Deep Learning in Simulink

This example shows how to use a simple neural network in Simulink® to classify audio signals from
their VGGish feature embeddings using the VGGish Embeddings and Predict (Deep Learning Toolbox)
blocks.

The network is a small fully connected network that was trained on VGGish feature embeddings
extracted from air compressor audio signals. The air compressor data set consists of recordings from
air compressors in a healthy state or one of seven faulty states. For information on how the network
was trained, see “Use VGGish Embeddings for Deep Learning”.

While the simulation is running, you can change the input sound by double clicking the Select
Compressor State block and choosing a type of sound from the drop-down menu. After you change
the air compressor sound, see how the predicted class probabilities change.
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Real-Time Parameter Tuning
Parameter tuning is the ability to modify parameters of your audio system in real time while
streaming an audio signal. In algorithm development, tunable parameters enable you to quickly
prototype and test various parameter configurations. In deployed applications, tunable parameters
enable users to fine-tune general algorithms for specific purposes, and to react to changing dynamics.

Audio Toolbox is optimized for parameter tuning in a real-time audio stream. The System objects,
blocks, and audio plugins provide various tunable parameters, including sample rate and frame size,
making them robust tools when used in an audio stream loop.

To optimize your use of Audio Toolbox, package your audio processing algorithm as an audio plugin.
Packaging your audio algorithm as an audio plugin enables you to graphically tune your algorithm
using parameterTuner or Audio Test Bench:

• Audio Test Bench –– Creates a user interface (UI) for tunable parameters, enables you to specify
input and output from your audio stream loop, and provides access to analysis tools such as the
time scope and spectrum analyzer. Packaging your code as an audio plugin also enables you to
quickly synchronize your parameters with MIDI controls.

• parameterTuner –– Creates a UI for tunable parameters that can be used from any MATLAB
programmatic environment. You can customize your parameter controls to render as knobs,
sliders, rocker switches, toggle switches, check boxes, or drop-downs. You can also define a
custom background color, background image, or both. You can then place your audio plugin in an
audio processing loop in a programmatic environment such as a script, and then tune parameters
while the loop executes.

For more information, see “Audio Plugins in MATLAB”.

Other methods to create UIs in MATLAB include:

• App Designer –– Development environment for a large set of interactive controls with support for
2-D plots. See “Create and Run a Simple App Using App Designer” for more information.

• Programmatic workflow –– Use MATLAB functions to define your app element-by-element. This
tutorial uses a programmatic approach.

See “Ways to Build Apps” for a more detailed list of the costs and benefits of the different approaches
to parameter tuning.

Programmatic Parameter Tuning
If you can not package your algorithm as an audio plugin, you can create a tuning UI using basic
MATLAB techniques.

This tutorial contains three files:

1 parameterRef –– Class definition that contains tunable parameters
2 parameterTuningUI –– Function that creates a UI for parameter tuning
3 AudioProcessingScript –– Script for audio processing

Inspect the diagram for an overview of how real-time parameter tuning is implemented. To implement
real-time parameter tuning, walk through the example for explanations and step-by-step instructions.
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1. Create Class with Tunable Parameters

To tune a parameter in an audio stream loop using a UI, you need to associate the parameter with the
position of a UI widget. To associate a parameter with a UI widget, make the parameter an object of a
handle class. Objects of handle classes are passed by reference, meaning that you can modify the
value of the object in one place and use the updated value in another. For example, you can modify
the value of the object using a slider on a figure and use the updated value in an audio processing
loop.

Save the parameterRef class definition file to your current folder.

classdef parameterRef < handle
    properties
        name
        value
    end
end

Objects of the parameterRef class have a name and value. The name is for display purposes on the
UI. You use the value for tuning.

2. Create Function to Generate a UI

The parameterTuningUI function accepts your parameter, specified as an object handle, and the
desired range. The function creates a figure with a slider associated with your parameter. The nested
function, slidercb, is called whenever the slider position changes. The slider callback function maps
the position of the slider to the parameter range, updates the value of the parameter, and updates the
text on the UI. You can easily modify this function to tune multiple parameters in the same UI.
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Save parameterTuningUI to Current Folder

Open parameterTuningUI and save it to your current folder.

function parameterTuningUI(parameter,parameterMin,parameterMax)

% Map slider position to specified range
rangeVector = linspace(parameterMin,parameterMax,1001);
[~,idx] = min(abs(rangeVector-parameter.value));
initialSliderPosition = idx/1000;

% Main figure
hMainFigure = figure( ...
    'Name','Parameter Tuning', ...
    'MenuBar','none', ...
    'Toolbar','none', ...
    'HandleVisibility','callback', ...
    'NumberTitle','off', ...
    'IntegerHandle','off');
    
    % Slider to tune parameter
    uicontrol('Parent',hMainFigure, ...
        'Style','slider', ...
        'Position',[80,205,400,23], ...
        'Value',initialSliderPosition, ...
        'Callback',@slidercb);
    
    % Label for slider
    uicontrol('Parent',hMainFigure, ...
        'Style','text', ...
        'Position',[10,200,70,23], ...
        'String',parameter.name);
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    % Display current parameter value
    paramValueDisplay = uicontrol('Parent',hMainFigure, ...
        'Style','text', ...
        'Position', [490,205,50,23], ...
        'BackgroundColor','white', ...
        'String',parameter.value);
    
    % Update parameter value if slider value changed
    function slidercb(slider,~)
        val = get(slider,'Value');
        rangeVectorIndex = round(val*1000)+1;
        parameter.value = rangeVector(rangeVectorIndex);
        set(paramValueDisplay,'String',num2str(parameter.value));
    end
end

3. Create Script for Audio Processing

The audio processing script:

A Creates input and output objects for an audio stream loop.
B Creates an object of the handle class, parameterRef, that stores your parameter name and

value.
C Calls the tuning UI function, parameterTuningUI, with your parameter and the parameter

range.
D Processes the audio in a loop. You can tune your parameter, x, in the audio stream loop.

Run AudioProcessingScript

Open AudioProcessingScript, save it to your current folder, and then run the file.

%% A. Create input and output objects
fileReader = dsp.AudioFileReader( ...
    'speech_dft.mp3', ...
    'SamplesPerFrame',64, ...
    'PlayCount',3);
deviceWriter = audioDeviceWriter( ...
    'SampleRate',fileReader.SampleRate);

%% B. Create an object of a handle class
x = parameterRef;
x.name = 'gain';
x.value = 2.5;

%% C. Open the UI function for your parameter
parameterTuningUI(x,0,5);

%% D. Process audio in a loop
while ~isDone(fileReader)
    audioIn = fileReader();
    
    drawnow limitrate
    audioOut = audioIn.*x.value;
    
    deviceWriter(audioOut);
end
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% Release input and output objects
release(fileReader)
release(deviceWriter)

While the script runs, move the position of the slider to update your parameter value and hear the
result.

See Also
Audio Test Bench | parameterTuner

More About
• “Real-Time Audio in MATLAB”
• “Audio Plugins in MATLAB”
• “Develop, Analyze, and Debug Plugins In Audio Test Bench” on page 11-2
• “Create and Run a Simple App Using App Designer”
• “Ways to Build Apps”
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Tips and Tricks for Plugin Authoring
To author your algorithm as an audio plugin, you must conform to the audio plugin API. When
authoring audio plugins in the MATLAB environment, keep these common pitfalls and best practices
in mind.

To learn more about audio plugins in general, see “Audio Plugins in MATLAB”.

Avoid Disrupting the Event Queue in MATLAB
When the Audio Test Bench runs an audio plugin, it sequentially:

1 Calls the reset method
2 Sets tunable properties associated with parameters
3 Calls the process method

While running, the Audio Test Bench calls in a loop the process method and then the set methods
for tuned properties. The plugin API does not specify the order that the tuned properties are set.

It is possible to disrupt the normal methods timing by interrupting the event queue. Common ways to
accidentally interrupt the event queue include using a plot or drawnow function.

Note plot and drawnow are only available in the MATLAB environment. plot and drawnow cannot
be included in generated plugins. See “Separate Code for Features Not Supported for Plugin
Generation” on page 19-4 for more information.

In the following code snippet, the gain applied to the left and right channels is not the same if the
associated Gain parameter is tuned during the call to process:

...
L = plugin.Gain*in(:,1);
drawnow
R = plugin.Gain*in(:,2);
out = [L,R];
...

See Full Code
classdef badPlugin < audioPlugin
    properties
        Gain = 0.5;
    end
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    properties (Constant)
        PluginInterface = audioPluginInterface(audioPluginParameter('Gain'));
    end
    methods
        function out = process(plugin,in)

            L = plugin.Gain*in(:,1);
            
            drawnow
            
            R = plugin.Gain*in(:,2);
            
            out = [L,R];
        end
        function set.Gain(plugin,val)
            plugin.Gain = val;
        end
    end
end

The author interrupts the event queue in the code snippet, causing the set methods of properties
associated with parameters to be called while the process method is in the middle of execution.

Depending on your processing algorithm, interrupting the event queue can lead to inconsistent and
buggy behavior. Also, the set method might not be explicit, which can make the issue difficult to
track down. Possible fixes for the problem of event queue disruption include saving properties to local
variables, and moving the queue disruption to the beginning or end of the process method.

Save Properties to Local Variables

You can save tunable property values to local variables at the start of your processing. This technique
ensures that the values used during the process method are not updated within a single call to
process. Because accessing the value of a local variable is cheaper than accessing the value of a
property, saving properties to local variables that are accessed multiple times is a best practice.

...
gain = plugin.Gain;
L = gain*in(:,1);
drawnow
R = gain*in(:,2);
out = [L,R];
...
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See Full Code
classdef goodPlugin < audioPlugin
    properties
        Gain = 0.5;
    end
    properties (Constant)
        PluginInterface = audioPluginInterface(audioPluginParameter('Gain'));
    end
    methods
        function out = process(plugin,in)
            gain = plugin.Gain;
            
            L = gain*in(:,1);
            
            drawnow
            
            R = gain*in(:,2);
            
            out = [L,R];
        end
        function set.Gain(plugin,val)
            plugin.Gain = val;
        end
    end
end

Move Queue Disruption to Bottom or Top of Process Method

You can move the disruption to the event queue to the bottom or top of the process method. This
technique ensures that property values are not updated in the middle of the call.

...
L = plugin.Gain*in(:,1);
R = plugin.Gain*in(:,2);
out = [L,R];
drawnow
...

See Full Code
classdef goodPlugin < audioPlugin
    properties
        Gain = 0.5;
    end
    properties (Constant)
        PluginInterface = audioPluginInterface(audioPluginParameter('Gain'));
    end
    methods
        function out = process(plugin,in)
            
            L = plugin.Gain*in(:,1);
            
            R = plugin.Gain*in(:,2);
            
            out = [L,R];
            
            drawnow
        end
        function set.Gain(plugin,val)
            plugin.Gain = val;
        end
    end
end

Separate Code for Features Not Supported for Plugin Generation
The MATLAB environment offers functionality not supported for plugin generation. You can mark
code to ignore during plugin generation by placing it inside a conditional statement by using
coder.target.
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...
    if coder.target('MATLAB')
    ...
    end
...

If you generate the plugin using generateAudioPlugin, code inside the statement if
coder.target('MATLAB') is ignored.

For example, timescope is not enabled for code generation. If you run the following plugin in
MATLAB, you can use the visualize function to open a time scope that plots the input and output
power per frame.

See Full Example Code
classdef  pluginWithMATLABOnlyFeatures < audioPlugin
    properties
        Threshold = -10;
    end
    properties (Access = private)
        aCompressor
        aScope
        SamplesPerFrame = 1;
    end
    properties (Constant)
        PluginInterface = audioPluginInterface( ...
            audioPluginParameter('Threshold','Mapping',{'lin',-60,20}));
    end
    methods
        function plugin = pluginWithMATLABOnlyFeatures
            plugin.aCompressor = compressor;
            setup(plugin.aCompressor,[0,0])
        end
        function out = process(plugin,in)
            out = plugin.aCompressor(in);
            
            % The contents of this if-statement are ignored during plugin
            % generation.
            if coder.target('MATLAB')
                if ~isempty(plugin.aScope) && isvalid(plugin.aScope)
                    numSamples = size(in,1);
                    
                    % The time scope object is not enabled for
                    % variable-size signals. Call release if the samples
                    % per frame is changed.
                    % Because this code is intended for use in MATLAB only,
                    % it is okay to call release on the time scope object.
                    % Do not call release on a System object in generated
                    % code.
                    if plugin.SamplesPerFrame(1) ~= numSamples
                        release(plugin.aScope)
                        plugin.SamplesPerFrame = numSamples;
                    end
                    
                    power = 20*log10(mean(var(in)))*ones(numSamples,1);
                    adjustedPower = 20*log10(mean(var(out)))*ones(numSamples,1);
                    plugin.aScope([power,adjustedPower]);
                end
            end
        end
        function reset(plugin)
            fs = getSampleRate(plugin);
            plugin.aCompressor.SampleRate = fs;
            reset(plugin.aCompressor)
            
            % The contents of this if-statement are ignored during plugin
            % genderation.
            if coder.target('MATLAB')
                if ~isempty(plugin.aScope)
                    % Because this code is intended for use in MATLAB only,
                    % it is okay to call release on the time scope object.
                    % Do not call release on a System object in generated
                    % code.
                    release(plugin.aScope)
                    plugin.aScope.SampleRate = fs;
                    plugin.aScope.BufferLength = 2*fs;

 Tips and Tricks for Plugin Authoring

19-5



                end
            end
        end
        function visualize(plugin)
            % Visualization function. This function is public in the MATLAB
            % environment. Because the plugin does not call this function
            % directly, the function is not part of the code generated by
            % generateAudioPlugin.
            
            % Create a time scope object for visualization in the MATLAB
            % environment.
            plugin.aScope = timescope( ...
                'SampleRate',getSampleRate(plugin), ...
                'TimeSpan',1, ...
                'YLimits',[-40,0], ...
                'BufferLength',2*getSampleRate(plugin), ...
                'TimeSpanOverrunAction','Scroll', ...
                'YLabel','Power (dB)');
            show(plugin.aScope)
        end
        function set.Threshold(plugin,val)
            plugin.Threshold = val;
            plugin.aCompressor.Threshold = val;
        end
    end
end

Implement Reset Correctly
A common error in audio plugin authoring is misusing the reset method. Valid uses of the reset
method include:

• Clearing state
• Passing down calls to reset to component objects
• Updating properties which depend on sample rate

Invalid use of the reset method includes setting the value of any properties associated with
parameters. Do not use your reset method to set properties associated with parameters to their initial
conditions. Directly setting a property associated with a parameter causes the property to be out of
sync with the parameter. For example, the following plugin is an example of incorrect use of the reset
method.
classdef badReset < audioPlugin
    properties
        Gain = 1;
    end
    properties (Constant)
        PluginInterface = audioPluginInterface(audioPluginParameter('Gain'));
    end
    methods
        function out = process(plugin,in)
            out = in*plugin.Gain;
        end
        function reset(plugin) % <-- Incorrect use of reset method.
            plugin.Gain = 1;   % <-- Never set values of a property that is
        end                    %     associated with a plugin parameter.
    end
end

Implement Plugin Composition Correctly
If your plugin is composed of other plugins, then you must pass down the sample rate and calls to
reset to the component plugins. Call setSampleRate in the reset method to pass down the sample
rate to the component plugins. To tune parameters of the component plugins, create an audio plugin
interface in the composite plugin for tunable parameters of the component plugins. Then pass down
the values in the set methods for the associated properties. The following is an example of plugin
composition that was constructed using best practices.
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Plugin Composition Using Basic Plugins
classdef compositePlugin < audioPlugin
    properties
        PhaserQ  = 1.6;
        EchoGain = 0.5;
    end
    properties (Access = private)
        aEcho
        aPhaser
    end
    properties (Constant)
        PluginInterface = audioPluginInterface( ...
            audioPluginParameter('PhaserQ', ...
                'DisplayName','Phaser Q', ...
                'Mapping',{'lin',0.5, 25}), ...
            audioPluginParameter('EchoGain', ...
                'DisplayName','Gain'));
    end
    methods
        function plugin = compositePlugin
            % Construct your component plugins in the composite plugin's
            % constructor.
            plugin.aPhaser = audiopluginexample.Phaser;
            plugin.aEcho   = audiopluginexample.Echo;
        end
        function out = process(plugin,in)
            % Call the process method of your component plugins inside the
            % call to the process method of your composite plugin.
            x = process(plugin.aPhaser,in);
            y = process(plugin.aEcho,x);
            out = y;
        end
        function reset(plugin)
            % Use the setSampleRate method to set the sample rate of
            % component plugins and pass the call to reset down.
            fs = getSampleRate(plugin);
            
            setSampleRate(plugin.aPhaser, fs)
            setSampleRate(plugin.aEcho, fs)
            
            reset(plugin.aPhaser)
            reset(plugin.aEcho);
        end
        % Use the set method of your properties to pass down property
        % values to your component plugins.
        function set.PhaserQ(plugin,val)
            plugin.PhaserQ = val;
            plugin.aPhaser.QualityFactor = val;
        end
        function set.EchoGain(plugin,val)
            plugin.EchoGain = val;
            plugin.aEcho.Gain = val;
        end
    end
end

Plugin composition using System objects has these key differences from plugin composition using
basic plugins.

• Immediately call setup on your component System object after it is constructed. Construction
and setup of the component object occurs inside the constructor of the composite plugin.

• If your component System object requires sample rate information, then it has a sample rate
property. Set the sample rate property in the reset method.

Plugin Composition Using System Objects
classdef compositePluginWithSystemObjects < audioPlugin
    properties
        CrossoverFrequency  = 100;
        CompressorThreshold = -40;
    end
    properties (Access = private)
        aCrossoverFilter
        aCompressor
    end
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    properties (Constant)
        PluginInterface = audioPluginInterface( ...
            audioPluginParameter('CrossoverFrequency', ...
                'DisplayName','Crossover Frequency', ...
                'Mapping',{'lin',50, 200}), ...
            audioPluginParameter('CompressorThreshold', ...
                'DisplayName','Compressor Threshold', ...
                'Mapping',{'lin',-100,0}));
    end
    methods
        function plugin = compositePluginWithSystemObjects
            % Construct your component System objects within the composite
            % plugin's constructor. Call setup immediately after
            % construction. 
            % 
            % The audio plugin API requires plugins to declare the number
            % of input and output channels in the plugin interface. This
            % plugin uses the default 2-in 2-out configuration. Call setup
            % with a sample input that has the same number of channels as
            % defined in the plugin interface.
            %
            sampleInput = zeros(1,2);
            
            plugin.aCrossoverFilter = crossoverFilter;
            setup(plugin.aCrossoverFilter,sampleInput)
            
            plugin.aCompressor = compressor;
            setup(plugin.aCompressor,sampleInput)
        end
        function out = process(plugin,in)
            % Call your component System objects inside the call to
            % process of your composite plugin.
            [band1,band2] = plugin.aCrossoverFilter(in);
            band1Compressed = plugin.aCompressor(band1);
            out = band1Compressed + band2;
        end
        function reset(plugin)
            % Set the sample rate properties of your component System
            % objects.
            fs = getSampleRate(plugin);
            
            plugin.aCrossoverFilter.SampleRate = fs;
            plugin.aCompressor.SampleRate = fs;
            
            reset(plugin.aCrossoverFilter)
            reset(plugin.aCompressor);
        end
        % Use the set method of your properties to pass down property
        % values to your component System objects.
        function set.CrossoverFrequency(plugin,val)
            plugin.CrossoverFrequency = val;
            plugin.aCrossoverFilter.CrossoverFrequencies = val;
        end
        function set.CompressorThreshold(plugin,val)
            plugin.CompressorThreshold = val;
            plugin.aCompressor.Threshold = val;
        end
    end
end

Address "A set method for a non-Dependent property should not
access another property" Warning in Plugin
It is recommended that you suppress the warning when authoring audio plugins.

The following code snippet follows the plugin authoring best practice for processing changes in
parameter property Cutoff.
classdef highpassFilter < audioPlugin
...
    properties (Constant)
        PluginInterface = audioPluginInterface( ...
            audioPluginParameter('Cutoff', ...
            'Label','Hz',...
            'Mapping',{'log',20,2000}));
    end
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    methods
        function y = process(plugin,x)
            [y,plugin.State] = filter(plugin.B,plugin.A,x,plugin.State);
        end

        function set.Cutoff(plugin,val)
            plugin.Cutoff = val;
            [plugin.B,plugin.A] = highpassCoeffs(plugin,val,getSampleRate(plugin)); % <<<< warning occurs here
        end
    end
...
end

See Full Code Example
classdef highpassFilter < audioPlugin
    %-----------------------------------------------------------------------
    % Public Properties - End user interacts with these
    %-----------------------------------------------------------------------
    properties
        Cutoff = 20;
    end
    
    %-----------------------------------------------------------------------
    % Private Properties - Used for internal storage
    %-----------------------------------------------------------------------
    properties (Access = private)
        State = zeros(2);
        B     = zeros(1,3);
        A     = zeros(1,3);
    end
    
    %-----------------------------------------------------------------------
    % Constant Properties - Used to define plugin interface
    %-----------------------------------------------------------------------
    properties (Constant)
        PluginInterface = audioPluginInterface( ...
            audioPluginParameter('Cutoff', ...
            'Label','Hz', ...
            'Mapping',{'log',20,2000}));
    end
    
    methods
        %-------------------------------------------------------------------
        % Main processing function
        %-------------------------------------------------------------------
        function y = process(plugin,x)
            [y,plugin.State] = filter(plugin.B,plugin.A,x,plugin.State);
        end
        
        %-------------------------------------------------------------------
        % Set Method
        %-------------------------------------------------------------------
        function set.Cutoff(plugin,val)
            plugin.Cutoff = val;
            [plugin.B,plugin.A] = highpassCoeffs(plugin,val,getSampleRate(plugin)); % <<<< warning occurs here
        end
        
        %-------------------------------------------------------------------
        % Reset Method
        %-------------------------------------------------------------------
        function reset(plugin)
            plugin.State = zeros(2);
            [plugin.B,plugin.A] = highpassCoeffs(plugin,plugin.Cutoff,getSampleRate(plugin)); 
        end
    end
    methods (Access = private)
        %-------------------------------------------------------------------
        % Calculate Filter Coefficients
        %-------------------------------------------------------------------
        function [B,A] = highpassCoeffs(~,fc,fs)
            w0    = 2*pi*fc/fs;
            alpha = sin(w0)/sqrt(2);
            cosw0 = cos(w0);
            norm  = 1/(1+alpha);
            B     = (1 + cosw0)*norm * [.5 -1 .5];
            A     = [1 -2*cosw0*norm (1 - alpha)*norm];
        end
    end
end
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The highpassCoeffs function might be expensive, and should be called only when necessary. You
do not want to call highpassCoeffs in the process method, which runs in the real-time audio
processing loop. The logical place to call highpassCoeffs is in set.Cutoff. However, mlint
shows a warning for this practice. The warning is intended to help you avoid initialization order
issues when saving and loading classes. See “Avoid Property Initialization Order Dependency” for
more details. The solution recommended by the warning is to create a dependent property with a get
method and compute the value there. However, following the recommendation complicates the design
and pushes the computation back into the real-time processing method, which you are trying to avoid.

You might also incur the warning when correctly implementing plugin composition. For an example of
a correct implementation of composition, see “Implement Plugin Composition Correctly” on page 19-
6.

Use System Object That Does Not Support Variable-Size Signals
The audio plugin API requires audio plugins to support variable-size inputs and outputs. For a partial
list of System objects that support variable-size signals, see “Variable-Size Signal Support DSP
System Objects”. You might encounter issues if you attempt to use objects that do not support
variable-size signals in your plugin.

For example, dsp.AnalyticSignal does not support variable-size signals. The
BrokenAnalyticSignalTransformer plugin uses a dsp.AnalyticSignal object incorrectly and
fails the validateAudioPlugin test bench:

validateAudioPlugin BrokenAnalyticSignalTransformer

Checking plug-in class 'BrokenAnalyticSignalTransformer'... passed.
Generating testbench file 'testbench_BrokenAnalyticSignalTransformer.m'... done.
Running testbench... 
Error using dsp.AnalyticSignal/parenReference
Changing the size on input 1 is not allowed without first calling the release() method.

Error in BrokenAnalyticSignalTransformer/process (line 13)
                analyticSignal = plugin.Transformer(in);

Error in testbench_BrokenAnalyticSignalTransformer (line 61)
        o1 = process(plugin, in(:,1));

Error in validateAudioPlugin

See BrokenAnalyticSignalTransformer Code

classdef BrokenAnalyticSignalTransformer < audioPlugin
    properties (Access = private)
        Transformer
    end
    properties (Constant)
        PluginInterface = audioPluginInterface('InputChannels',1,'OutputChannels',2);
    end
    methods
        function plugin = BrokenAnalyticSignalTransformer
            plugin.Transformer = dsp.AnalyticSignal;
        end
        function out = process(plugin,in)
                analyticSignal = plugin.Transformer(in);
                realPart = real(analyticSignal);
                imaginaryPart = imag(analyticSignal);
                out = [realPart,imaginaryPart];
        end
    end
end

If you want to use the functionality of a System object that does not support variable-size signals, you
can buffer the input and output of the System object, or always call the object with one sample.

19 Tips and Tricks for Plugin Authoring

19-10



Always Call the Object with One Sample

You can create a loop around your call to an object. The loop iterates for the number of samples in
your variable frame size. The call to the object inside the loop is always a single sample.

See Full Code Example
classdef ExpensiveAnalyticSignalTransformer < audioPlugin
    properties (Access = private)
        Transformer
    end
    properties (Constant)
        PluginInterface = audioPluginInterface('InputChannels',1,'OutputChannels',2);
    end
    methods
        function plugin = ExpensiveAnalyticSignalTransformer
            plugin.Transformer = dsp.AnalyticSignal;
        end
        function out = process(plugin,in)
            analyticSignal = complex(zeros(size(in,1),1),0);
            for i = 1:size(in,1)
                analyticSignal(i,:) = plugin.Transformer(in(i,1));
            end
            out = [real(analyticSignal),imag(analyticSignal)];
        end
    end
end

Note Depending on your implementation and the particular object, calling an object sample by
sample in a loop might result in significant computational cost.

Buffer Input and Output of Object

You can buffer the input to your object to a consistent frame size, and then buffer the output of your
object back to the original frame size. The dsp.AsyncBuffer System object is well-suited for this
task.
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See Full Code Example
classdef DelayedAnalyticSignalTransformer < audioPlugin
    properties (Access = private)
        Transformer
        InputBuffer
        OutputBuffer
    end
    properties (Constant)
        PluginInterface = audioPluginInterface('InputChannels',1,'OutputChannels',2);
        MinSampleDelay = 256;
    end
    methods
        function plugin = DelayedAnalyticSignalTransformer
            plugin.Transformer = dsp.AnalyticSignal;
            setup(plugin.Transformer,ones(plugin.MinSampleDelay,1));
            
            plugin.InputBuffer = dsp.AsyncBuffer;
            setup(plugin.InputBuffer,1);
            
            plugin.OutputBuffer = dsp.AsyncBuffer;
            setup(plugin.OutputBuffer,[1,1]);
        end
        function out = process(plugin,in)
            write(plugin.InputBuffer,in);
            
            while plugin.InputBuffer.NumUnreadSamples >= plugin.MinSampleDelay
                x = read(plugin.InputBuffer,plugin.MinSampleDelay);
                analyticSignal = plugin.Transformer(x(1:plugin.MinSampleDelay,:));
                write(plugin.OutputBuffer,[real(analyticSignal),imag(analyticSignal)]);
            end
            
            if plugin.OutputBuffer.NumUnreadSamples >= size(in,1)
                out = read(plugin.OutputBuffer,size(in,1));
            else
                out = zeros(size(in,1),2);
            end
        end
        function reset(plugin)
            reset(plugin.Transformer)
            reset(plugin.InputBuffer)
            reset(plugin.OutputBuffer)
        end
    end
end

Note Use of the asynchronous buffering object forces a minimum latency of your specified frame
size.

Using Enumeration Parameter Mapping
It is often useful to associate a property with a set of strings or character vectors. However,
restrictions on plugin generation require cached values, such as property values, to have a static size.
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To work around this issue, you can use a separate enumeration class that maps the strings to the
enumerations, as described in the audioPluginParameter documentation.

Alternatively, if you want to avoid writing an enumeration class and keep all your code in one file, you
can use a dependent property to map your parameter names to a set of values. In this scenario, you
map your enumeration value to a value that you can cache.

See Full Code Example
classdef pluginWithEnumMapping < audioPlugin
    properties (Dependent)
        Mode = '+6 dB';
    end
    properties (Access = private)
        pMode = 1; % '+6 dB'
    end
    properties (Constant)
        PluginInterface = audioPluginInterface(...
            audioPluginParameter('Mode',...
                'Mapping',{'enum','+6 dB','-6 dB','silence','white noise'}));
    end
    methods
        function out = process(plugin,in)
            switch (plugin.pMode)
                case 1
                    out = in * 2;
                case 2
                    out = in / 2;
                case 3
                    out = zeros(size(in));
                otherwise % case 4
                    out = rand(size(in)) - 0.5;
            end
        end
        function set.Mode(plugin,val)
            validatestring(val,{'+6 dB','-6 dB','silence','white noise'},'set.Mode','Mode');
            switch val
                case '+6 dB'
                    plugin.pMode = 1;
                case '-6 dB'
                    plugin.pMode = 2;
                case 'silence'
                    plugin.pMode = 3;
                otherwise % 'white noise'
                    plugin.pMode = 4;
            end
        end
        function out = get.Mode(plugin)
            switch plugin.pMode
                case 1
                    out = '+6 dB';
                case 2
                    out = '-6 dB';
                case 3
                    out = 'silence';
                otherwise % case 4
                    out = 'white noise';
            end
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        end
    end
end

See Also

More About
• “Audio Plugins in MATLAB”
• “Audio Plugin Example Gallery” on page 12-2
• “Export a MATLAB Plugin to a DAW”
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Spectral Descriptors

Audio Toolbox™ provides a suite of functions that describe the shape, sometimes referred to as
timbre, of audio. This example defines the equations used to determine the spectral features, cites
common uses of each feature, and provides examples so that you can gain intuition about what the
spectral descriptors are describing.

Spectral descriptors are widely used in machine and deep learning applications, and perceptual
analysis. Spectral descriptors have been applied to a range of applications, including:

• Speaker identification and recognition [21 on page 20-25]
• Acoustic scene recognition [11 on page 20-24] [17 on page 20-24]
• Instrument recognition [22 on page 20-25]
• Music genre classification [16 on page 20-24] [18 on page 20-24]
• Mood recognition [19 on page 20-25] [20 on page 20-25]
• Voice activity detection [5 on page 20-23] [7 on page 20-24] [8 on page 20-24] [10 on page 20-

24] [12 on page 20-24] [13 on page 20-24]

Spectral Centroid

The spectral centroid (spectralCentroid) is the frequency-weighted sum normalized by the
unweighted sum [1 on page 20-23]:

μ1 =
∑k = b1

b2 fk sk

∑k = b1
b2 sk

where

• fk  is the frequency in Hz corresponding to bin k.
• sk is the spectral value at bin k. The magnitude spectrum and power spectrum are both commonly

used.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral centroid.

The spectral centroid represents the "center of gravity" of the spectrum. It is used as an indication of
brightness [2 on page 20-23] and is commonly used in music analysis and genre classification. For
example, observe the jumps in the centroid corresponding to high hat hits in the audio file.

[audio,fs] = audioread('FunkyDrums-44p1-stereo-25secs.mp3');
audio = sum(audio,2)/2;

centroid = spectralCentroid(audio,fs);

subplot(2,1,1)
t = linspace(0,size(audio,1)/fs,size(audio,1));
plot(t,audio)
ylabel('Amplitude')

subplot(2,1,2)
t = linspace(0,size(audio,1)/fs,size(centroid,1));
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plot(t,centroid)
xlabel('Time (s)')
ylabel('Centroid (Hz)')

The spectral centroid is also commonly used to classify speech as voiced or unvoiced [3 on page 20-
23]. For example, the centroid jumps in regions of unvoiced speech.

[audio,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

centroid = spectralCentroid(audio,fs);

subplot(2,1,1)
t = linspace(0,size(audio,1)/fs,size(audio,1));
plot(t,audio)
ylabel('Amplitude')

subplot(2,1,2)
t = linspace(0,size(audio,1)/fs,size(centroid,1));
plot(t,centroid)
xlabel('Time (s)')
ylabel('Centroid (Hz)')
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Spectral Spread

Spectral spread (spectralSpread) is the standard deviation around the spectral centroid [1 on page
20-23]:

μ2 =
∑k = b1

b2 fk− μ1
2sk

∑k = b1
b2 sk

where

• fk  is the frequency in Hz corresponding to bin k.
• sk is the spectral value at bin k. The magnitude spectrum and power spectrum are both commonly

used.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral spread.
• μ1 is the spectral centroid.

The spectral spread represents the "instantaneous bandwidth" of the spectrum. It is used as an
indication of the dominance of a tone. For example, the spread increases as the tones diverge and
decreases as the tones converge.

fs = 16e3;
tone = audioOscillator('SampleRate',fs,'NumTones',2,'SamplesPerFrame',512,'Frequency',[2000,100]);
duration = 5;
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numLoops = floor(duration*fs/tone.SamplesPerFrame);
signal = [];
for i = 1:numLoops
    signal = [signal;tone()];
    if i<numLoops/2
        tone.Frequency = tone.Frequency + [0,50];
    else
        tone.Frequency = tone.Frequency - [0,50];
    end
end

spread = spectralSpread(signal,fs);

subplot(2,1,1)
spectrogram(signal,round(fs*0.05),round(fs*0.04),2048,fs,'yaxis')

subplot(2,1,2)
t = linspace(0,size(signal,1)/fs,size(spread,1));
plot(t,spread)
xlabel('Time (s)')
ylabel('Spread')

Spectral Skewness

Spectral skewness (spectralSkewness) is computed from the third order moment [1 on page 20-
23]:
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μ3 =
∑k = b1

b2 fk− μ1
3sk

μ2
3∑k = b1

b2 sk

where

• fk  is the frequency in Hz corresponding to bin k.
• sk is the spectral value at bin k. The magnitude spectrum and power spectrum are both commonly

used.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral skewness.
• μ1 is the spectral centroid.
• μ2 is the spectral spread.

The spectral skewness measures symmetry around the centroid. In phonetics, spectral skewness is
often referred to as spectral tilt and is used with other spectral moments to distinguish the place of
articulation [4 on page 20-23]. For harmonic signals, it indicates the relative strength of higher and
lower harmonics. For example, in the four-tone signal, there is a positive skew when the lower tone is
dominant and a negative skew when the upper tone is dominant.

fs = 16e3;
duration = 99;
tone = audioOscillator('SampleRate',fs,'NumTones',4,'SamplesPerFrame',fs,'Frequency',[500,2000,2500,4000],'Amplitude',[0,0.4,0.6,1]);

signal = [];
for i = 1:duration
    signal = [signal;tone()];
    tone.Amplitude = tone.Amplitude + [0.01,0,0,-0.01];
end

skewness = spectralSkewness(signal,fs);
t = linspace(0,size(signal,1)/fs,size(skewness,1))/60;

subplot(2,1,1)
spectrogram(signal,round(fs*0.05),round(fs*0.04),round(fs*0.05),fs,'yaxis','power')
view([-58 33])

subplot(2,1,2)
plot(t,skewness)
xlabel('Time (minutes)')
ylabel('Skewness')
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Spectral Kurtosis

Spectral kurtosis (spectralKurtosis) is computed from the fourth order moment [1 on page 20-
23]:

μ4 =
∑k = b1

b2 fk− μ1
4sk

μ2
4∑k = b1

b2 sk

where

• fk  is the frequency in Hz corresponding to bin k.
• sk is the spectral value at bin k. The magnitude spectrum and power spectrum are both commonly

used.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral kurtosis.
• μ1 is the spectral centroid.
• μ2 is the spectral spread.

The spectral kurtosis measures the flatness, or non-Gaussianity, of the spectrum around its centroid.
Conversely, it is used to indicate the peakiness of a spectrum. For example, as the white noise is
increased on the speech signal, the kurtosis decreases, indicating a less peaky spectrum.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
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noiseGenerator = dsp.ColoredNoise('Color','white','SamplesPerFrame',size(audioIn,1));

noise = noiseGenerator();
noise = noise/max(abs(noise));
ramp = linspace(0,.25,numel(noise))';
noise = noise.*ramp;

audioIn = audioIn + noise;

kurtosis = spectralKurtosis(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(audioIn,1));
subplot(2,1,1)
plot(t,audioIn)
ylabel('Amplitude')

t = linspace(0,size(audioIn,1)/fs,size(kurtosis,1));
subplot(2,1,2)
plot(t,kurtosis)
xlabel('Time (s)')
ylabel('Kurtosis')

Spectral Entropy

Spectral entropy (spectralEntropy) measures the peakiness of the spectrum [6 on page 20-23]:
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entropy =
−∑k = b1

b2 sklog sk

log b2− b1

where

• fk  is the frequency in Hz corresponding to bin k.
• sk is the spectral value at bin k. The magnitude spectrum and power spectrum are both commonly

used.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral entropy.

Spectral entropy has been used successfully in voiced/unvoiced decisions for automatic speech
recognition [6 on page 20-23]. Because entropy is a measure of disorder, regions of voiced speech
have lower entropy compared to regions of unvoiced speech.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

entropy = spectralEntropy(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(audioIn,1));
subplot(2,1,1)
plot(t,audioIn)
ylabel('Amplitude')

t = linspace(0,size(audioIn,1)/fs,size(entropy,1));
subplot(2,1,2)
plot(t,entropy)
xlabel('Time (s)')
ylabel('Entropy')
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Spectral entropy has also been used to discriminate between speech and music [7 on page 20-24] [8
on page 20-24]. For example, compare histograms of entropy for speech, music, and background
audio files.

fs = 8000;
[speech,speechFs] = audioread('Rainbow-16-8-mono-114secs.wav');
speech = resample(speech,fs,speechFs);
speech = speech./max(speech);

[music,musicFs] = audioread('RockGuitar-16-96-stereo-72secs.flac');
music = sum(music,2)/2;
music = resample(music,fs,musicFs);
music = music./max(music);

[background,backgroundFs] = audioread('Ambiance-16-44p1-mono-12secs.wav');
background = resample(background,fs,backgroundFs);
background = background./max(background);

speechEntropy     = spectralEntropy(speech,fs);
musicEntropy      = spectralEntropy(music,fs);
backgroundEntropy = spectralEntropy(background,fs);

figure
h1 = histogram(speechEntropy);
hold on
h2 = histogram(musicEntropy);
h3 = histogram(backgroundEntropy);
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h1.Normalization = 'probability';
h2.Normalization = 'probability';
h3.Normalization = 'probability';
h1.BinWidth = 0.01;
h2.BinWidth = 0.01;
h3.BinWidth = 0.01;
title('Spectral Entropy')
legend('Speech','Music','Background','Location',"northwest")
xlabel('Entropy')
ylabel('Probability')
hold off

Spectral Flatness

Spectral flatness (spectralFlatness) measures the ratio of the geometric mean of the spectrum to
the arithmetic mean of the spectrum [9 on page 20-24]:

flatness =
∏k = b1

b2 sk

1
b2− b1

1
b2− b1

∑k = b1
b2 sk

where

• sk is the spectral value at bin k. The magnitude spectrum and power spectrum are both commonly
used.
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• b1 and b2 are the band edges, in bins, over which to calculate the spectral flatness.

Spectral flatness is an indication of the peakiness of the spectrum. A higher spectral flatness
indicates noise, while a lower spectral flatness indicates tonality.

[audio,fs] = audioread('WaveGuideLoopOne-24-96-stereo-10secs.aif');
audio = sum(audio,2)/2;

noise = (2*rand(numel(audio),1)-1).*linspace(0,0.05,numel(audio))';

audio = audio + noise;

flatness = spectralFlatness(audio,fs);

subplot(2,1,1)
t = linspace(0,size(audio,1)/fs,size(audio,1));
plot(t,audio)
ylabel('Amplitude')

subplot(2,1,2)
t = linspace(0,size(audio,1)/fs,size(flatness,1));
plot(t,flatness)
ylabel('Flatness')
xlabel('Time (s)')

Spectral flatness has also been applied successfully to singing voice detection [10 on page 20-24]
and to audio scene recognition [11 on page 20-24].
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Spectral Crest

Spectral crest (spectralCrest) measures the ratio of the maximum of the spectrum to the
arithmetic mean of the spectrum [1 on page 20-23]:

crest =
max skϵ b1, b2

1
b2− b1

∑k = b1
b2 sk

where

• sk is the spectral value at bin k. The magnitude spectrum and power spectrum are both commonly
used.

• b1 and b2 are the band edges, in bins, over which to calculate the spectral crest.

Spectral crest is an indication of the peakiness of the spectrum. A higher spectral crest indicates
more tonality, while a lower spectral crest indicates more noise.

[audio,fs] = audioread('WaveGuideLoopOne-24-96-stereo-10secs.aif');
audio = sum(audio,2)/2;

noise = (2*rand(numel(audio),1)-1).*linspace(0,0.2,numel(audio))';

audio = audio + noise;

crest = spectralCrest(audio,fs);

subplot(2,1,1)
t = linspace(0,size(audio,1)/fs,size(audio,1));
plot(t,audio)
ylabel('Amplitude')

subplot(2,1,2)
t = linspace(0,size(audio,1)/fs,size(crest,1));
plot(t,crest)
ylabel('Crest')
xlabel('Time (s)')
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Spectral Flux

Spectral flux (spectralFlux) is a measure of the variability of the spectrum over time [12 on page
20-24]:

flux t = ∑
k = b1

b2
sk t − sk t − 1 p

1
p

where

• sk is the spectral value at bin k. The magnitude spectrum and power spectrum are both commonly
used.

• b1 and b2 are the band edges, in bins, over which to calculate the spectral flux.
• p is the norm type.

Spectral flux is popularly used in onset detection [13 on page 20-24] and audio segmentation [14 on
page 20-24]. For example, the beats in the drum track correspond to high spectral flux.

[audio,fs] = audioread('FunkyDrums-48-stereo-25secs.mp3');
audio = sum(audio,2)/2;

flux = spectralFlux(audio,fs);

subplot(2,1,1)
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t = linspace(0,size(audio,1)/fs,size(audio,1));
plot(t,audio)
ylabel('Amplitude')

subplot(2,1,2)
t = linspace(0,size(audio,1)/fs,size(flux,1));
plot(t,flux)
ylabel('Flux')
xlabel('Time (s)')

Spectral Slope

Spectral slope (spectralSlope) measures the amount of decrease of the spectrum [15 on page 20-
24]:

slope =
∑k = b1

b2 fk− μf sk− μs

∑k = b1
b2 fk− μf

2

where

• fk  is the frequency in Hz corresponding to bin k.

• μf  is the mean frequency.

• sk is the spectral value at bin k. The magnitude spectrum is commonly used.
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• μs is the mean spectral value.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral slope.

Spectral slope has been used extensively in speech analysis, particularly in modeling speaker stress
[19 on page 20-25]. The slope is directly related to the resonant characteristics of the vocal folds
and has also been applied to speaker identification [21 on page 20-25]. Spectral slope is a socially
important aspect of timbre. Spectral slope discrimination has been shown to occur in early childhood
development [20 on page 20-25]. Spectral slope is most pronounced when the energy in the lower
formants is much greater than the energy in the higher formants.

[female,femaleFs] = audioread('FemaleSpeech-16-8-mono-3secs.wav');
female = female./max(female);

femaleSlope = spectralSlope(female,femaleFs);
t = linspace(0,size(female,1)/femaleFs,size(femaleSlope,1));
subplot(2,1,1)
spectrogram(female,round(femaleFs*0.05),round(femaleFs*0.04),round(femaleFs*0.05),femaleFs,'yaxis','power')

subplot(2,1,2)
plot(t,femaleSlope)
title('Female Speaker')
ylabel('Slope')
xlabel('Time (s)')
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Spectral Decrease

Spectral decrease (spectralDecrease) represents the amount of decrease of the spectrum, while
emphasizing the slopes of the lower frequencies [1 on page 20-23]:

decrease =
∑k = b1 + 1

b2 sk− sb1
k− 1

∑k = b1 + 1
b2 sk

where

• sk is the spectral value at bin k. The magnitude spectrum is commonly used.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral decrease.

Spectral decrease is used less frequently than spectral slope in the speech literature, but it is
commonly used, along with slope, in the analysis of music. In particular, spectral decrease has been
shown to perform well as a feature in instrument recognition [22 on page 20-25].

[guitar,guitarFs] = audioread('RockGuitar-16-44p1-stereo-72secs.wav');
guitar = mean(guitar,2);
[drums,drumsFs] = audioread('RockDrums-44p1-stereo-11secs.mp3');
drums = mean(drums,2);

guitarDecrease = spectralDecrease(guitar,guitarFs);
drumsDecrease = spectralDecrease(drums,drumsFs);

t1 = linspace(0,size(guitar,1)/guitarFs,size(guitarDecrease,1));
t2 = linspace(0,size(drums,1)/drumsFs,size(drumsDecrease,1));

subplot(2,1,1)
plot(t1,guitarDecrease)
title('Guitar')
ylabel('Decrease')
axis([0 10 -0.3 0.3])

subplot(2,1,2)
plot(t2,drumsDecrease)
title('Drums')
ylabel('Decrease')
xlabel('Time (s)')
axis([0 10 -0.3 0.3])
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Spectral Rolloff Point

The spectral rolloff point (spectralRolloffPoint) measures the bandwidth of the audio signal by
determining the frequency bin under which a given percentage of the total energy exists [12 on page
20-24]:

Rolloff Point = i such that ∑
k = b1

i
sk = κ ∑

k = b1

b2
sk

where

• sk is the spectral value at bin k. The magnitude spectrum and power spectrum are both commonly
used.

• b1 and b2 are the band edges, in bins, over which to calculate the spectral rolloff point.

• κ is the specified energy threshold, usually 95% or 85%.

i is converted to Hz before it is returned by spectralRolloffPoint.

The spectral rolloff point has been used to distinguish between voiced and unvoiced speech, speech/
music discrimination [12 on page 20-24], music genre classification [16 on page 20-24], acoustic
scene recognition [17 on page 20-24], and music mood classification [18 on page 20-24]. For
example, observe the different mean and variance of the rolloff point for speech, rock guitar, acoustic
guitar, and an acoustic scene.
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dur = 5; % Clip out 5 seconds from each file.

[speech,fs1] = audioread('SpeechDFT-16-8-mono-5secs.wav');
speech = speech(1:min(end,fs1*dur));

[electricGuitar,fs2] = audioread('RockGuitar-16-44p1-stereo-72secs.wav');
electricGuitar = mean(electricGuitar,2); % Convert to mono for comparison.
electricGuitar = electricGuitar(1:fs2*dur);

[acousticGuitar,fs3] = audioread('SoftGuitar-44p1_mono-10mins.ogg');
acousticGuitar = acousticGuitar(1:fs3*dur);

[acousticScene,fs4] = audioread('MainStreetOne-16-16-mono-12secs.wav');
acousticScene = acousticScene(1:fs4*dur);

r1 = spectralRolloffPoint(speech,fs1);
r2 = spectralRolloffPoint(electricGuitar,fs2);
r3 = spectralRolloffPoint(acousticGuitar,fs3);
r4 = spectralRolloffPoint(acousticScene,fs4);

t1 = linspace(0,size(speech,1)/fs1,size(r1,1));
t2 = linspace(0,size(electricGuitar,1)/fs2,size(r2,1));
t3 = linspace(0,size(acousticGuitar,1)/fs3,size(r3,1));
t4 = linspace(0,size(acousticScene,1)/fs4,size(r4,1));

figure
plot(t1,r1)
title('Speech')
ylabel('Rolloff Point (Hz)')
xlabel('Time (s)')
axis([0 5 0 4000])
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figure
plot(t2,r2)
title('Rock Guitar')
ylabel('Rolloff Point (Hz)')
xlabel('Time (s)')
axis([0 5 0 4000])
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figure
plot(t3,r3)
title('Acoustic Guitar')
ylabel('Rolloff Point (Hz)')
xlabel('Time (s)')
axis([0 5 0 4000])
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figure
plot(t4,r4)
title('Acoustic Scene')
ylabel('Rolloff Point (Hz)')
xlabel('Time (s)')
axis([0 5 0 4000])
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